1
|
Li P, Hong J, Yuan Z, Huang Y, Wu M, Ding T, Wu Z, Sun X, Lin D. Gut microbiota in parasite-transmitting gastropods. Infect Dis Poverty 2023; 12:105. [PMID: 38001502 PMCID: PMC10668521 DOI: 10.1186/s40249-023-01159-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Gastropoda, the largest class within the phylum Mollusca, houses diverse gut microbiota, and some gastropods serve as intermediate hosts for parasites. Studies have revealed that gut bacteria in gastropods are associated with various biological aspects, such as growth, immunity and host-parasite interactions. Here, we summarize our current knowledge of gastropod gut microbiomes and highlight future research priorities and perspectives. METHODS A literature search was undertaken using PubMed, Web of Science and CNKI for the articles on the gut microbiota of gastropods until December 31, 2022. We retrieved a total of 166 articles and identified 73 eligible articles for inclusion in this review based on the inclusion and exclusion criteria. RESULTS Our analysis encompassed freshwater, seawater and land snails, with a specific focus on parasite-transmitting gastropods. We found that most studies on gastropod gut microbiota have primarily utilized 16S rRNA gene sequencing to analyze microbial composition, rather than employing metagenomic, metatranscriptomic, or metabolomic approaches. This comprehensive review provided an overview of the parasites carried by snail species in the context of gut microbiota studies. We presented the gut microbial trends, a comprehensive summary of the diversity and composition, influencing factors, and potential functions of gastropod gut microbiota. Additionally, we discussed the potential applications, research gaps and future perspectives of gut microbiomes in parasite-transmitting gastropods. Furthermore, several strategies for enhancing our comprehension of gut microbiomes in snails were also discussed. CONCLUSIONS This review comprehensively summarizes the current knowledge on the composition, potential function, influencing factors, potential applications, limitations, and challenges of gut microbiomes in gastropods, with a specific emphasis on parasite-transmitting gastropods. These findings provide important insights for future studies aiming to understand the potential role of gastropod gut microbiota in controlling snail populations and snail-borne diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yun Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Song H, Li Z, Yang M, Shi P, Yu Z, Hu Z, Zhou C, Hu P, Zhang T. Chromosome-level genome assembly of the caenogastropod snail Rapana venosa. Sci Data 2023; 10:539. [PMID: 37587134 PMCID: PMC10432487 DOI: 10.1038/s41597-023-02459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
The carnivorous gastropod Rapana venosa (Valenciennes, 1846) is one of the most notorious ecological invaders worldwide. Here, we present the first high-quality chromosome-scale reference R. venosa genome obtained via PacBio sequencing, Illumina paired-end sequencing, and high-throughput chromosome conformation capture scaffolding. The assembled genome has a size of 2.30 Gb, with a scaffold N50 length of 64.63 Mb, and is anchored to 35 chromosomes. It contains 29,649 protein-coding genes, 77.22% of which were functionally annotated. Given its high heterozygosity (1.41%) and large proportion of repeat sequences (57.72%), it is one of the most complex genome assemblies. This chromosome-level genome assembly of R. venosa is an important resource for understanding molluscan evolutionary adaption and provides a genetic basis for its biological invasion control.
Collapse
Grants
- This research was supported by the National Natural Science Foundation of China (Grant No. 32002409, 42206086, 31972814, and 32002374), the China Postdoctoral Science Foundation (Grant No. 2021M703248), the China Agriculture Research System of MOF and MARA, and the Creative Team Project of the Laboratory for Marine Ecology and Environmental Science, Qingdao National for Marine Science and Technology (no. LMEESCTSP-2018). Hao Song was supported by the Young Elite Scientists Sponsorship Program by cst(Grant No. 2021QNRC001), and Youth Innovation Promotion Association by CAS. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.
Collapse
Affiliation(s)
- Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoqing Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meijie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenglin Yu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengpeng Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Yang MJ, Song H, Shi P, Liang J, Hu Z, Zhou C, Hu PP, Yu ZL, Zhang T. Integrated mRNA and miRNA transcriptomic analysis reveals the response of Rapana venosa to the metamorphic inducer (juvenile oysters). Comput Struct Biotechnol J 2022; 21:702-715. [PMID: 36659925 PMCID: PMC9826900 DOI: 10.1016/j.csbj.2022.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Metamorphosis, as a critical developmental event, controls the population dynamics of most marine invertebrates, especially some carnivorous gastropods that feed on bivalves, whose population dynamics not only affect the maintenance of the ecological balance but also impact the protection of bivalve resources; therefore, the metamorphosis of carnivorous gastropods deserve attention. Here, we investigated the mechanism underlying the response of the carnivorous gastropod Rapana venosa to its metamorphic inducer juvenile oysters through integrated analysis of miRNA and mRNA profiles. According to the results, we speculated that the AMPK signaling pathway may be the critical regulator in the response to juvenile oysters in R. venosa competent larvae. The NF-kB and JAK-STAT signaling pathways that regulated apoptosis were also activated by the metamorphic inducer, which may result in the degeneration of the velum. Additionally, the significant changes in the expression of the SARP-19 precursor gene and protein cibby homolog 1-like gene may indicate that these signaling pathways also regulate growth and development during metamorphosis. This study provides further evidence that juvenile oysters can induce metamorphosis of R. venosa at the transcriptional level, which expands our understanding of the metamorphosis mechanism in carnivorous gastropods.
Collapse
Affiliation(s)
- Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jian Liang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Peng-Peng Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zheng-Lin Yu
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China,Correspondence to: 7 Nanhai Road, Qingdao, Shandong 266071, China.
| |
Collapse
|