1
|
Vasylieva V, Arefiev I, Bourassa F, Trifiro FA, Brunet MA. Proteomics Can Rise to the Challenge of Pseudogenes' Coding Nature. J Proteome Res 2024; 23:5233-5249. [PMID: 39486438 PMCID: PMC11629383 DOI: 10.1021/acs.jproteome.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
Throughout the past decade, technological advances in genomics and transcriptomics have revealed pervasive translation throughout mammalian genomes. These putative proteins are usually excluded from proteomics analyses, as they are absent from common protein repositories. A sizable portion of these noncanonical proteins is translated from pseudogenes. Pseudogenes are commonly termed defective copies of coding genes unable to produce proteins. Here, we suggest that proteomics can help in their annotation. First, we define important terms and review specific examples underlining the caveats in pseudogene annotation and their coding potential. Then, we will discuss the challenges inherent to pseudogenes that have thus far rendered complex their confidence in omics data. Finally, we identify recent developments in experimental procedures, instrumentation, and computational methods in proteomics that put the field in a unique position to solve the pseudogene annotation conundrum.
Collapse
Affiliation(s)
- Valeriia Vasylieva
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Ihor Arefiev
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Francis Bourassa
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Félix-Antoine Trifiro
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| | - Marie A. Brunet
- Pediatrics
Department, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Centre
de Recherche du Centre hospitalier de l’université de
Sherbrooke (CRCHUS), Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
2
|
Roy M, Mbous Nguimbus L, Badiane PY, Goguen-Couture V, Degrandmaison J, Parent JL, Brunet MA, Roux S. Galectin-8 modulates human osteoclast activity partly through isoform-specific interactions. Life Sci Alliance 2024; 7:e202302348. [PMID: 38395460 PMCID: PMC10895193 DOI: 10.26508/lsa.202302348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In overactive human osteoclasts, we previously identified an alternative splicing event in LGALS8, encoding galectin-8, resulting in decreased expression of the long isoform. Galectin-8, which modulates cell-matrix interactions and functions intracellularly as a danger recognition receptor, has never been associated with osteoclast biology. In human osteoclasts, inhibition of galectin-8 expression revealed its roles in bone resorption, osteoclast nuclearity, and mTORC1 signaling regulation. Galectin-8 isoform-specific inhibition asserted a predominant role for the short isoform in bone resorption. Moreover, a liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomic analysis of galectin-8 isoforms performed in HEK293T cells identified 22 proteins shared by both isoforms. Meanwhile, nine interacting partners were specific for the short isoform, and none were unique to the long isoform. Interactors specific for the galectin-8 short isoform included cell adhesion proteins and lysosomal proteins. We confirmed the interactions of galectin-8 with CLCN3, CLCN7, LAMP1, and LAMP2, all known to localize to secretory vesicles, in human osteoclasts. Altogether, our study reveals direct roles of galectin-8 in osteoclast activity, mostly attributable to the short isoform.
Collapse
Affiliation(s)
- Michèle Roy
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Léopold Mbous Nguimbus
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Papa Yaya Badiane
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Victor Goguen-Couture
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jade Degrandmaison
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Jean-Luc Parent
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Marie A Brunet
- Department of Paediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Sophie Roux
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
3
|
Garcia-Del Rio DF, Fournier I, Cardon T, Salzet M. Protocol to identify human subcellular alternative protein interactions using cross-linking mass spectrometry. STAR Protoc 2023; 4:102380. [PMID: 37384523 PMCID: PMC10511867 DOI: 10.1016/j.xpro.2023.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
Since the start of mass-spectrometry-based proteomics, proteins from non-referenced open reading frames or alternative proteins (AltProts) have been overlooked. Here, we present a protocol to identify human subcellular AltProt and decipher some interactions using cross-linking mass spectrometry. We describe steps for cell culture, in cellulo cross-link, subcellular extraction, and sequential digestion. We then detail both liquid chromatography-tandem mass spectrometry and cross-link data analyses. The implementation of a single workflow allows the non-targeted identification of signaling pathways involving AltProts. For complete details on the use and execution of this protocol, please refer to Garcia-del Rio et al.1.
Collapse
Affiliation(s)
- Diego Fernando Garcia-Del Rio
- Université de Lille, Univ. Lille, CHU Lille, Inserm U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France; VIB Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium
| | - Isabelle Fournier
- Université de Lille, Univ. Lille, CHU Lille, Inserm U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.
| | - Tristan Cardon
- Université de Lille, Univ. Lille, CHU Lille, Inserm U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France.
| | - Michel Salzet
- Université de Lille, Univ. Lille, CHU Lille, Inserm U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| |
Collapse
|
4
|
Leblanc S, Brunet MA, Jacques JF, Lekehal AM, Duclos A, Tremblay A, Bruggeman-Gascon A, Samandi S, Brunelle M, Cohen AA, Scott MS, Roucou X. Newfound Coding Potential of Transcripts Unveils Missing Members of Human Protein Communities. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:515-534. [PMID: 36183975 PMCID: PMC10787177 DOI: 10.1016/j.gpb.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Recent proteogenomic approaches have led to the discovery that regions of the transcriptome previously annotated as non-coding regions [i.e., untranslated regions (UTRs), open reading frames overlapping annotated coding sequences in a different reading frame, and non-coding RNAs] frequently encode proteins, termed alternative proteins (altProts). This suggests that previously identified protein-protein interaction (PPI) networks are partially incomplete because altProts are not present in conventional protein databases. Here, we used the proteogenomic resource OpenProt and a combined spectrum- and peptide-centric analysis for the re-analysis of a high-throughput human network proteomics dataset, thereby revealing the presence of 261 altProts in the network. We found 19 genes encoding both an annotated (reference) and an alternative protein interacting with each other. Of the 117 altProts encoded by pseudogenes, 38 are direct interactors of reference proteins encoded by their respective parental genes. Finally, we experimentally validate several interactions involving altProts. These data improve the blueprints of the human PPI network and suggest functional roles for hundreds of altProts.
Collapse
Affiliation(s)
- Sébastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Marie A Brunet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Jean-François Jacques
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Amina M Lekehal
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Andréa Duclos
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Alexia Tremblay
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Alexis Bruggeman-Gascon
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Sondos Samandi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Mylène Brunelle
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Alan A Cohen
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
5
|
Employing non-targeted interactomics approach and subcellular fractionation to increase our understanding of the ghost proteome. iScience 2023; 26:105943. [PMID: 36866041 PMCID: PMC9971881 DOI: 10.1016/j.isci.2023.105943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic mRNA has long been considered monocistronic, but nowadays, alternative proteins (AltProts) challenge this tenet. The alternative or ghost proteome has largely been neglected and the involvement of AltProts in biological processes. Here, we used subcellular fractionation to increase the information about AltProts and facilitate the detection of protein-protein interactions by the identification of crosslinked peptides. In total, 112 unique AltProts were identified, and we were able to identify 220 crosslinks without peptide enrichment. Among these, 16 crosslinks between AltProts and Referenced Proteins (RefProts) were identified. We further focused on specific examples such as the interaction between IP_2292176 (AltFAM227B) and HLA-B, in which this protein could be a potential new immunopeptide, and the interactions between HIST1H4F and several AltProts which can play a role in mRNA transcription. Thanks to the study of the interactome and the localization of AltProts, we can reveal more of the importance of the ghost proteome.
Collapse
|
6
|
Malekos E, Carpenter S. Short open reading frame genes in innate immunity: from discovery to characterization. Trends Immunol 2022; 43:741-756. [PMID: 35965152 PMCID: PMC10118063 DOI: 10.1016/j.it.2022.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing (NGS) technologies have greatly expanded the size of the known transcriptome. Many newly discovered transcripts are classified as long noncoding RNAs (lncRNAs) which are assumed to affect phenotype through sequence and structure and not via translated protein products despite the vast majority of them harboring short open reading frames (sORFs). Recent advances have demonstrated that the noncoding designation is incorrect in many cases and that sORF-encoded peptides (SEPs) translated from these transcripts are important contributors to diverse biological processes. Interest in SEPs is at an early stage and there is evidence for the existence of thousands of SEPs that are yet unstudied. We hope to pique interest in investigating this unexplored proteome by providing a discussion of SEP characterization generally and describing specific discoveries in innate immunity.
Collapse
Affiliation(s)
- Eric Malekos
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Susan Carpenter
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA; Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
7
|
Cohen AA, Leblanc S, Roucou X. Robust Physiological Metrics From Sparsely Sampled Networks. Front Physiol 2021; 12:624097. [PMID: 33643068 PMCID: PMC7902772 DOI: 10.3389/fphys.2021.624097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Physiological and biochemical networks are highly complex, involving thousands of nodes as well as a hierarchical structure. True network structure is also rarely known. This presents major challenges for applying classical network theory to these networks. However, complex systems generally share the property of having a diffuse or distributed signal. Accordingly, we should predict that system state can be robustly estimated with sparse sampling, and with limited knowledge of true network structure. In this review, we summarize recent findings from several methodologies to estimate system state via a limited sample of biomarkers, notably Mahalanobis distance, principal components analysis, and cluster analysis. While statistically simple, these methods allow novel characterizations of system state when applied judiciously. Broadly, system state can often be estimated even from random samples of biomarkers. Furthermore, appropriate methods can detect emergent underlying physiological structure from this sparse data. We propose that approaches such as these are a powerful tool to understand physiology, and could lead to a new understanding and mapping of the functional implications of biological variation.
Collapse
Affiliation(s)
- Alan A. Cohen
- Groupe de Recherche PRIMUS, Département de Médecine de Famille et de Médecine d’Urgence, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
- Research Center on Aging, CIUSSS-de-l’Estrie-CHUS, Sherbrooke, QC, Canada
| | - Sebastien Leblanc
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Xavier Roucou
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|