1
|
Jia Q, Zhang J, Wang S, Xu F. Proteomic Analysis Reveals Differentially Expressed Proteins in Cordyceps militaris Cultured with Different Media. Curr Microbiol 2024; 82:29. [PMID: 39641825 DOI: 10.1007/s00284-024-04005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Cordyceps militaris is rich in high quality protein, which is an excellent protein supplement. In this study, proteins were extracted from C. militaris cultured with tussah pupa and C. militaris cultured with wheat and analyzed by liquid chromatography coupled with mass spectrometer. Results showed that a total of 83 differentially expressed proteins (DEPs) were identified. KEGG analysis showed that the number of DEPs involved in amino sugar and nucleotide sugar metabolism and metabolic pathways was the largest. The expression levels of chitinase, tubulin alpha chain and heat shock 70 kDa protein were upregulated in C. militaris cultured with tussah pupa, and these key DEPs were mainly related to immune modulation and disease resistance. The results revealed the nutritional and functional differences in the fruiting bodies of C. militaris cultured with tussah pupa and wheat, respectively. The findings provide a theoretical basis for further studies on the biological function of proteins in C. militaris.
Collapse
Affiliation(s)
- Qiurong Jia
- College of Life Science, Shenyang Normal University, Shenyang, 110034, Liaoning, China
| | - Jiahui Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, 110034, Liaoning, China
| | - Shenghou Wang
- Industrial Technology Research Academy for Cordyceps Militaris with Functional Value of Shenyang, Shenyang, 110034, Liaoning, China
| | - Fangxu Xu
- Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, Liaoning, China.
- Key Laboratory of Cordyceps Militaris with Functional Value of Liaoning Province, Shenyang, 110034, Liaoning, China.
| |
Collapse
|
2
|
Wang Y, Tong L, Yang L, Ren B, Guo D. Metabolite profiling and antioxidant capacity of natural Ophiocordyceps gracilis and its cultures using LC-MS/MS-based metabolomics: Comparison with Ophiocordyceps sinensis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:308-320. [PMID: 37779226 DOI: 10.1002/pca.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Ophiocordyceps gracilis is an entomopathogenic fungus and a precious traditional Chinese medicine with similar medicinal properties to Ophiocordyceps sinensis. However, information on the metabolite profiles of natural O. gracilis and its cultures is lacking, which limits their utilization. OBJECTIVE The metabolic variations and antioxidant activities of O. gracilis cultures and natural O. gracilis were analyzed to evaluate the nutritional and medicinal value of O. gracilis and its cultures. METHOD The metabolite profiles of O. gracilis cultures (fruiting bodies and aerial mycelia), natural O. gracilis, and natural O. sinensis were compared by LC-MS/MS coupled with multivariate data analysis. Furthermore, their antioxidant activities were evaluated based on their DPPH• , ABTS•+ , and • OH scavenging abilities. RESULTS A total of 612 metabolites were identified, and the metabolic compositions of the four Cordyceps samples were similar, with differences observed in the levels of some metabolites. There were 126 differential metabolites between natural O. gracilis and natural O. sinensis, among which fatty acids, carbohydrates, and secondary metabolites are predominant in natural O. gracilis. Furthermore, 116 differential metabolites between O. gracilis cultures and natural Cordyceps were identified, with generally higher levels in O. gracilis cultures than in natural Cordyceps. O. gracilis cultivated fruiting bodies exhibited the strongest antioxidant capacity among Cordyceps samples. Additionally, 46 primary and 24 secondary differential metabolites contribute to antioxidant activities. CONCLUSION This study provides a reference for the application of natural O. gracilis and its cultures in functional food and medicine from the perspective of metabolites and antioxidant capacity.
Collapse
Affiliation(s)
- Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lingling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Linhui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Xu B, Cui Y, A L, Zhang H, Ma Q, Wei F, Liang J. Transcriptomic and proteomic strategies to reveal the mechanism of Gymnocypris przewalskii scale development. BMC Genomics 2024; 25:140. [PMID: 38310220 PMCID: PMC10837935 DOI: 10.1186/s12864-024-10047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways. RESULTS The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway. CONCLUSION This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
Collapse
Affiliation(s)
- Baoke Xu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Yanrong Cui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Linlin A
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Haichen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Qinghua Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Fulei Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China.
| |
Collapse
|
4
|
Yu H, Jiang N, Yan M, Cheng X, Zhang L, Zhai D, Liu J, Zhang M, Song C, Yu H, Li Q. Comparative analysis of proteomes and transcriptomes revealed the molecular mechanism of development and nutrition of Pleurotus giganteus at different fruiting body development stages. Front Nutr 2023; 10:1197983. [PMID: 37545588 PMCID: PMC10402744 DOI: 10.3389/fnut.2023.1197983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Pleurotus giganteus is a commercially cultivated high-temperature mushroom. Investigating the molecular mechanism of fruiting body development will help us to better understand the regulation of substrates and energy in this process. However, little information has been reported on the development and nutrients of the P. giganteus fruiting body. In the present study, P. giganteus is cultivated in a climate chamber, and comparative transcriptome, proteome, and nutritional analysis of P. giganteus fruiting bodies were performed. Our results revealed that Cytochrome P450 monooxygenases and hydrophobin proteins play important roles during the differentiation in the elongation stage. Later, carbon metabolism dominate the fruiting body metabolism and genes related to the carbohydrate metabolic process, glycolytic process, and gluconeogenesis were up-regulated in the mature fruiting bodies. The up-regulation of carbohydrate substrates utilization CAZymes genes and inconsistent protein expression in pileus indicated a reverse transportation of mRNA from the fruiting body to vegetative mycelia. In addition, protein concentration in the pileus is higher than that in the stem, while the stem is the major nitrogen metabolic and amino acid synthetic location. The integrated transcriptomic, proteomic, and nutritional analysis indicated a two-way transportation of substrates and mRNAs in P. giganteus. Stem synthesizes amino acids and transported them to pileus with reducing sugars, while pileus induces the expression of substrate degradation mRNA according to the needs of growth and development and transports them in the other direction.
Collapse
Affiliation(s)
- Hailong Yu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ning Jiang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Miaomiao Yan
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuan Cheng
- Agricultural Specialty Industry Development Center, Qujiang, Zhejiang, China
| | - Lujun Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dandan Zhai
- Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin, China
| | - Jianyu Liu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Meiyan Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chunyan Song
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hao Yu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiaozhen Li
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Proteomics as a New-Generation Tool for Studying Moulds Related to Food Safety and Quality. Int J Mol Sci 2023; 24:ijms24054709. [PMID: 36902140 PMCID: PMC10003330 DOI: 10.3390/ijms24054709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mould development in foodstuffs is linked to both spoilage and the production of mycotoxins, provoking food quality and food safety concerns, respectively. The high-throughput technology proteomics applied to foodborne moulds is of great interest to address such issues. This review presents proteomics approaches useful for boosting strategies to minimise the mould spoilage and the hazard related to mycotoxins in food. Metaproteomics seems to be the most effective method for mould identification despite the current problems related to the bioinformatics tool. More interestingly, different high resolution mass spectrometry tools are suitable for evaluating the proteome of foodborne moulds able to unveil the mould's response under certain environmental conditions and the presence of biocontrol agents or antifungals, being sometimes combined with a method with limited ability to separate proteins, the two-dimensional gel electrophoresis. However, the matrix complexity, the high ranges of protein concentrations needed and the performing of multiple steps are some of the proteomics limitations for the application to foodborne moulds. To overcome some of these limitations, model systems have been developed and proteomics applied to other scientific fields, such as library-free data independent acquisition analyses, the implementation of ion mobility, and the evaluation of post-translational modifications, are expected to be gradually implemented in this field for avoiding undesirable moulds in foodstuffs.
Collapse
|
6
|
Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microb Cell Fact 2023; 22:11. [PMID: 36647087 PMCID: PMC9841694 DOI: 10.1186/s12934-022-02013-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mushrooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel approaches, have been made to improve their production. The novel strategies include conducting omics investigations, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strategies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites in these valuable organisms.
Collapse
|
7
|
Novel insight into the formation mechanism of umami peptides based on microbial metabolism in Chouguiyu, a traditional Chinese fermented fish. Food Res Int 2022; 157:111211. [DOI: 10.1016/j.foodres.2022.111211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022]
|
8
|
Rajczewski AT, Jagtap PD, Griffin TJ. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev Proteomics 2022; 19:165-181. [PMID: 35466851 PMCID: PMC9613604 DOI: 10.1080/14789450.2022.2070476] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Mass spectrometry-based proteomics reveals dynamic molecular signatures underlying phenotypes reflecting normal and perturbed conditions in living systems. Although valuable on its own, the proteome has only one level of moleclar information, with the genome, epigenome, transcriptome, and metabolome, all providing complementary information. Multi-omic analysis integrating information from one or more of these other domains with proteomic information provides a more complete picture of molecular contributors to dynamic biological systems. AREAS COVERED Here, we discuss the improvements to mass spectrometry-based technologies, focused on peptide-based, bottom-up approaches that have enabled deep, quantitative characterization of complex proteomes. These advances are facilitating the integration of proteomics data with other 'omic information, providing a more complete picture of living systems. We also describe the current state of bioinformatics software and approaches for integrating proteomics and other 'omics data, critical for enabling new discoveries driven by multi-omics. EXPERT COMMENTARY Multi-omics, centered on the integration of proteomics information with other 'omic information, has tremendous promise for biological and biomedical studies. Continued advances in approaches for generating deep, reliable proteomic data and bioinformatics tools aimed at integrating data across 'omic domains will ensure the discoveries offered by these multi-omic studies continue to increase.
Collapse
Affiliation(s)
- Andrew T. Rajczewski
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA,Coauthor, Research Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA,Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| |
Collapse
|
9
|
Comparative Proteomic Analysis within the Developmental Stages of the Mushroom White Hypsizygus marmoreus. J Fungi (Basel) 2021; 7:jof7121064. [PMID: 34947046 PMCID: PMC8704636 DOI: 10.3390/jof7121064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: The white Hypsizygus marmoreus is a popular edible mushroom in East Asia markets. Research on the systematic investigation of the protein expression changes in the cultivation process of this mushroom are few. (2) Methods: Label-free LC-MS/MS quantitative proteomics analysis technique was adopted to obtain the protein expression profiles of six groups of samples collected in different growth stages. A total of 3468 proteins were identified. The UpSetR plot analysis, Pearson correlation coefficient (PCC) analysis, and principal component (PC) analysis were performed to reveal the correlation among the six groups of samples. The differentially expressed proteins (DEPs) were organised by One-way ANOVA test and divided into four clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to divide the DEPs into different metabolic processes and pathways in each cluster. (3) Results: The DEPs in cluster 1 are of the highest abundance in the mycelium and are mainly involved in protein biosynthesis, biosynthesis of cofactors, lipid metabolism, spliceosome, cell cycle regulation, and MAPK signaling pathway. The DEPs in cluster 2 are enriched in the stem and are mainly associated with protein biosynthesis, biosynthesis of cofactors, carbon, and energy metabolism. The DEPs in cluster 3 are highly expressed in the primordia and unmatured fruiting bodies and are related to amino acids metabolism, carbon and carbohydrate metabolism, protein biosynthesis and processing, biosynthesis of cofactors, cell cycle regulation, MAPK signaling pathway, ubiquitin-mediated proteolysis, and proteasome. The DEPs in cluster 4 are of the highest abundance in the cap and are mainly associated with spliceosome, endocytosis, nucleocytoplasmic transport, protein processing, oxidative phosphorylation, biosynthesis of cofactors, amino acids metabolism, and lipid metabolism. (4) Conclusions: This research reports the proteome analysis of different developmental stages during the cultivation of the commercially relevant edible fungi the white H. marmoreus. In the mycelium stage, most of the DEPs are associated with cell proliferation, signal response, and mycelium growth. In the primordia and unmatured fruiting bodies stage, the DEPs are mainly involved in biomass increase, cell proliferation, signal response, and differentiation. In the mature fruiting body stage, the DEPs in the stem are largely associated with cell elongation and increase in biomass, and most of the DEPs in the cap are mainly related to pileus expansion. Several carbohydrate-active enzymes, transcription factors, heat shock proteins, and some DEPs involved in MAPK and cAMP signaling pathways were determined. These proteins might play vital roles in metabolic processes and activities. This research can add value to the understanding of mechanisms concerning mushroom development during commercial production.
Collapse
|
10
|
Wang J, Delfarah A, Gelbach PE, Fong E, Macklin P, Mumenthaler SM, Graham NA, Finley SD. Elucidating tumor-stromal metabolic crosstalk in colorectal cancer through integration of constraint-based models and LC-MS metabolomics. Metab Eng 2021; 69:175-187. [PMID: 34838998 PMCID: PMC8818109 DOI: 10.1016/j.ymben.2021.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality in the United States. Tumor-stromal metabolic crosstalk in the tumor microenvironment promotes CRC development and progression, but exactly how stromal cells, in particular cancer-associated fibroblasts (CAFs), affect the metabolism of tumor cells remains unknown. Here we take a data-driven approach to investigate the metabolic interactions between CRC cells and CAFs, integrating constraint-based modeling and metabolomic profiling. Using metabolomics data, we perform unsteady-state parsimonious flux balance analysis to infer flux distributions for central carbon metabolism in CRC cells treated with or without CAF-conditioned media. We find that CAFs reprogram CRC metabolism through stimulation of glycolysis, the oxidative arm of the pentose phosphate pathway (PPP), and glutaminolysis, as well as inhibition of the tricarboxylic acid cycle. To identify potential therapeutic targets, we simulate enzyme knockouts and find that CAF-treated CRC cells are especially sensitive to inhibitions of hexokinase and glucose-6-phosphate, the rate limiting steps of glycolysis and oxidative PPP. Our work gives mechanistic insights into the metabolic interactions between CRC cells and CAFs and provides a framework for testing hypotheses towards CRC-targeted therapies.
Collapse
Affiliation(s)
- Junmin Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Alireza Delfarah
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Patrick E Gelbach
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emma Fong
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, 90064, USA
| | - Paul Macklin
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 46202, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, 90064, USA; Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
11
|
Wang G, Chen X, Zhang C, Li M, Sun C, Zhan N, Huang X, Li T, Deng W. Biosynthetic Pathway and the Potential Role of Melatonin at Different Abiotic Stressors and Developmental Stages in Tolypocladium guangdongense. Front Microbiol 2021; 12:746141. [PMID: 34690994 PMCID: PMC8533646 DOI: 10.3389/fmicb.2021.746141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Melatonin, a bioactive compound and an important signaling molecule produced in plants and animals, is involved in many biological processes. However, its function and synthetic pathways in fungi are poorly understood. Here, the samples from Tolypocladium guangdongense, a highly valued edible fungus with functional food properties, were collected under different experimental conditions to quantify the levels of melatonin and its intermediates. The results showed that the intracellular melatonin content was markedly improved by Congo red (CR), cold, and heat stresses; the levels of intracellular melatonin and its intermediates increased at the primordial (P) and fruiting body (FB) stages. However, the levels of most intermediates exhibited a notable decrease under CR stress. Several genes related to melatonin synthesis, excluding AADC (aromatic-L-amino-acid decarboxylase), were markedly upregulated at an early stage of CR stress but downregulated later. Compared to the mycelial stage, those genes were significantly upregulated at the P and FB stages. Additionally, exogenous melatonin promoted resistance to several abiotic stressors and P formation in T. guangdongense. This study is the first to report melatonin biosynthesis pathway in macro-fungi. Our results should help in studying the diversity of melatonin function and melatonin-synthesis pathways and provide a new viewpoint for melatonin applications in the edible-medicinal fungus.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianglian Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,College of Agriculture and Animal Husbandry, Tibet University, Nyingchi, China
| | - Chengyuan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,College of Plant Protection, China Agricultural University, Guangzhou, China
| | - Ning Zhan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
Root L, Campo A, MacNiven L, Con P, Cnaani A, Kültz D. Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover. Genomics 2021; 113:3235-3249. [PMID: 34298068 DOI: 10.1016/j.ygeno.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
A data-independent acquisition (DIA) assay library for targeted quantitation of thousands of Oreochromis niloticus gill proteins using a label- and gel-free workflow was generated and used to compare protein and mRNA abundances. This approach generated complimentary rather than redundant data for 1899 unique genes in gills of tilapia acclimated to freshwater and brackish water. Functional enrichment analyses identified mitochondrial energy metabolism, serine protease and immunity-related functions, and cytoskeleton/ extracellular matrix organization as major processes controlled by salinity in O. niloticus gills. Non-linearity in salinity-dependent transcriptome versus proteome regulation was revealed for specific functional groups of genes. The relationship was more linear for other molecular functions/ cellular processes, suggesting that the salinity-dependent regulation of O. niloticus gill function relies on post-transcriptional mechanisms for some functions/ processes more than others. This integrative systems biology approach can be adopted for other tissues and organisms to study cellular dynamics for many changing ecological contexts.
Collapse
Affiliation(s)
- Larken Root
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Aurora Campo
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Leah MacNiven
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Wang G, Li M, Zhang C, Zhan N, Cheng H, Gao Y, Sun C, Deng W, Li T. Identification of microRNA-like RNAs in Cordyceps guangdongensis and their expression profile under differential developmental stages. Fungal Genet Biol 2020; 147:103505. [PMID: 33347973 DOI: 10.1016/j.fgb.2020.103505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022]
Abstract
Cordyceps guangdongensis is a well-known fungus with high nutritional and medicinal value. The metabolite profile of C. guangdongensis is similar to that of Ophiocordyceps sinensis. In plants and animals, microRNAs play important roles in regulating gene expression at the post-transcriptional level. MicroRNA-like RNAs (milRNAs) have been documented in several macro-fungi. To comprehensively investigate the milRNAs in C. guangdongensis, three small RNA libraries from the differentially developmental stages were constructed. Twenty-six conserved milRNAs were identified, and 19 novel milRNA candidates were predicted. Among them, 20 milRNAs were differentially expressed across the developmental processes, and 12 milRNAs were verified using stem-loop quantitative real-time reverse transcription polymerase chain reaction. In addition, the potential target genes of milRNA were predicted to be involved in the development of fruiting bodies and metabolite biosynthesis. This study is the first to report the milRNAs of C. guangdongensis, and provides important insights into studies of milRNA regulation pathways in ascomycete fungi.
Collapse
Affiliation(s)
- Gangzheng Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Agriculture and Animal Husbandry, Tibet University, Nyingchi 860000, China
| | - Chenghua Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ning Zhan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Huijiao Cheng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; South China Agricultural University, Guangzhou 510642, China
| | - Yu Gao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chengyuan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; South China Agricultural University, Guangzhou 510642, China
| | - Wangqiu Deng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Taihui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|