1
|
Agier N, Vittorelli N, Ollivier L, Chaux F, Gillet-Markowska A, O'Donnell S, Pouyet F, Fischer G, Delmas S. A transient mutational burst occurs during yeast colony development. Mol Syst Biol 2025:10.1038/s44320-025-00117-1. [PMID: 40490499 DOI: 10.1038/s44320-025-00117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 06/11/2025] Open
Abstract
Characterizing the contribution of mutators to mutation accumulation is essential for understanding cellular adaptation and diseases like cancer. By measuring single and double mutation rates, including point mutations, segmental duplications, and reciprocal translocations, we found that wild-type yeast colonies exhibit double mutation rates up to 17 times higher than expected from experimentally determined single mutation rates. These double mutants retained wild-type mutation rates, indicating they originated from genetically normal cells that transiently expressed a mutator phenotype. Numerical simulations suggest that transient mutator subpopulations likely consist of less than a few thousand cells, and experience high-intensity mutational bursts for less than five generations. Most double mutations accumulated sequentially across cell cycles, with simultaneous acquisition being rare and likely linked to systemic genomic instability. Additionally, we explored the genetic control of transient hypermutation and found that the excess of double mutants can be modulated by replication stress and the DNA damage tolerance pathway. Our findings suggest that transient mutators play a significant role in genomic instability and contribute to the mutational load accumulating in growing isogenic populations.
Collapse
Affiliation(s)
- Nicolas Agier
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France
| | - Nina Vittorelli
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France
- Collège de France, CNRS, INSERM, Centre Interdisciplinaire de Recherche en Biologie, Paris, France
| | - Louis Ollivier
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91190, Gif-sur-Yvette, France
| | - Frédéric Chaux
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Zagreb, 10000, Croatia
| | - Alexandre Gillet-Markowska
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France
- Discngine, Paris, France
| | - Samuel O'Donnell
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Fanny Pouyet
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91190, Gif-sur-Yvette, France
| | - Gilles Fischer
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France.
| | - Stéphane Delmas
- Sorbonne Université, CNRS, Computational, Quantitative and Synthetic Biology, CQSB, F-75005, Paris, France.
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, F-75005, Paris, France.
| |
Collapse
|
2
|
Lipke PN. Not gently down the stream: flow induces amyloid bonding in environmental and pathological fungal biofilms. mBio 2025:e0020325. [PMID: 40377304 DOI: 10.1128/mbio.00203-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Surface-bound biofilms are the predominant microbial life form in the environment and host organisms. Many biofilms survive and thrive under physical stress from liquid flow in streams, fuel lines, blood, and airways. Strategies for biofilm persistence include shear-dependent adhesion (called catch bonding). In some cases, biofilms are physically strengthened by the formation of cross-β bonds between proteins: the same process that generates amyloids. Cross-β bonds have low dissociation rates. In biofilms, they bind cells to substrates, each other, and the biofilm matrix. Most fungal adhesins include amino acid sequences that can form amyloids. Shear flow activates these adhesins by unfolding pseudo-stable protein domains. The unfolding exposes sequence segments that can form cross-β bonds. These segments interact to form high-avidity adhesin patches on the cell surface. Thus, cross-β bonding is a consequence of flow-induced exposure of the cross-β core sequences. Liquid flow leads to both biofilm establishment through catch bonding and biofilm strengthening through amyloid-like bonds. This shear-dependent induction of biofilm establishment and persistence is a model for many microbial systems.IMPORTANCEThe microbes in biofilms persist in many environments, including industrial and pathological settings. These surface-associated communities show high resistance to antibiotics and microbicides. Biofilms also resist scouring by liquid flow. Amyloid-like cross-β bonds allow the establishment, strengthening, and persistence of many biofilms. This discovery opens a window on the novel use of anti-amyloid strategies to control microbes in biofilms.
Collapse
Affiliation(s)
- Peter N Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, New York, USA
| |
Collapse
|
3
|
Jureček M, Švorcová J. Flowing boundaries in autopoietic systems and microniche construction. Biosystems 2025; 254:105477. [PMID: 40324712 DOI: 10.1016/j.biosystems.2025.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Organismal boundaries might seem like a straightforward and unproblematic organismal feature to study. They serve as fundamental demarcation lines that differentiate life from its environment, define identity, and maintain the functionality of organisms. But do they amount to an actual demarcation of organismal self? In this paper, we examine the philosophical and biological underpinnings of these boundaries, explore the essentialist and non-essentialist perspectives, and categorise organismal boundaries into three types: life-defining, physical, and those based on structural coupling. We shall argue largely against excessive reliance on physical boundaries, point to the inconsistencies and limitations of such thinking with the help of some formal approaches to boundaries (e.g., Markov blankets or theories such as (M, R) systems or the theory of autopoiesis), and try to harmonise the approaches by introducing a concept of boundary based on structural coupling. Autopoietic systems, such as cells, are structurally coupled to their environment, meaning their structures and those of their environment constantly influence each other. Organisms exhibit varying levels of the coupling capacity, of extending beyond their membranes to modify environments on scales ranging from molecular to planetary. Unicellular organisms, colonies, and multicellular entities construct niches that shape their survival and evolution. Building on the niche construction theory, we introduce the concept of microniches to describe various controlled spaces within organisms whose status of 'internal' is not always straightforward from the host perspective (e.g., intercellular spaces, digestive systems, or xylem). In the next step, we explain how these microniches are a direct result of structural coupling and how this concept can explain what is or is not part of a biological entity. We conclude with a discussion of Kantian organic wholes, starting with the cell in its entirety enclosed by a membrane and moving on to higher-order structures such as multicellular organisms or colonies, which differ in how they are established. Organic wholes of various levels are defined by informational boundaries and shared evolutionary norms that enable cohesion, cooperation, and distinction from the external environment across diverse biological and cultural systems. By integrating various philosophical and biological perspectives, we want to deepen our understanding of how life defines and sustains its boundaries and challenge certain established forms of thinking about organismal boundaries, which often rely on the physical or spatial approach.
Collapse
Affiliation(s)
- Matěj Jureček
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Praha, Czech Republic.
| | - Jana Švorcová
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Praha, Czech Republic
| |
Collapse
|
4
|
Palková Z, Váchová L. Cell differentiation, aging, and death in spatially organized yeast communities: mechanisms and consequences. Cell Death Differ 2025:10.1038/s41418-025-01485-9. [PMID: 40158069 DOI: 10.1038/s41418-025-01485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Cell death is a natural part of the development of multicellular organisms and is central to their physiological and pathological states. However, the existence of regulated cell death in unicellular microorganisms, including eukaryotic and prokaryotic microbes, has been a topic of debate. One reason for the continued debate is the lack of obvious benefit from cell death in the context of a single cell. However, unicellularity is relative, as most of these microbes dwell in communities of varying complexities, often with complicated spatial organization. In these spatially organized microbial communities, such as yeast and bacterial colonies and biofilms growing on solid surfaces, cells differentiate into specialized types, and the whole community often behaves like a simple multicellular organism. As these communities develop and age, cell death appears to offer benefits to the community as a whole. This review explores the potential roles of cell death in spatially organized communities of yeasts and draws analogies to similar communities of bacteria. The natural dying processes in microbial cell communities are only partially understood and may result from suicidal death genes, (self-)sabotage (without death effectors), or from non-autonomous mechanisms driven by interactions with other differentiated cells. We focus on processes occurring during the stratification of yeast colonies, the formation of the extracellular matrix in biofilms, and discuss potential roles of cell death in shaping the organization, differentiation, and overall physiology of these microbial structures.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Prague, Czech Republic.
| | - Libuše Váchová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Prague, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prague, Czech Republic
| |
Collapse
|
5
|
Cromie GA, Tan Z, Hays M, Sirr A, Dudley AM. Spatiotemporal patterns of gene expression during development of a complex colony morphology. PLoS One 2024; 19:e0311061. [PMID: 39637084 PMCID: PMC11620645 DOI: 10.1371/journal.pone.0311061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Clonal communities of single celled organisms, such as bacterial or fungal colonies and biofilms, are spatially structured, with subdomains of cells experiencing differing environmental conditions. In the development of such communities, cell specialization is not only important to respond and adapt to the local environment but has the potential to increase the fitness of the clonal community through division of labor. Here, we examine colony development in a yeast strain (F13) that produces colonies with a highly structured "ruffled" phenotype in the colony periphery and an unstructured "smooth" phenotype in the colony center. We demonstrate that in the F13 genetic background deletions of transcription factors can either increase (dig1D, sfl1D) or decrease (tec1D) the degree of colony structure. To investigate the development of colony structure, we carried out gene expression analysis on F13 and the three deletion strains using RNA-seq. Samples were taken early in colony growth (day2), which precedes ruffled phenotype development in F13, and from the peripheral and central regions of colonies later in development (day5), at which time these regions are structured and unstructured (respectively) in F13. We identify genes responding additively and non-additively to the genotype and spatiotemporal factors and cluster these genes into a number of different expression patterns. We identify clusters whose expression correlates closely with the degree of colony structure in each sample and include genes with known roles in the development of colony structure. Individual deletion of 26 genes sampled from different clusters identified 5 with strong effects on colony morphology (BUD8, CIS3, FLO11, MSB2 and SFG1), all of which eliminated or greatly reduced the structure of the F13 outer region.
Collapse
Affiliation(s)
- Gareth A. Cromie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Zhihao Tan
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Michelle Hays
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Stanford School of Medicine, Stanford, California, United States of America
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Aimée M. Dudley
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Váchová L, Plocek V, Maršíková J, Rešetárová S, Hatáková L, Palková Z. Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies. mBio 2024; 15:e0068924. [PMID: 38624209 PMCID: PMC11077963 DOI: 10.1128/mbio.00689-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Gcn4p belongs to conserved AP-1 transcription factors involved in many cellular processes, including cell proliferation, stress response, and nutrient availability in yeast and mammals. AP-1 activities are regulated at different levels, such as translational activation or protein degradation, which increases the variability of regulation under different conditions. Gcn4p activity in unstructured yeast liquid cultures increases upon amino acid deficiency and is rapidly eliminated upon amino acid excess. Gcn2p kinase is the major described regulator of Gcn4p that enables GCN4 mRNA translation via the uORFs mechanism. Here, we show that Gcn4p is specifically active in U cells in the upper regions and inactive in L cells in the lower regions of differentiated colonies. Using in situ microscopy in combination with analysis of mutants and strains with GFP at different positions in the translational regulatory region of Gcn4p, we show that cell-specific Gcn4p activity is independent of Gcn2p or other translational or transcriptional regulation. Genetically, biochemically, and microscopically, we identified cell-specific proteasomal degradation as a key mechanism that diversifies Gcn4p function between U and L cells. The identified regulation leading to active Gcn4p in U cells with amino acids and efficient degradation in starved L cells differs from known regulations of Gcn4p in yeast but shows similarities to the activity of AP-1 ATF4 in mammals during insulin signaling. These findings may open new avenues for understanding the parallel activities of Gcn4p/ATF4 and reveal a novel biological role for cell type-specific regulation of proteasome-dependent degradation.IMPORTANCEIn nature, microbes usually live in spatially structured communities and differentiate into precisely localized, functionally specialized cells. The coordinated interplay of cells and their response to environmental changes, such as starvation, followed by metabolic adaptation, is critical for the survival of the entire community. Transcription factor Gcn4p is responsible for yeast adaptation under amino acid starvation in liquid cultures, and its activity is regulated mainly at the level of translation involving Gcn2p kinase. Whether Gcn4p functions in structured communities was unknown. We show that translational regulation of Gcn4p plays no role in the development of colony subpopulations; the main regulation occurs at the level of stabilization of the Gcn4p molecule in the cells of one subpopulation and its proteasomal degradation in the other. This regulation ensures specific spatiotemporal activity of Gcn4p in the colony. Our work highlights differences in regulatory networks in unorganized populations and organized structures of yeast, which in many respects resemble multicellular organisms.
Collapse
Affiliation(s)
- Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prague, Czech Republic
| | - Vítězslav Plocek
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Jana Maršíková
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Stanislava Rešetárová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prague, Czech Republic
| | | | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| |
Collapse
|
7
|
Gaizer T, Juhász J, Pillér B, Szakadáti H, Pongor CI, Csikász-Nagy A. Integrative analysis of yeast colony growth. Commun Biol 2024; 7:511. [PMID: 38684888 PMCID: PMC11058853 DOI: 10.1038/s42003-024-06218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Yeast colonies are routinely grown on agar plates in everyday experimental settings to understand basic molecular processes, produce novel drugs, improve health, and so on. Standardized conditions ensure these colonies grow in a reproducible fashion, while in nature microbes are under a constantly changing environment. Here we combine the power of computational simulations and laboratory experiments to investigate the impact of non-standard environmental factors on colony growth. We present the developement and parameterization of a quantitative agent-based model for yeast colony growth to reproduce measurements on colony size and cell number in a colony at non-standard environmental conditions. Specifically, we establish experimental conditions that mimic the effects of humidity changes and nutrient gradients. Our results show how colony growth is affected by moisture changes, nutrient availability, and initial colony inoculation conditions. We show that initial colony spread, not initial cell number have higher impact on the final size and cell number of colonies. Parameters of the model were identified by fitting these experiments and the fitted model gives guidance to establish conditions which enable unlimited growth of yeast colonies.
Collapse
Affiliation(s)
- Tünde Gaizer
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - János Juhász
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
- Semmelweis University, Institute of Medical Microbiology, Budapest, Hungary
| | - Bíborka Pillér
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Helga Szakadáti
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Csaba I Pongor
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Attila Csikász-Nagy
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| |
Collapse
|
8
|
Lipke PN, Ragonis-Bachar P. Sticking to the Subject: Multifunctionality in Microbial Adhesins. J Fungi (Basel) 2023; 9:jof9040419. [PMID: 37108873 PMCID: PMC10144551 DOI: 10.3390/jof9040419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial and fungal adhesins mediate microbial aggregation, biofilm formation, and adhesion to host. We divide these proteins into two major classes: professional adhesins and moonlighting adhesins that have a non-adhesive activity that is evolutionarily conserved. A fundamental difference between the two classes is the dissociation rate. Whereas moonlighters, including cytoplasmic enzymes and chaperones, can bind with high affinity, they usually dissociate quickly. Professional adhesins often have unusually long dissociation rates: minutes or hours. Each adhesin has at least three activities: cell surface association, binding to a ligand or adhesive partner protein, and as a microbial surface pattern for host recognition. We briefly discuss Bacillus subtilis TasA, pilin adhesins, gram positive MSCRAMMs, and yeast mating adhesins, lectins and flocculins, and Candida Awp and Als families. For these professional adhesins, multiple activities include binding to diverse ligands and binding partners, assembly into molecular complexes, maintenance of cell wall integrity, signaling for cellular differentiation in biofilms and in mating, surface amyloid formation, and anchorage of moonlighting adhesins. We summarize the structural features that lead to these diverse activities. We conclude that adhesins resemble other proteins with multiple activities, but they have unique structural features to facilitate multifunctionality.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11215, USA
- Correspondence:
| | - Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Kamrad S, Correia-Melo C, Szyrwiel L, Aulakh SK, Bähler J, Demichev V, Mülleder M, Ralser M. Metabolic heterogeneity and cross-feeding within isogenic yeast populations captured by DILAC. Nat Microbiol 2023; 8:441-454. [PMID: 36797484 PMCID: PMC9981460 DOI: 10.1038/s41564-022-01304-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/13/2022] [Indexed: 02/18/2023]
Abstract
Genetically identical cells are known to differ in many physiological parameters such as growth rate and drug tolerance. Metabolic specialization is believed to be a cause of such phenotypic heterogeneity, but detection of metabolically divergent subpopulations remains technically challenging. We developed a proteomics-based technology, termed differential isotope labelling by amino acids (DILAC), that can detect producer and consumer subpopulations of a particular amino acid within an isogenic cell population by monitoring peptides with multiple occurrences of the amino acid. We reveal that young, morphologically undifferentiated yeast colonies contain subpopulations of lysine producers and consumers that emerge due to nutrient gradients. Deconvoluting their proteomes using DILAC, we find evidence for in situ cross-feeding where rapidly growing cells ferment and provide the more slowly growing, respiring cells with ethanol. Finally, by combining DILAC with fluorescence-activated cell sorting, we show that the metabolic subpopulations diverge phenotypically, as exemplified by a different tolerance to the antifungal drug amphotericin B. Overall, DILAC captures previously unnoticed metabolic heterogeneity and provides experimental evidence for the role of metabolic specialization and cross-feeding interactions as a source of phenotypic heterogeneity in isogenic cell populations.
Collapse
Affiliation(s)
- Stephan Kamrad
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Clara Correia-Melo
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Lukasz Szyrwiel
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Vadim Demichev
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Michael Mülleder
- Core Facility-High-Throughput Mass Spectrometry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany.
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
10
|
Lamming DW, Anderson RM. Strength in diversity: Intra-cellular metabolite sharing enhances longevity. Cell 2023; 186:8-9. [PMID: 36608660 DOI: 10.1016/j.cell.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Abstract
Much of our foundational knowledge of cellular biology comes from studies in budding yeast, often described as a simple unicellular eukaryotic model. In this issue of Cell, Correia-Melo et al. describe an unappreciated feature of yeast biology involving intra-cellular metabolite exchange, where cells adapt and respond as part of a community, and go on to show that sharing of resources linked to methionine metabolism enhances longevity of cooperating cells.
Collapse
Affiliation(s)
- Dudley W Lamming
- Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
11
|
Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms. NPJ Biofilms Microbiomes 2022; 8:78. [PMID: 36224215 PMCID: PMC9556537 DOI: 10.1038/s41522-022-00341-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022] Open
Abstract
Candida albicans biofilm maturation is accompanied by enhanced expression of amino acid acquisition genes. Three state-of-the-art omics techniques were applied to detail the importance of active amino acid uptake during biofilm development. Comparative analyses of normoxic wild-type biofilms were performed under three metabolically challenging conditions: aging, hypoxia, and disabled amino acid uptake using a strain lacking the regulator of amino acid permeases Stp2. Aging-induced amino acid acquisition and stress responses to withstand the increasingly restricted environment. Hypoxia paralyzed overall energy metabolism with delayed amino acid consumption, but following prolonged adaptation, the metabolic fingerprints aligned with aged normoxic biofilms. The extracellular metabolome of stp2Δ biofilms revealed deficient uptake for 11 amino acids, resulting in extensive transcriptional and metabolic changes including induction of amino acid biosynthesis and carbohydrate and micronutrient uptake. Altogether, this study underscores the critical importance of a balanced amino acid homeostasis for C. albicans biofilm development.
Collapse
|
12
|
Costa PDS, Prado A, Bagon NP, Negri M, Svidzinski TIE. Mixed Fungal Biofilms: From Mycobiota to Devices, a New Challenge on Clinical Practice. Microorganisms 2022; 10:microorganisms10091721. [PMID: 36144323 PMCID: PMC9506030 DOI: 10.3390/microorganisms10091721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that allow the evaluation of fungal morphology and the identification of the etiologic agent of mycosis. Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that enable the examination of the fungi for further identification of the etiological agent of the mycosis. The isolation of fungi from pure cultures is typically recommended, as when more than one species is identified, the second agent is considered a contaminant. Fungi mostly survive in highly organized communities that provoke changes in phenotypic profile, increase resistance to antifungals and environmental stresses, and facilitate evasion from the immune system. Mixed fungal biofilms (MFB) harbor more than one fungal species, wherein exchange can occur that potentialize the effects of these virulence factors. However, little is known about MFB and their role in infectious processes, particularly in terms of how each species may synergistically contribute to the pathogenesis. Here, we review fungi present in MFB that are commensals of the human body, forming the mycobiota, and how their participation in MFB affects the maintenance of homeostasis. In addition, we discuss how MFB are formed on both biotic and abiotic surfaces, thus being a significant reservoir of microorganisms that have already been associated in infectious processes of high morbidity and mortality.
Collapse
|
13
|
Hardwick JM, Knorre D, Palkova Z, Winderickx J. Editorial: Yeast Differentiation: From Cell-to-Cell Heterogeneity to Replicative Aging and Regulated Cell Death. Front Cell Dev Biol 2022; 9:823447. [PMID: 35059403 PMCID: PMC8764389 DOI: 10.3389/fcell.2021.823447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dmitry Knorre
- Belozersy Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Zdena Palkova
- Faculty of Science, BIOCEV, Charles University, Prague, Czechia
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| |
Collapse
|