1
|
Sheng N, Qiao J, Wei L, Shi H, Guo H, Yang C. Computational models for prediction of m6A sites using deep learning. Methods 2025; 240:113-124. [PMID: 40268153 DOI: 10.1016/j.ymeth.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
RNA modifications play a crucial role in enhancing the structural and functional diversity of RNA molecules and regulating various stages of the RNA life cycle. Among these modifications, N6-Methyladenosine (m6A) is the most common internal modification in eukaryotic mRNAs and has been extensively studied over the past decade. Accurate identification of m6A modification sites is essential for understanding their function and underlying mechanisms. Traditional methods predominantly rely on machine learning techniques to recognize m6A sites, which often fail to capture the contextual features of these sites comprehensively. In this study, we comprehensively summarize previously published methods based on machine learning and deep learning. We also validate multiple deep learning approaches on benchmark dataset, including previously underutilized methods in m6A site prediction, pre-trained models specifically designed for biological sequence and other basic deep learning methods. Additionally, we further analyze the dataset features and interpret the model's predictions to enhance understanding. Our experimental results clearly demonstrate the effectiveness of the deep learning models, elucidating their strong potential in accurately recognizing m6A modification sites.
Collapse
Affiliation(s)
- Nan Sheng
- School of Software, Shandong University, Jinan 250101, PR China
| | - Jianbo Qiao
- School of Software, Shandong University, Jinan 250101, PR China
| | - Leyi Wei
- School of Software, Shandong University, Jinan 250101, PR China
| | - Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, PR China
| | - Huannan Guo
- Beidahuang Industry Group General Hospital, PR China.
| | - Changshun Yang
- Department of Gastrointestinal Surgery, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350004, PR China.
| |
Collapse
|
2
|
Li M, Li R, Zhang Y, Peng S, Lv Z. Using statistical analysis to explore the influencing factors of data imbalance for machine learning identification methods of human transcriptome m6A modification sites. Comput Biol Chem 2025; 115:108351. [PMID: 39837162 DOI: 10.1016/j.compbiolchem.2025.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/12/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
RNA methylation, particularly through m6A modification, represents a crucial epigenetic mechanism that governs gene expression and influences a range of biological functions. Accurate identification of methylation sites is crucial for understanding their biological functions. Traditional experimental methods, however, are often costly and can be influenced by experimental conditions, making machine learning, especially deep learning techniques, a vital tool for m6A site identification. Despite their utility, current machine learning models struggle with unbalanced datasets, a common issue in bioinformatics. This study addresses the RNA methylation site data imbalance problem from three key perspectives: feature encoding representation, deep learning models, and data resampling strategies. Using the K-mer one-hot encoding strategy, we effectively extracted RNA sequence features and developed classification prediction models utilizing long short-term memory networks (LSTM) and its variant, Multiplicative LSTM (mLSTM). We further enhanced model performance by ensemble and weighted strategy models. Additionally, we utilized the sequence generative adversarial network (SeqGAN) and the synthetic minority resampling technique (SMOTE) to construct balanced datasets for RNA methylation sites. The prediction results were rigorously analyzed using the Wilcoxon test and multivariate linear regression to explore the effects of different K-mer values, model architectures, and sampling methods on classification outcomes. The analysis underscored the significant impact of feature selection, model architecture, and sampling techniques in addressing data imbalance. Notably, the optimal prediction performance was achieved with a K value of 5 using the mLSTM-ensemble model. These findings not only offer new insights and methodologies for RNA methylation site identification but also provide valuable guidance for addressing similar challenges in bioinformatics.
Collapse
Affiliation(s)
- Mingxin Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Rujun Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yichi Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Shiyu Peng
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhibin Lv
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Chaturvedi M, Rashid MA, Paliwal KK. RNA structure prediction using deep learning - A comprehensive review. Comput Biol Med 2025; 188:109845. [PMID: 39983363 DOI: 10.1016/j.compbiomed.2025.109845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
In computational biology, accurate RNA structure prediction offers several benefits, including facilitating a better understanding of RNA functions and RNA-based drug design. Implementing deep learning techniques for RNA structure prediction has led tremendous progress in this field, resulting in significant improvements in prediction accuracy. This comprehensive review aims to provide an overview of the diverse strategies employed in predicting RNA secondary structures, emphasizing deep learning methods. The article categorizes the discussion into three main dimensions: feature extraction methods, existing state-of-the-art learning model architectures, and prediction approaches. We present a comparative analysis of various techniques and models highlighting their strengths and weaknesses. Finally, we identify gaps in the literature, discuss current challenges, and suggest future approaches to enhance model performance and applicability in RNA structure prediction tasks. This review provides a deeper insight into the subject and paves the way for further progress in this dynamic intersection of life sciences and artificial intelligence.
Collapse
Affiliation(s)
- Mayank Chaturvedi
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia.
| | - Mahmood A Rashid
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia.
| | - Kuldip K Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
4
|
Su Q, Phan LT, Pham NT, Wei L, Manavalan B. MST-m6A: A Novel Multi-Scale Transformer-based Framework for Accurate Prediction of m6A Modification Sites Across Diverse Cellular Contexts. J Mol Biol 2025; 437:168856. [PMID: 39510345 DOI: 10.1016/j.jmb.2024.168856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
N6-methyladenosine (m6A) modification, a prevalent epigenetic mark in eukaryotic cells, is crucial in regulating gene expression and RNA metabolism. Accurately identifying m6A modification sites is essential for understanding their functions within biological processes and the intricate mechanisms that regulate them. Recent advances in high-throughput sequencing technologies have enabled the generation of extensive datasets characterizing m6A modification sites at single-nucleotide resolution, leading to the development of computational methods for identifying m6A RNA modification sites. However, most current methods focus on specific cell lines, limiting their generalizability and practical application across diverse biological contexts. To address the limitation, we propose MST-m6A, a novel approach for identifying m6A modification sites with higher accuracy across various cell lines and tissues. MST-m6A utilizes a multi-scale transformer-based architecture, employing dual k-mer tokenization to capture rich feature representations and global contextual information from RNA sequences at multiple levels of granularity. These representations are then effectively combined using a channel fusion mechanism and further processed by a convolutional neural network to enhance prediction accuracy. Rigorous validation demonstrates that MST-m6A significantly outperforms conventional machine learning models, deep learning models, and state-of-the-art predictors. We anticipate that the high precision and cross-cell-type adaptability of MST-m6A will provide valuable insights into m6A biology and facilitate advancements in related fields. The proposed approach is available at https://github.com/cbbl-skku-org/MST-m6A/ for prediction and reproducibility purposes.
Collapse
Affiliation(s)
- Qiaosen Su
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Le Thi Phan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Nhat Truong Pham
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| | - Leyi Wei
- Faculty of Applied Sciences, Macao Polytechnic University, Macau
| | - Balachandran Manavalan
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Li G, Zhao B, Su X, Yang Y, Zeng Z, Hu P, Hu L. Capturing short-range and long-range dependencies of nucleotides for identifying RNA N6-methyladenosine modification sites. Comput Biol Med 2025; 186:109625. [PMID: 39756188 DOI: 10.1016/j.compbiomed.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
N6-methyladenosine (m6A) plays a crucial role in enriching RNA functional and genetic information, and the identification of m6A modification sites is therefore an important task to promote the understanding of RNA epigenetics. In the identification process, current studies are mainly concentrated on capturing the short-range dependencies between adjacent nucleotides in RNA sequences, while ignoring the impact of long-range dependencies between non-adjacent nucleotides for learning high-quality representation of RNA sequences. In this work, we propose an end-to-end prediction model, called m6ASLD, to improve the identification accuracy of m6A modification sites by capturing the short-range and long-range dependencies of nucleotides. Specifically, m6ASLD first encodes the type and position information of nucleotides to construct the initial embeddings of RNA sequences. A self-correlation map is then generated to characterize both short-range and long-range dependencies with a designed map generating block for each RNA sequence. After that, m6ASLD learns the global and local representations of RNA sequences by using a graph convolution process and a designed dependency searching block respectively, and finally achieves its identification task under a joint training scheme. Extensive experiments have demonstrated the promising performance of m6ASLD on 11 benchmark datasets across several evaluation metrics.
Collapse
Affiliation(s)
- Guodong Li
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Bowei Zhao
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Xiaorui Su
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Yue Yang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Zhi Zeng
- College of Computer Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Pengwei Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| |
Collapse
|
6
|
Yu Y, Xiang S, Wu M. Injecting structure-aware insights for the learning of RNA sequence representations to identify m6A modification sites. PeerJ 2025; 13:e18878. [PMID: 40017651 PMCID: PMC11867033 DOI: 10.7717/peerj.18878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/28/2024] [Indexed: 03/01/2025] Open
Abstract
N6-methyladenosine (m6A) represents one of the most prevalent methylation modifications in eukaryotes and it is crucial to accurately identify its modification sites on RNA sequences. Traditional machine learning based approaches to m6A modification site identification primarily focus on RNA sequence data but often incorporate additional biological domain knowledge and rely on manually crafted features. These methods typically overlook the structural insights inherent in RNA sequences. To address this limitation, we propose M6A-SAI, an advanced predictor for RNA m6A modifications. M6A-SAI leverages a transformer-based deep learning framework to integrate structure-aware insights into sequence representation learning, thereby enhancing the precision of m6A modification site identification. The core innovation of M6A-SAI lies in its ability to incorporate structural information through a multi-step process: initially, the model utilizes a Transformer encoder to learn RNA sequence representations. It then constructs a similarity graph based on Manhattan distance to capture sequence correlations. To address the limitations of the smooth similarity graph, M6A-SAI integrates a structure-aware optimization block, which refines the graph by defining anchor sets and generating an awareness graph through PageRank. Following this, M6A-SAI employs a self-correlation fusion graph convolution framework to merge information from both the similarity and awareness graphs, thus producing enriched sequence representations. Finally, a support vector machine is utilized for classifying these representations. Experimental results validate that M6A-SAI substantially improves the recognition of m6A modification sites by incorporating structure-aware insights, demonstrating its efficacy as a robust method for identifying RNA m6A modification sites.
Collapse
Affiliation(s)
- Yue Yu
- Changjiang Water Resources and Hydropower Development Group, Wuhan, China
| | - Shuang Xiang
- Changjiang Water Resources and Hydropower Development Group, Wuhan, China
| | - Minghao Wu
- Changjiang Water Resources and Hydropower Development Group, Wuhan, China
| |
Collapse
|
7
|
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther 2025; 33:447-464. [PMID: 39659016 PMCID: PMC11852398 DOI: 10.1016/j.ymthe.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| |
Collapse
|
8
|
Luo Z, Yu L, Xu Z, Liu K, Gu L. Comprehensive Review and Assessment of Computational Methods for Prediction of N6-Methyladenosine Sites. BIOLOGY 2024; 13:777. [PMID: 39452086 PMCID: PMC11504118 DOI: 10.3390/biology13100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
N6-methyladenosine (m6A) plays a crucial regulatory role in the control of cellular functions and gene expression. Recent advances in sequencing techniques for transcriptome-wide m6A mapping have accelerated the accumulation of m6A site information at a single-nucleotide level, providing more high-confidence training data to develop computational approaches for m6A site prediction. However, it is still a major challenge to precisely predict m6A sites using in silico approaches. To advance the computational support for m6A site identification, here, we curated 13 up-to-date benchmark datasets from nine different species (i.e., H. sapiens, M. musculus, Rat, S. cerevisiae, Zebrafish, A. thaliana, Pig, Rhesus, and Chimpanzee). This will assist the research community in conducting an unbiased evaluation of alternative approaches and support future research on m6A modification. We revisited 52 computational approaches published since 2015 for m6A site identification, including 30 traditional machine learning-based, 14 deep learning-based, and 8 ensemble learning-based methods. We comprehensively reviewed these computational approaches in terms of their training datasets, calculated features, computational methodologies, performance evaluation strategy, and webserver/software usability. Using these benchmark datasets, we benchmarked nine predictors with available online websites or stand-alone software and assessed their prediction performance. We found that deep learning and traditional machine learning approaches generally outperformed scoring function-based approaches. In summary, the curated benchmark dataset repository and the systematic assessment in this study serve to inform the design and implementation of state-of-the-art computational approaches for m6A identification and facilitate more rigorous comparisons of new methods in the future.
Collapse
Affiliation(s)
- Zhengtao Luo
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| | - Liyi Yu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Zhaochun Xu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Kening Liu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Lichuan Gu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
Huang G, Huang X, Jiang J. Deepm6A-MT: A deep learning-based method for identifying RNA N6-methyladenosine sites in multiple tissues. Methods 2024; 226:1-8. [PMID: 38485031 DOI: 10.1016/j.ymeth.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent, abundant, and conserved internal modification in the eukaryotic messenger RNA (mRNAs) and plays a crucial role in the cellular process. Although more than ten methods were developed for m6A detection over the past decades, there were rooms left to improve the predictive accuracy and the efficiency. In this paper, we proposed an improved method for predicting m6A modification sites, which was based on bi-directional gated recurrent unit (Bi-GRU) and convolutional neural networks (CNN), called Deepm6A-MT. The Deepm6A-MT has two input channels. One is to use an embedding layer followed by the Bi-GRU and then by the CNN, and another is to use one-hot encoding, dinucleotide one-hot encoding, and nucleotide chemical property codes. We trained and evaluated the Deepm6A-MT both by the 5-fold cross-validation and the independent test. The empirical tests showed that the Deepm6A-MT achieved the state of the art performance. In addition, we also conducted the cross-species and the cross-tissues tests to further verify the Deepm6A-MT for effectiveness and efficiency. Finally, for the convenience of academic research, we deployed the Deepm6A-MT to the web server, which is accessed at the URL http://www.biolscience.cn/Deepm6A-MT/.
Collapse
Affiliation(s)
- Guohua Huang
- School of Information Technology and Administration, Hunan University of Finance and Economics, Changsha, Hunan 410205, China.
| | - Xiaohong Huang
- College of Information Science and Engineering, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Jinyun Jiang
- College of Information Science and Engineering, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
10
|
Wang M, Ali H, Xu Y, Xie J, Xu S. BiPSTP: Sequence feature encoding method for identifying different RNA modifications with bidirectional position-specific trinucleotides propensities. J Biol Chem 2024; 300:107140. [PMID: 38447795 PMCID: PMC10997841 DOI: 10.1016/j.jbc.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
RNA modification, a posttranscriptional regulatory mechanism, significantly influences RNA biogenesis and function. The accurate identification of modification sites is paramount for investigating their biological implications. Methods for encoding RNA sequence into numerical data play a crucial role in developing robust models for predicting modification sites. However, existing techniques suffer from limitations, including inadequate information representation, challenges in effectively integrating positional and sequential information, and the generation of irrelevant or redundant features when combining multiple approaches. These deficiencies hinder the effectiveness of machine learning models in addressing the performance challenges associated with predicting RNA modification sites. Here, we introduce a novel RNA sequence feature representation method, named BiPSTP, which utilizes bidirectional trinucleotide position-specific propensities. We employ the parameter ξ to denote the interval between the current nucleotide and its adjacent forward or backward dinucleotide, enabling the extraction of positional and sequential information from RNA sequences. Leveraging the BiPSTP method, we have developed the prediction model mRNAPred using support vector machine classifier to identify multiple types of RNA modification sites. We evaluate the performance of our BiPSTP method and mRNAPred model across 12 distinct RNA modification types. Our experimental results demonstrate the superiority of the mRNAPred model compared to state-of-art models in the domain of RNA modification sites identification. Importantly, our BiPSTP method enhances the robustness and generalization performance of prediction models. Notably, it can be applied to feature extraction from DNA sequences to predict other biological modification sites.
Collapse
Affiliation(s)
- Mingzhao Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Haider Ali
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yandi Xu
- School of Computer Science, Shaanxi Normal University, Xi'an, China; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an, China.
| | - Shengquan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
11
|
Li G, Zhao B, Su X, Yang Y, Hu P, Zhou X, Hu L. Discovering Consensus Regions for Interpretable Identification of RNA N6-Methyladenosine Modification Sites via Graph Contrastive Clustering. IEEE J Biomed Health Inform 2024; 28:2362-2372. [PMID: 38265898 DOI: 10.1109/jbhi.2024.3357979] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
As a pivotal post-transcriptional modification of RNA, N6-methyladenosine (m6A) has a substantial influence on gene expression modulation and cellular fate determination. Although a variety of computational models have been developed to accurately identify potential m6A modification sites, few of them are capable of interpreting the identification process with insights gained from consensus knowledge. To overcome this problem, we propose a deep learning model, namely M6A-DCR, by discovering consensus regions for interpretable identification of m6A modification sites. In particular, M6A-DCR first constructs an instance graph for each RNA sequence by integrating specific positions and types of nucleotides. The discovery of consensus regions is then formulated as a graph clustering problem in light of aggregating all instance graphs. After that, M6A-DCR adopts a motif-aware graph reconstruction optimization process to learn high-quality embeddings of input RNA sequences, thus achieving the identification of m6A modification sites in an end-to-end manner. Experimental results demonstrate the superior performance of M6A-DCR by comparing it with several state-of-the-art identification models. The consideration of consensus regions empowers our model to make interpretable predictions at the motif level. The analysis of cross validation through different species and tissues further verifies the consistency between the identification results of M6A-DCR and the evolutionary relationships among species.
Collapse
|
12
|
Jiang J, Song B, Meng J, Zhou J. Tissue-specific RNA methylation prediction from gene expression data using sparse regression models. Comput Biol Med 2024; 169:107892. [PMID: 38171264 DOI: 10.1016/j.compbiomed.2023.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
N6-methyladenosine (m6A) is a highly prevalent and conserved post-transcriptional modification observed in mRNA and long non-coding RNA (lncRNA). Identifying potential m6A sites within RNA sequences is crucial for unraveling the potential influence of the epitranscriptome on biological processes. In this study, we introduce Exp2RM, a novel approach that formulates single-site-based tissue-specific elastic net models for predicting tissue-specific methylation levels utilizing gene expression data. The resulting ensemble model demonstrates robust predictive performance for tissue-specific methylation levels, with an average R-squared value of 0.496 and a median R-squared value of 0.482 across all 22 human tissues. Since methylation distribution varies among tissues, we trained the model to incorporate similar patterns, significantly improves accuracy with the median R-squared value increasing to 0.728. Additonally, functional analysis reveals Exp2RM's ability to capture coefficient genes in relevant biological processes. This study emphasizes the importance of tissue-specific methylation distribution in enhancing prediction accuracy and provides insights into the functional implications of methylation sites.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
| | - Bowen Song
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
| | - Jingxian Zhou
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University Entrepreneur College (Taicang), Taicang, Suzhou, Jiangsu Province, 215400, China; Department of Computer Science, University of Liverpool, L69 7ZB, Liverpool, United Kingdom.
| |
Collapse
|
13
|
Zhang Y, Wang Z, Zhang Y, Li S, Guo Y, Song J, Yu DJ. Interpretable prediction models for widespread m6A RNA modification across cell lines and tissues. Bioinformatics 2023; 39:btad709. [PMID: 37995291 PMCID: PMC10697738 DOI: 10.1093/bioinformatics/btad709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
MOTIVATION RNA N6-methyladenosine (m6A) in Homo sapiens plays vital roles in a variety of biological functions. Precise identification of m6A modifications is thus essential to elucidation of their biological functions and underlying molecular-level mechanisms. Currently available high-throughput single-nucleotide-resolution m6A modification data considerably accelerated the identification of RNA modification sites through the development of data-driven computational methods. Nevertheless, existing methods have limitations in terms of the coverage of single-nucleotide-resolution cell lines and have poor capability in model interpretations, thereby having limited applicability. RESULTS In this study, we present CLSM6A, comprising a set of deep learning-based models designed for predicting single-nucleotide-resolution m6A RNA modification sites across eight different cell lines and three tissues. Extensive benchmarking experiments are conducted on well-curated datasets and accordingly, CLSM6A achieves superior performance than current state-of-the-art methods. Furthermore, CLSM6A is capable of interpreting the prediction decision-making process by excavating critical motifs activated by filters and pinpointing highly concerned positions in both forward and backward propagations. CLSM6A exhibits better portability on similar cross-cell line/tissue datasets, reveals a strong association between highly activated motifs and high-impact motifs, and demonstrates complementary attributes of different interpretation strategies. AVAILABILITY AND IMPLEMENTATION The webserver is available at http://csbio.njust.edu.cn/bioinf/clsm6a. The datasets and code are available at https://github.com/zhangying-njust/CLSM6A/.
Collapse
Affiliation(s)
- Ying Zhang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Yiwen Zhang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
14
|
Le NQK, Xu L. Optimizing Hyperparameter Tuning in Machine Learning to Improve the Predictive Performance of Cross-Species N6-Methyladenosine Sites. ACS OMEGA 2023; 8:39420-39426. [PMID: 37901522 PMCID: PMC10600906 DOI: 10.1021/acsomega.3c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
DNA N6-methyladenosine (6 mA) modification carries significant epigenetic information and plays a pivotal role in biological functions, thereby profoundly impacting human development. Precise and reliable detection of 6 mA sites is integral to understanding the mechanisms underpinning DNA modification. The present methods, primarily experimental, used to identify specific molecular sites are often time-intensive and costly. Consequently, the rise of computer-based methods aimed at identifying 6 mA sites provides a welcome alternative. Our research introduces a novel model to discern DNA 6 mA sites in cross-species genomes. This model, developed through machine learning, utilizes extracted sequence information. Hyperparameter tuning was employed to ascertain the most effective feature combination and model implementation, thereby garnering vital information from sequences. Our model demonstrated superior accuracy compared to the existing models when tested using five-fold cross-validation. Thus, our study substantiates the reliability and efficiency of our model as a valuable tool for supplementing experimental research.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional
Master Program in Artificial Intelligence in Medicine, College of
Medicine, Taipei Medical University, Taipei 110, Taiwan
- Research
Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan
- AIBioMed
Research Group, Taipei Medical University, Taipei 110, Taiwan
- Translational
Imaging Research Center, Taipei Medical
University Hospital, Taipei 110, Taiwan
| | - Ling Xu
- NUS-ISS,
National University of Singapore, Singapore, 119615, Singapore
| |
Collapse
|
15
|
Qiu S, Liu R, Liang Y. GR-m6A: Prediction of N6-methyladenosine sites in mammals with molecular graph and residual network. Comput Biol Med 2023; 163:107202. [PMID: 37450964 DOI: 10.1016/j.compbiomed.2023.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
RNA N6-methyladenine (m6A), which is produced by the methylation of the N6 position of eukaryotic adenine, is a relatively common post-transcriptional modification on the surface of the molecule, which frequently plays a crucial role in biological processes. Biological experimental methods to identify m6A have been studied and implemented in recent years, but they cannot be promoted widely due to drawbacks such as the time and cost of reagents and equipment. Therefore, researchers have proposed computational strategies for identifying m6A sites, but these strategies do not account for the mechanism of methylation occurrence or the structure of RNA molecules. This study, therefore, proposed a novel deep learning model for predicting m6A sites, GR-m6A, which predicts m6A sites by extracting features from the physicochemical properties and spatial structure of molecules via residual networks. In GR-m6A, each RNA base string is represented by SMILES as two matrices comprising topology structural information and node attributes with molecular physicochemical characteristics. The feature encoding matrix was then obtained by fusing the topology matrix and the node matrix in accordance with the graphical convolutional network principle. Correspondingly, the more discriminative features were extracted from the encoding matrix using the residual neural network and predicted using a multilayer perceptron. As evident from the 5-fold cross-validation and independent validation, the GR-m6A model outperformed other existing methods. Thus, we hope that GR-m6A can aid researchers in predicting mammalian m6A loci. The source code and database are available at https://github.com/YingLiangjxau/GR-m6A.
Collapse
Affiliation(s)
- Shi Qiu
- College of Engineering, Jiangxi Agricultural University, Nanchang 310045, Jiangxi, China.
| | - Renxin Liu
- College of Engineering, Jiangxi Agricultural University, Nanchang 310045, Jiangxi, China.
| | - Ying Liang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 310045, Jiangxi, China.
| |
Collapse
|
16
|
Song B, Huang D, Zhang Y, Wei Z, Su J, Pedro de Magalhães J, Rigden DJ, Meng J, Chen K. m6A-TSHub: Unveiling the Context-specific m 6A Methylation and m 6A-affecting Mutations in 23 Human Tissues. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:678-694. [PMID: 36096444 PMCID: PMC10787194 DOI: 10.1016/j.gpb.2022.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
As the most pervasive epigenetic marker present on mRNAs and long non-coding RNAs (lncRNAs), N6-methyladenosine (m6A) RNA methylation has been shown to participate in essential biological processes. Recent studies have revealed the distinct patterns of m6A methylome across human tissues, and a major challenge remains in elucidating the tissue-specific presence and circuitry of m6A methylation. We present here a comprehensive online platform, m6A-TSHub, for unveiling the context-specific m6A methylation and genetic mutations that potentially regulate m6A epigenetic mark. m6A-TSHub consists of four core components, including (1) m6A-TSDB, a comprehensive database of 184,554 functionally annotated m6A sites derived from 23 human tissues and 499,369 m6A sites from 25 tumor conditions, respectively; (2) m6A-TSFinder, a web server for high-accuracy prediction of m6A methylation sites within a specific tissue from RNA sequences, which was constructed using multi-instance deep neural networks with gated attention; (3) m6A-TSVar, a web server for assessing the impact of genetic variants on tissue-specific m6A RNA modifications; and (4) m6A-CAVar, a database of 587,983 The Cancer Genome Atlas (TCGA) cancer mutations (derived from 27 cancer types) that were predicted to affect m6A modifications in the primary tissue of cancers. The database should make a useful resource for studying the m6A methylome and the genetic factors of epitranscriptome disturbance in a specific tissue (or cancer type). m6A-TSHub is accessible at www.xjtlu.edu.cn/biologicalsciences/m6ats.
Collapse
Affiliation(s)
- Bowen Song
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China; Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Daiyun Huang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Department of Computer Science, University of Liverpool, Liverpool L69 7ZB, United Kingdom.
| | - Yuxin Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jionglong Su
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - João Pedro de Magalhães
- Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jia Meng
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
17
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
18
|
M6A-BERT-Stacking: A Tissue-Specific Predictor for Identifying RNA N6-Methyladenosine Sites Based on BERT and Stacking Strategy. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
As the most abundant RNA methylation modification, N6-methyladenosine (m6A) could regulate asymmetric and symmetric division of hematopoietic stem cells and play an important role in various diseases. Therefore, the precise identification of m6A sites around the genomes of different species is a critical step to further revealing their biological functions and influence on these diseases. However, the traditional wet-lab experimental methods for identifying m6A sites are often laborious and expensive. In this study, we proposed an ensemble deep learning model called m6A-BERT-Stacking, a powerful predictor for the detection of m6A sites in various tissues of three species. First, we utilized two encoding methods, i.e., di ribonucleotide index of RNA (DiNUCindex_RNA) and k-mer word segmentation, to extract RNA sequence features. Second, two encoding matrices together with the original sequences were respectively input into three different deep learning models in parallel to train three sub-models, namely residual networks with convolutional block attention module (Resnet-CBAM), bidirectional long short-term memory with attention (BiLSTM-Attention), and pre-trained bidirectional encoder representations from transformers model for DNA-language (DNABERT). Finally, the outputs of all sub-models were ensembled based on the stacking strategy to obtain the final prediction of m6A sites through the fully connected layer. The experimental results demonstrated that m6A-BERT-Stacking outperformed most of the existing methods based on the same independent datasets.
Collapse
|
19
|
Zou J, Liu H, Tan W, Chen YQ, Dong J, Bai SY, Wu ZX, Zeng Y. Dynamic regulation and key roles of ribonucleic acid methylation. Front Cell Neurosci 2022; 16:1058083. [PMID: 36601431 PMCID: PMC9806184 DOI: 10.3389/fncel.2022.1058083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Ribonucleic acid (RNA) methylation is the most abundant modification in biological systems, accounting for 60% of all RNA modifications, and affects multiple aspects of RNA (including mRNAs, tRNAs, rRNAs, microRNAs, and long non-coding RNAs). Dysregulation of RNA methylation causes many developmental diseases through various mechanisms mediated by N 6-methyladenosine (m6A), 5-methylcytosine (m5C), N 1-methyladenosine (m1A), 5-hydroxymethylcytosine (hm5C), and pseudouridine (Ψ). The emerging tools of RNA methylation can be used as diagnostic, preventive, and therapeutic markers. Here, we review the accumulated discoveries to date regarding the biological function and dynamic regulation of RNA methylation/modification, as well as the most popularly used techniques applied for profiling RNA epitranscriptome, to provide new ideas for growth and development.
Collapse
Affiliation(s)
- Jia Zou
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hui Liu
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yi-qi Chen
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Dong
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shu-yuan Bai
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zhao-xia Wu
- Community Health Service Center, Wuchang Hospital, Wuhan, China
| | - Yan Zeng
- Community Health Service Center, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China,Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, China,School of Public Health, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Yan Zeng,
| |
Collapse
|
20
|
Luo Z, Lou L, Qiu W, Xu Z, Xiao X. Predicting N6-Methyladenosine Sites in Multiple Tissues of Mammals through Ensemble Deep Learning. Int J Mol Sci 2022; 23:15490. [PMID: 36555143 PMCID: PMC9778682 DOI: 10.3390/ijms232415490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant within eukaryotic messenger RNA modification, which plays an essential regulatory role in the control of cellular functions and gene expression. However, it remains an outstanding challenge to detect mRNA m6A transcriptome-wide at base resolution via experimental approaches, which are generally time-consuming and expensive. Developing computational methods is a good strategy for accurate in silico detection of m6A modification sites from the large amount of RNA sequence data. Unfortunately, the existing computational models are usually only for m6A site prediction in a single species, without considering the tissue level of species, while most of them are constructed based on low-confidence level data generated by an m6A antibody immunoprecipitation (IP)-based sequencing method, thereby restricting reliability and generalizability of proposed models. Here, we review recent advances in computational prediction of m6A sites and construct a new computational approach named im6APred using ensemble deep learning to accurately identify m6A sites based on high-confidence level data in multiple tissues of mammals. Our model im6APred builds upon a comprehensive evaluation of multiple classification methods, including four traditional classification algorithms and three deep learning methods and their ensembles. The optimal base-classifier combinations are then chosen by five-fold cross-validation test to achieve an effective stacked model. Our model im6APred can produce the area under the receiver operating characteristic curve (AUROC) in the range of 0.82-0.91 on independent tests, indicating that our model has the ability to learn general methylation rules on RNA bases and generalize to m6A transcriptome-wide identification. Moreover, AUROCs in the range of 0.77-0.96 were achieved using cross-species/tissues validation on the benchmark dataset, demonstrating differences in predictive performance at the tissue level and the need for constructing tissue-specific models for m6A site prediction.
Collapse
Affiliation(s)
| | | | | | - Zhaochun Xu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China
| |
Collapse
|
21
|
RNADSN: Transfer-Learning 5-Methyluridine (m5U) Modification on mRNAs from Common Features of tRNA. Int J Mol Sci 2022; 23:ijms232113493. [PMID: 36362279 PMCID: PMC9655583 DOI: 10.3390/ijms232113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
One of the most abundant non-canonical bases widely occurring on various RNA molecules is 5-methyluridine (m5U). Recent studies have revealed its influences on the development of breast cancer, systemic lupus erythematosus, and the regulation of stress responses. The accurate identification of m5U sites is crucial for understanding their biological functions. We propose RNADSN, the first transfer learning deep neural network that learns common features between tRNA m5U and mRNA m5U to enhance the prediction of mRNA m5U. Without seeing the experimentally detected mRNA m5U sites, RNADSN has already outperformed the state-of-the-art method, m5UPred. Using mRNA m5U classification as an additional layer of supervision, our model achieved another distinct improvement and presented an average area under the receiver operating characteristic curve (AUC) of 0.9422 and an average precision (AP) of 0.7855. The robust performance of RNADSN was also verified by cross-technical and cross-cellular validation. The interpretation of RNADSN also revealed the sequence motif of common features. Therefore, RNADSN should be a useful tool for studying m5U modification.
Collapse
|
22
|
Liao J, Wang Q, Wu F, Huang Z. In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets. Molecules 2022; 27:7103. [PMID: 36296697 PMCID: PMC9609013 DOI: 10.3390/molecules27207103] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 07/30/2023] Open
Abstract
Target identification is an important step in drug discovery, and computer-aided drug target identification methods are attracting more attention compared with traditional drug target identification methods, which are time-consuming and costly. Computer-aided drug target identification methods can greatly reduce the searching scope of experimental targets and associated costs by identifying the diseases-related targets and their binding sites and evaluating the druggability of the predicted active sites for clinical trials. In this review, we introduce the principles of computer-based active site identification methods, including the identification of binding sites and assessment of druggability. We provide some guidelines for selecting methods for the identification of binding sites and assessment of druggability. In addition, we list the databases and tools commonly used with these methods, present examples of individual and combined applications, and compare the methods and tools. Finally, we discuss the challenges and limitations of binding site identification and druggability assessment at the current stage and provide some recommendations and future perspectives.
Collapse
Affiliation(s)
- Jianbo Liao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Qinyu Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Fengxu Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
23
|
Huang D, Chen K, Song B, Wei Z, Su J, Coenen F, de Magalhães JP, Rigden DJ, Meng J. Geographic encoding of transcripts enabled high-accuracy and isoform-aware deep learning of RNA methylation. Nucleic Acids Res 2022; 50:10290-10310. [PMID: 36155798 PMCID: PMC9561283 DOI: 10.1093/nar/gkac830] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 12/25/2022] Open
Abstract
As the most pervasive epigenetic mark present on mRNA and lncRNA, N6-methyladenosine (m6A) RNA methylation regulates all stages of RNA life in various biological processes and disease mechanisms. Computational methods for deciphering RNA modification have achieved great success in recent years; nevertheless, their potential remains underexploited. One reason for this is that existing models usually consider only the sequence of transcripts, ignoring the various regions (or geography) of transcripts such as 3'UTR and intron, where the epigenetic mark forms and functions. Here, we developed three simple yet powerful encoding schemes for transcripts to capture the submolecular geographic information of RNA, which is largely independent from sequences. We show that m6A prediction models based on geographic information alone can achieve comparable performances to classic sequence-based methods. Importantly, geographic information substantially enhances the accuracy of sequence-based models, enables isoform- and tissue-specific prediction of m6A sites, and improves m6A signal detection from direct RNA sequencing data. The geographic encoding schemes we developed have exhibited strong interpretability, and are applicable to not only m6A but also N1-methyladenosine (m1A), and can serve as a general and effective complement to the widely used sequence encoding schemes in deep learning applications concerning RNA transcripts.
Collapse
Affiliation(s)
- Daiyun Huang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
- Department of Computer Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, PR China
| | - Bowen Song
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jionglong Su
- Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
| | - Frans Coenen
- Department of Computer Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - João Pedro de Magalhães
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou 215123, PR China
| |
Collapse
|
24
|
Rehman MU, Tayara H, Zou Q, Chong KT. i6mA-Caps: a CapsuleNet-based framework for identifying DNA N6-methyladenine sites. Bioinformatics 2022; 38:3885-3891. [PMID: 35771648 DOI: 10.1093/bioinformatics/btac434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION DNA N6-methyladenine (6mA) has been demonstrated to have an essential function in epigenetic modification in eukaryotic species in recent research. 6mA has been linked to various biological processes. It's critical to create a new algorithm that can rapidly and reliably detect 6mA sites in genomes to investigate their biological roles. The identification of 6mA marks in the genome is the first and most important step in understanding the underlying molecular processes, as well as their regulatory functions. RESULTS In this article, we proposed a novel computational tool called i6mA-Caps which CapsuleNet based a framework for identifying the DNA N6-methyladenine sites. The proposed framework uses a single encoding scheme for numerical representation of the DNA sequence. The numerical data is then used by the set of convolution layers to extract low-level features. These features are then used by the capsule network to extract intermediate-level and later high-level features to classify the 6mA sites. The proposed network is evaluated on three datasets belonging to three genomes which are Rosaceae, Rice and Arabidopsis thaliana. Proposed method has attained an accuracy of 96.71%, 94% and 86.83% for independent Rosaceae dataset, Rice dataset and A.thaliana dataset respectively. The proposed framework has exhibited improved results when compared with the existing top-of-the-line methods. AVAILABILITY AND IMPLEMENTATION A user-friendly web-server is made available for the biological experts which can be accessed at: http://nsclbio.jbnu.ac.kr/tools/i6mA-Caps/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mobeen Ur Rehman
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, South Korea
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.,Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
25
|
ENet-6mA: Identification of 6mA Modification Sites in Plant Genomes Using ElasticNet and Neural Networks. Int J Mol Sci 2022; 23:ijms23158314. [PMID: 35955447 PMCID: PMC9369089 DOI: 10.3390/ijms23158314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
N6-methyladenine (6mA) has been recognized as a key epigenetic alteration that affects a variety of biological activities. Precise prediction of 6mA modification sites is essential for understanding the logical consistency of biological activity. There are various experimental methods for identifying 6mA modification sites, but in silico prediction has emerged as a potential option due to the very high cost and labor-intensive nature of experimental procedures. Taking this into consideration, developing an efficient and accurate model for identifying N6-methyladenine is one of the top objectives in the field of bioinformatics. Therefore, we have created an in silico model for the classification of 6mA modifications in plant genomes. ENet-6mA uses three encoding methods, including one-hot, nucleotide chemical properties (NCP), and electron–ion interaction potential (EIIP), which are concatenated and fed as input to ElasticNet for feature reduction, and then the optimized features are given directly to the neural network to get classified. We used a benchmark dataset of rice for five-fold cross-validation testing and three other datasets from plant genomes for cross-species testing purposes. The results show that the model can predict the N6-methyladenine sites very well, even cross-species. Additionally, we separated the datasets into different ratios and calculated the performance using the area under the precision–recall curve (AUPRC), achieving 0.81, 0.79, and 0.50 with 1:10 (positive:negative) samples for F. vesca, R. chinensis, and A. thaliana, respectively.
Collapse
|
26
|
CNNLSTMac4CPred: A Hybrid Model for N4-Acetylcytidine Prediction. Interdiscip Sci 2022; 14:439-451. [PMID: 35106702 DOI: 10.1007/s12539-021-00500-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022]
Abstract
N4-Acetylcytidine (ac4C) is a highly conserved post-transcriptional and an extensively existing RNA modification, playing versatile roles in the cellular processes. Due to the limitation of techniques and knowledge, large-scale identification of ac4C is still a challenging task. RNA sequences are like sentences containing semantics in the natural language. Inspired by the semantics of language, we proposed a hybrid model for ac4C prediction. The model used long short-term memory and convolution neural network to extract the semantic features hidden in the sequences. The semantic and the two traditional features (k-nucleotide frequencies and pseudo tri-tuple nucleotide composition) were combined to represent ac4C or non-ac4C sequences. The eXtreme Gradient Boosting was used as the learning algorithm. Five-fold cross-validation over the training set consisting of 1160 ac4C and 10,855 non-ac4C sequences obtained the area under the receiver operating characteristic curve (AUROC) of 0.9004, and the independent test over 469 ac4C and 4343 non-ac4C sequences reached an AUROC of 0.8825. The model obtained a sensitivity of 0.6474 in the five-fold cross-validation and 0.6290 in the independent test, outperforming two state-of-the-art methods. The performance of semantic features alone was better than those of k-nucleotide frequencies and pseudo tri-tuple nucleotide composition, implying that ac4C sequences are of semantics. The proposed hybrid model was implemented into a user-friendly web-server which is freely available to scientific communities: http://47.113.117.61/ac4c/ . The presented model and tool are beneficial to identify ac4C on large scale.
Collapse
|
27
|
Le NQK, Ho QT. Deep transformers and convolutional neural network in identifying DNA N6-methyladenine sites in cross-species genomes. Methods 2021; 204:199-206. [PMID: 34915158 DOI: 10.1016/j.ymeth.2021.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
As one of the most common post-transcriptional epigenetic modifications, N6-methyladenine (6 mA), plays an essential role in various cellular processes and disease pathogenesis. Therefore, accurately identifying 6 mA modifications is necessary for a deep understanding of cellular processes and other possible functional mechanisms. Although a few computational methods have been proposed, their respective models were developed with small training datasets. Hence, their practical application is quite limited in genome-wide detection. To overcome the existing limitations, we present a novel model based on transformer architecture and deep learning to identify DNA 6 mA sites from the cross-species genome. The model is constructed on a benchmark dataset and explored a feature derived from pre-trained transformer word embedding approaches. Subsequently, a convolutional neural network was employed to learn the generated features and generate the prediction outcomes. As a result, our predictor achieved excellent performance during independent test with the accuracy and Matthews correlation coefficient (MCC) of 79.3% and 0.58, respectively. Overall, its performance achieved better accuracy than the baseline models and significantly outperformed the existing predictors, demonstrating the effectiveness of our proposed hybrid framework. Furthermore, our model is expected to assist biologists in accurately identifying 6mAs and formulate the novel testable biological hypothesis. We also release source codes and datasets freely at https://github.com/khanhlee/bert-dna for front-end users.
Collapse
Affiliation(s)
- Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Quang-Thai Ho
- College of Information & Communication Technology, Can Tho University, Viet Nam; Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, 32003, Taiwan
| |
Collapse
|