1
|
Wang H, Liu C, Jin K, Li X, Zheng J, Wang D. Research advances in signaling pathways related to the malignant progression of HSIL to invasive cervical cancer: A review. Biomed Pharmacother 2024; 180:117483. [PMID: 39353319 DOI: 10.1016/j.biopha.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The progression of high-grade squamous intraepithelial lesion (HSIL) to invasive cervical cancer (ICC) is a complex process involving persistent human papillomavirus (HPV) infection and changes in signal transduction regulation, energy and material metabolism, cell proliferation, autoimmune, and other biological process in vaginal microenvironment and immune microenviroment. Signaling pathways are a series of interacting molecules in cells that regulate various physiological functions of cells, such as growth, differentiation, metabolism, and death. In the progression of HSIL to ICC, abnormal activation or inhibition in signaling pathways plays an essensial role. This review presented some signaling pathways related to the malignant progression of HSIL to ICC, including p53, Rb, PI3K/AKT/mTOR, Wnt/β-catenin, Notch, NF-κB, MAPK, TGF-β, JAK-STAT, Hippo, and Hedgehog. The molecular mechanisms involved in the biological process of pathway regulation were also analyzed, in order to illustrate the molecular pathway of HSIL progression to ICC and provide references for the development of more effective prevention and treatment methods.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Obstetrics and Gynecology, Quanzhou Medical College, Quanzhou, Fujian 362010, China
| | - Chang Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Keer Jin
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiang Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jiaxin Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
2
|
Huang Q, Peng Y, Peng Y, Lin H, Deng S, Feng S, Wei Y. Design, in silico evaluation, and in vitro verification of new bivalent Smac mimetics with pro-apoptotic activity. Methods 2024; 224:35-46. [PMID: 38373678 DOI: 10.1016/j.ymeth.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Bivalent Smac mimetics have been shown to possess binding affinity and pro-apoptotic activity similar to or more potent than that of native Smac, a protein dimer able to neutralize the anti-apoptotic activity of an inhibitor of caspase enzymes, XIAP, which endows cancer cells with resistance to anticancer drugs. We design five new bivalent Smac mimetics, which are formed by various linkers tethering two diazabicyclic cores being the IAP binding motifs. We built in silico models of the five mimetics by the TwistDock workflow and evaluated their conformational tendency, which suggests that compound 3, whose linker is n-hexylene, possess the highest binding potency among the five. After synthesis of these compounds, their ability in tumour cell growth inhibition and apoptosis induction displayed in experiments with SK-OV-3 and MDA-MB-231 cancer cell lines confirms our prediction. Among the five mimetics, compound 3 displays promising pro-apoptotic activity and deserves further optimization.
Collapse
Affiliation(s)
- Qingsheng Huang
- Shenzhen Key Laboratory of Intelligent Bioinformatics & Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Mathematics and Statistics, Hanshan Normal University, Chaozhou 521041, China
| | - Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Yuefeng Peng
- Shenzhen Key Laboratory of Intelligent Bioinformatics & Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huijuan Lin
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou 510000, China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Shengzhong Feng
- Shenzhen Key Laboratory of Intelligent Bioinformatics & Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yanjie Wei
- Shenzhen Key Laboratory of Intelligent Bioinformatics & Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Strontium Ranelate Inhibits Osteoclastogenesis through NF-κB-Pathway-Dependent Autophagy. Bioengineering (Basel) 2023; 10:bioengineering10030365. [PMID: 36978756 PMCID: PMC10045081 DOI: 10.3390/bioengineering10030365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Strontium ranelate (SR) is a pharmaceutical agent used for the prevention and treatment of osteoporosis and fragility fracture. However, little attention has been paid to the effect of SR on alveolar bone remodeling during orthodontic tooth movement and its underlying mechanism. Here, we investigated the influence of SR on orthodontic tooth movement and tooth resorption in Sprague–Dawley rats and the relationship between the nuclear factor–kappa B (NF-κB) pathway, autophagy, and osteoclastogenesis after the administration of SR in vitro and in vivo. In this study, it was found that SR reduced the expression of autophagy-related proteins at the pressure side of the first molars during orthodontic tooth movement. Similarly, the expression of these autophagy-related proteins and the size and number of autophagosomes were downregulated by SR in vitro. The results also showed that SR reduced the number of osteoclasts and suppressed orthodontic tooth movement and root resorption in rats, which could be partially restored using rapamycin, an autophagy inducer. Autophagy was attenuated after pre-osteoclasts were treated with Bay 11-7082, an NF-κB pathway inhibitor, while SR reduced the expression of the proteins central to the NF-κB pathway. Collectively, this study revealed that SR might suppress osteoclastogenesis through NF-κB-pathway-dependent autophagy, resulting in the inhibition of orthodontic tooth movement and root resorption in rats, which might offer a new insight into the treatment of malocclusion and bone metabolic diseases.
Collapse
|
4
|
Kong QW, Yang J, Li D, Ding YW, Hu YJ, Xue XC, Shi MZ, Jiang B, Zhou YY, Zhang M, Hu JD, Guo C, Chen JJ, Han YL. Tongguanteng injection reverses paclitaxel resistance via upregulation of TAB1 expression in ovarian cancer in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115728. [PMID: 36126783 DOI: 10.1016/j.jep.2022.115728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongguanteng injection (TGT), the water extract from the stem of the Traditional Chinese hebal medicine of Marsdenia tenacissima (Roxb.) Wight et Arn. has been used as anticancer remedy for decades. TGT was not only used in the treatment of many malignant cancers extensively, but also an adjuvant anticancer drug with chemotherapeutics clinically. AIM OF THE STUDY To evaluate the effects of TGT on reversing paclitaxel (PTX) resistance and investigate the potential mechanism related to TAB1 in ovarian cancer (OC) in vitro and in vivo. MATERIALS AND METHODS The synergistic effect and reversal ratio were determined by CCK8 assay and median-effect principle after the combination of TGT and PTX in OC A2780 and its PTX-resistant (A2780/T) cells. The biological functions in cell apoptosis, migration and invasion of A2780/T cells treated by PTX 4 μM with TGT 20, 40, 80 mg⋅mL-1 for 24 h were evaluated by colony formation, flow cytometry, wound healing and transwell assays. Proteomics technique and bioinformatic analysis were used to indentify the change of TAB1 expression in A2780/T cells induced by TGT. The association between TAB1 expression and human OC was analyzed by gene expression databases. In A2780/T cells, western blotting and colony formation assays were used to investigate the relationship between TAB1 expression and PTX resistance after TAB1 overexpression by TAB1 plasmids. The mechanism of TGT and PTX regulating TAB1 and its related proteins were explored by western blotting and flow cytometry assays after TAB1 knock-down using siTAB1. Moreover, TUNEL staining, immunohistochemistry (IHC) and histopathology were used to observe the antitumor effects, TAB1 and p-p38 expression and the tissues impairments in nude mice xenograft model established by A2780/T cells after the co-treatment with TGT and PTX by in vivo. RESULTS TGT combined with PTX showed the synergistic effect (CI<1), which could reverse the IC50 values of PTX in OC A2780 and A2780/T cells about 23.50 and 6.44 times, respectively. Besides, TGT combined with PTX could significantly inhibit the migration, invasion and promote apoptosis of A2780/T cells. We identified that TGT could induce TAB1 expression in A2780/T cells by proteomics analysis. TAB1 downregulation was significantly associated with tumorigenesis and poor prognosis in OC patients and PTX resistance in A2780/T cells. Furthermore, TGT could activate TAB1/TAK1/p38 MAPK signaling pathway targeting TAB1 and regulate the expression of Bax, Bcl-2 proteins to improve the sensitivity of A2780/T cells to PTX. TGT combined with PTX also showed a greater inhibition in tumor growth than PTX monotherapy in vivo. These promising results show the efficacy of TGT in reversing PTX resistance and provide a potential strategy that targeting TAB1/TAK1/p38 MAPK signaling pathway may improve the chemotherapy sensitivity in OC. CONCLUSIONS Our results revealed that Tongguanteng injection could reverse paclitaxel resistance and the potential mechanism might be associated with the activation of TAB1/TAK1/p38 MAPK signaling pathway in OC in vitro and in vivo. TAB1 might be a pivotal target for reversing PTX resistance. This study will provide a theoretical basis for the combination of Tongguanteng injection and paclitaxel in clinic.
Collapse
Affiliation(s)
- Qian-Wen Kong
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jiao Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Ya-Wei Ding
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yu-Jie Hu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Xiao-Chuan Xue
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mei-Zhi Shi
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Bo Jiang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yang-Yun Zhou
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Min Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jiu-Dong Hu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China.
| |
Collapse
|
5
|
Fiore M, Mosconi M, Bonì F, Parodi A, Salis A, Tasso B, Mastrangelo E, Millo E, Cossu F. New Class of Benzodiazepinone Derivatives as Pro-Death Agents Targeting BIR Domains in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010446. [PMID: 36615638 PMCID: PMC9823934 DOI: 10.3390/molecules28010446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Inhibitor of Apoptosis Proteins (IAPs) are validated targets for cancer therapy, and the deregulation of their activities within the NF-κB pathway correlates with chemoresistance events, even after treatment with IAPs-antagonists in the clinic (Smac-mimetics). The molecule FC2 was identified as a NF-κB pathway modulator in MDA-MB-231 adenocarcinoma cancer cells after virtual screening of the Chembridge library against the Baculoviral IAP Repeat 1 (BIR1) domain of cIAP2 and XIAP. An improved cytotoxic effect is observed when FC2 is combined with Smac-mimetics or with the cytokine Tumor Necrosis Factor (TNF). Here, we propose a library of 22 derivatives of FC2, whose scaffold was rationally modified starting from the position identified as R1. The cytotoxic effect of FC2 derivatives was evaluated in MDA-MB-231 and binding to the cIAP2- and XIAP-BIR1 domains was assessed in fluorescence-based techniques and virtual docking. Among 22 derivatives, 4m and 4p display improved efficacy/potency in MDA-MB-231 cells and low micromolar binding affinity vs the target proteins. Two additional candidates (4b and 4u) display promising cytotoxic effects in combination with TNF, suggesting the connection between this class of molecules and the NF-κB pathway. These results provide the rationale for further FC2 modifications and the design of novel IAP-targeting candidates supporting known therapies.
Collapse
Affiliation(s)
- Michele Fiore
- National Research Council (IBF-CNR) Genoa Unit, Institute of Biophysics, Via De Marini 6, 16149 Genova, Italy
| | - Michele Mosconi
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Francesco Bonì
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Alice Parodi
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Annalisa Salis
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Eloise Mastrangelo
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genova, Italy
- Correspondence: (E.M.); (F.C.); Tel.: +39-010-335-3032 (E.M.); +39-0250314890 (F.C.)
| | - Federica Cossu
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
- Correspondence: (E.M.); (F.C.); Tel.: +39-010-335-3032 (E.M.); +39-0250314890 (F.C.)
| |
Collapse
|
6
|
Erba F, Di Paola L, Di Venere A, Mastrangelo E, Cossu F, Mei G, Minicozzi V. Head or tail? A molecular dynamics approach to the complex structure of TNF-associated factor TRAF2. Biomol Concepts 2023; 14:bmc-2022-0031. [PMID: 37377424 DOI: 10.1515/bmc-2022-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor proteins (TRAFs) are trimeric proteins that play a fundamental role in signaling, acting as intermediaries between the tumor necrosis factor (TNF) receptors and the proteins that transmit the downstream signal. The monomeric subunits of all the TRAF family members share a common tridimensional structure: a C-terminal globular domain and a long coiled-coil tail characterizing the N-terminal section. In this study, the dependence of the TRAF2 dynamics on the length of its tail was analyzed in silico. In particular, we used the available crystallographic structure of a C-terminal fragment of TRAF2 (168 out of 501 a.a.), TRAF2-C, and that of a longer construct, addressed as TRAF2-plus, that we have re-constructed using the AlphaFold2 code. The results indicate that the longer N-terminal tail of TRAF2-plus has a strong influence on the dynamics of the globular regions in the protein C-terminal head. In fact, the quaternary interactions among the TRAF2-C subunits change asymmetrically in time, while the movements of TRAF2-plus monomers are rather limited and more ordered than those of the shorter construct. Such findings shed a new light on the dynamics of TRAF subunits and on the protein mechanism in vivo, since TRAF monomer-trimer equilibrium is crucial for several reasons (receptor recognition, membrane binding, hetero-oligomerization).
Collapse
Affiliation(s)
- Fulvio Erba
- Department of Clinical Science and Translational Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, University Campus Bio-Medico of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Eloise Mastrangelo
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Federica Cossu
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022; 13:979469. [PMID: 36072591 PMCID: PMC9441741 DOI: 10.3389/fimmu.2022.979469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer represents the leading global driver of death and is recognized as a critical obstacle to increasing life expectancy. In recent years, with the development of precision medicine, significant progress has been made in cancer treatment. Among them, various therapies developed with the help of the immune system have succeeded in clinical treatment, recognizing and killing cancer cells by stimulating or enhancing the body’s intrinsic immune system. However, low response rates and serious adverse effects, among others, have limited the use of immunotherapy. It also poses problems such as drug resistance and hyper-progression. Fortunately, thanks to the rapid development of nanotechnology, engineered multifunctional nanomaterials and biomaterials have brought breakthroughs in cancer immunotherapy. Unlike conventional cancer immunotherapy, nanomaterials can be rationally designed to trigger specific tumor-killing effects. Simultaneously, improved infiltration of immune cells into metastatic lesions enhances the efficiency of antigen submission and induces a sustained immune reaction. Such a strategy directly reverses the immunological condition of the primary tumor, arrests metastasis and inhibits tumor recurrence through postoperative immunotherapy. This paper discusses several types of nanoscale biomaterials for cancer immunotherapy, and they activate the immune system through material-specific advantages to provide novel therapeutic strategies. In summary, this article will review the latest advances in tumor immunotherapy based on self-assembled, mesoporous, cell membrane modified, metallic, and hydrogel nanomaterials to explore diverse tumor therapies.
Collapse
Affiliation(s)
- Ziyin Chen
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Ronghua Wang
- Department of Outpatient, Dongying People’s Hospital, Dongying, China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
8
|
Zhang Z, Xiang S, Cui R, Peng H, Mridul R, Xiang M. ILP-2: A New Bane and Therapeutic Target for Human Cancers. Front Oncol 2022; 12:922596. [PMID: 35814477 PMCID: PMC9260022 DOI: 10.3389/fonc.2022.922596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Inhibitor of apoptosis protein-related-like protein-2 (ILP-2), also known as BIRC-8, is a member of the inhibitor of apoptosis protein (IAPs) family, which mainly encodes the negative regulator of apoptosis. It is selectively overexpressed in a variety of human tumors and can help tumor cells evade apoptosis, promote tumor cell growth, increase tumor cell aggressiveness, and appears to be involved in tumor cell resistance to chemotherapeutic drugs. Several studies have shown that downregulation of ILP-2 expression increases apoptosis, inhibits metastasis, reduces cell growth potential, and sensitizes tumor cells to chemotherapeutic drugs. In addition, ILP-2 inhibits apoptosis in a unique manner; it does not directly inhibit the activity of caspases but induces apoptosis by cooperating with other apoptosis-related proteins. Here, we review the current understanding of the various roles of ILP-2 in the apoptotic cascade and explore the use of interfering ILP-2, and the combination of related anti-tumor agents, as a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhiliang Zhang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Siqi Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Ruxia Cui
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Hang Peng
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Roy Mridul
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| | - Mingjun Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, China
- The State Ethnic Committee's Key Laboratory of Clinical Engineering Laboratory of Xiangxi Miao Pediatric Tuina, Jishou University, Jishou, China
| |
Collapse
|