1
|
Oliveira ASF, Kearns FL, Rosenfeld MA, Casalino L, Tulli L, Berger I, Schaffitzel C, Davidson AD, Amaro RE, Mulholland AJ. Allosteric modulation by the fatty acid site in the glycosylated SARS-CoV-2 spike. eLife 2025; 13:RP97313. [PMID: 40208235 PMCID: PMC11984958 DOI: 10.7554/elife.97313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San DiegoLa JollaUnited States
| | - Lorenzo Tulli
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| | - Imre Berger
- School of Chemistry, University of BristolBristolUnited Kingdom
- School of Biochemistry, University of BristolBristolUnited Kingdom
- Max Planck Bristol Centre for Minimal Biology, School of ChemistryBristolUnited Kingdom
| | | | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University WalkBristolUnited Kingdom
| | - Rommie E Amaro
- Department of Molecular Biology, University of California San DiegoLa JollaUnited States
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of BristolBristolUnited Kingdom
- School of Chemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
2
|
Casalino L, Ramos-Guzmán CA, Amaro RE, Simmerling C, Lodola A, Mulholland AJ, Świderek K, Moliner V. A Reflection on the Use of Molecular Simulation to Respond to SARS-CoV-2 Pandemic Threats. J Phys Chem Lett 2025; 16:3249-3263. [PMID: 40118074 PMCID: PMC11973918 DOI: 10.1021/acs.jpclett.4c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
Molecular simulations play important roles in understanding the lifecycle of the SARS-CoV-2 virus and contribute to the design and development of antiviral agents and diagnostic tests for COVID. Here, we discuss the insights that such simulations have provided and the challenges involved, focusing on the SARS-CoV-2 main protease (Mpro) and the spike glycoprotein. Mpro is the leading target for antivirals, while the spike glycoprotein is the target for vaccine design. Finally, we reflect on lessons from this pandemic for the simulation community. Data sharing initiatives and collaborations across the international research community contributed to advancing knowledge and should be built on to help in future pandemics and other global challenges such as antimicrobial resistance.
Collapse
Affiliation(s)
- Lorenzo Casalino
- Department
of Molecular Biology, University of California
San Diego, La Jolla, California 92093, United States
| | - Carlos A. Ramos-Guzmán
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United
Kingdom
| | - Rommie E. Amaro
- Department
of Molecular Biology, University of California
San Diego, La Jolla, California 92093, United States
| | - Carlos Simmerling
- Department
of Chemistry and Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, I 43121 Parma, Italy
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United
Kingdom
| | - Katarzyna Świderek
- Biocomp
group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- Biocomp
group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
3
|
Scantamburlo F, Masgras I, Ciscato F, Laquatra C, Frigerio F, Cinquini F, Pavoni S, Triveri A, Frasnetti E, Serapian SA, Colombo G, Rasola A, Moroni E. Design and Test of Molecules that Interfere with the Recognition Mechanisms between the SARS-CoV-2 Spike Protein and Its Host Cell Receptors. J Chem Inf Model 2024; 64:8274-8282. [PMID: 39440601 DOI: 10.1021/acs.jcim.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The disruptive impact of the COVID-19 pandemic has led the scientific community to undertake an unprecedented effort to characterize viral infection mechanisms. Among these, interactions between the viral glycosylated Spike and the human receptors ACE2 and TMPRSS2 are key to allowing virus invasion. Here, we report and test a fully rational methodology to design molecules that are capable of perturbing the interactions between these critical players in SARS-CoV-2 pathogenicity. To this end, we computationally identify substructures on the fully glycosylated Spike protein that are not intramolecularly optimized and are thus prone to being stabilized by forming complexes with ACE2 and TMPRSS2. With the aim of competing with the Spike-mediated cell entry mechanisms, we have engineered the predicted putative interaction regions in the form of peptide mimics that could compete with Spike for interaction with ACE2 and/or TMPRSS2. Experimental models of viral entry demonstrate that the designed molecules are able to interfere with viral entry into ACE2/TMPRSS2 expressing cells, while they have no effects on the entry of control viral particles that do not harbor the Spike protein or on the entry of Spike-presenting viral particles into cells that do not display its receptors on their surface.
Collapse
Affiliation(s)
- Francesca Scantamburlo
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
- Institute of Neuroscience, National Research Council (CNR), 35131 Padova, Italy
| | - Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
- Institute of Neuroscience, National Research Council (CNR), 35131 Padova, Italy
| | - Claudio Laquatra
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D Eni SpA, Via Maritano 27, 20097 San Donato Milanese (Mi), Italy
- Upstream & Technical Services-TECS/STES-Eni Spa, Via Emilia 1, 20097 San Donato Milanese (Mi), Italy
| | - Fabrizio Cinquini
- Upstream & Technical Services-TECS/STES-Eni Spa, Via Emilia 1, 20097 San Donato Milanese (Mi), Italy
| | - Silvia Pavoni
- Department of Physical Chemistry, R&D Eni SpA, Via Maritano 27, 20097 San Donato Milanese (Mi), Italy
- Upstream & Technical Services-TECS/STES-Eni Spa, Via Emilia 1, 20097 San Donato Milanese (Mi), Italy
| | - Alice Triveri
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Elena Frasnetti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Elisabetta Moroni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"-SCITEC CNR, Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
4
|
Watson A, Shah P, Lee D, Liang S, Joshi G, Metitiri E, Chowdhury WH, Bacich D, Dube P, Xiang Y, Hanley D, Martinez-Sobrido L, Rodriguez R. Valproic acid use is associated with diminished risk of contracting COVID-19, and diminished disease severity: Epidemiologic and in vitro analysis reveal mechanistic insights. PLoS One 2024; 19:e0307154. [PMID: 39093886 PMCID: PMC11296636 DOI: 10.1371/journal.pone.0307154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 pandemic has caused unprecedented worldwide infections from persistent mutant variants with various degrees of infectivity and virulence. The elusiveness of a highly penetrant, worldwide vaccination strategy suggests that the complete eradication of SARS-CoV-2 is unlikely. Even with the advent of new antiviral agents, the disease burden worldwide continues to exceed current preventative and therapeutic strategies. Greater interest has been placed towards the development of affordable,broadly effective antiviral therapeutics. Here, we report that the small branched-chain fatty acid Valproic acid (VPA), approved for maintenance of seizure and bipolar disorder, has a novel anti- coronavirus activity that can be augmented with the addition of a long-chain, polyunsaturated omega-3 fatty acid, Docosahexaenoic acid (DHA). An EMR-based epidemiological study of patients tested for COVID-19 demonstrated a correlation exists between a reduced infection rate in patients treated withVPA of up to 25%, as well as a decreased risk of emergency room visits, hospitalization, ICU admission,and use of mechanical ventilation. In vitro studies have demonstrated that VPA modifies gene expression in MRC5 cells. Interestingly, VPA correlates with the inhibition of several SARS-CoV2 interacting genes and the greater inhibition of alpha-coronavirus HCoV-229E (a "common cold" virus) and SARS-CoV2. The VPA-DHA combination activates pre-existing intracellular antiviral mechanisms normally repressed by coronaviruses. Gene expression profiles demonstrate subtle differences in overall gene expression between VPA-treated and VPA-DHA-treated cells. HCoV-229E infection caused an intensely different response with a marked induction of multiple intracellular inflammatory genes. Changes in gene expression took at least 24 hours to manifest and most likely why prior drug screens failed to identify any antiviral VPA activity despite in silico predictions. This report demonstrates an interaction between HDAC inhibition and the potent activation of cellular antiviral responses. A foundation now exists for a low-cost, highly effective antiviral strategy when supplemented with DHA.
Collapse
Affiliation(s)
- Amanda Watson
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Pankil Shah
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Doug Lee
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sitai Liang
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Geeta Joshi
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Ediri Metitiri
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Wasim H. Chowdhury
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Dean Bacich
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Peter Dube
- Boehringer Ingelheim in Ames, Ames, Iowa, United States of America
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio San Antonio, Texas, United States of America
| | - Daniel Hanley
- Department of Neurology & Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | | | - Ronald Rodriguez
- Department of Medical Education, and Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
5
|
Kamsri B, Kamsri P, Punkvang A, Chimprasit A, Saparpakorn P, Hannongbua S, Spencer J, Oliveira ASF, Mulholland AJ, Pungpo P. Signal Propagation in the ATPase Domain of Mycobacterium tuberculosis DNA Gyrase from Dynamical-Nonequilibrium Molecular Dynamics Simulations. Biochemistry 2024; 63:1493-1504. [PMID: 38742407 PMCID: PMC11154950 DOI: 10.1021/acs.biochem.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
DNA gyrases catalyze negative supercoiling of DNA, are essential for bacterial DNA replication, transcription, and recombination, and are important antibacterial targets in multiple pathogens, including Mycobacterium tuberculosis, which in 2021 caused >1.5 million deaths worldwide. DNA gyrase is a tetrameric (A2B2) protein formed from two subunit types: gyrase A (GyrA) carries the breakage-reunion active site, whereas gyrase B (GyrB) catalyzes ATP hydrolysis required for energy transduction and DNA translocation. The GyrB ATPase domains dimerize in the presence of ATP to trap the translocated DNA (T-DNA) segment as a first step in strand passage, for which hydrolysis of one of the two ATPs and release of the resulting inorganic phosphate is rate-limiting. Here, dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations of the dimeric 43 kDa N-terminal fragment of M. tuberculosis GyrB show how events at the ATPase site (dissociation/hydrolysis of bound nucleotides) are propagated through communication pathways to other functionally important regions of the GyrB ATPase domain. Specifically, our simulations identify two distinct pathways that respectively connect the GyrB ATPase site to the corynebacteria-specific C-loop, thought to interact with GyrA prior to DNA capture, and to the C-terminus of the GyrB transduction domain, which in turn contacts the C-terminal GyrB topoisomerase-primase (TOPRIM) domain responsible for interactions with GyrA and the centrally bound G-segment DNA. The connection between the ATPase site and the C-loop of dimeric GyrB is consistent with the unusual properties of M. tuberculosis DNA gyrase relative to those from other bacterial species.
Collapse
Affiliation(s)
- Bundit Kamsri
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Pharit Kamsri
- Division
of Chemistry, Faculty of Science, Nakhon
Phanom University, Nakhon
Phanom 48000, Thailand
| | - Auradee Punkvang
- Division
of Chemistry, Faculty of Science, Nakhon
Phanom University, Nakhon
Phanom 48000, Thailand
| | - Aunlika Chimprasit
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | | | - Supa Hannongbua
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - James Spencer
- School
of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, U.K.
| | - A. Sofia F. Oliveira
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Pornpan Pungpo
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
6
|
Hasse T, Mantei E, Shahoei R, Pawnikar S, Wang J, Miao Y, Huang YMM. Mechanistic insights into ligand dissociation from the SARS-CoV-2 spike glycoprotein. PLoS Comput Biol 2024; 20:e1011955. [PMID: 38452125 PMCID: PMC10959368 DOI: 10.1371/journal.pcbi.1011955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/22/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
The COVID-19 pandemic, driven by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an urgent need for effective therapeutic interventions. The spike glycoprotein of the SARS-CoV-2 is crucial for infiltrating host cells, rendering it a key candidate for drug development. By interacting with the human angiotensin-converting enzyme 2 (ACE2) receptor, the spike initiates the infection of SARS-CoV-2. Linoleate is known to bind the spike glycoprotein, subsequently reducing its interaction with ACE2. However, the detailed mechanisms underlying the protein-ligand interaction remain unclear. In this study, we characterized the pathways of ligand dissociation and the conformational changes associated with the spike glycoprotein by using ligand Gaussian accelerated molecular dynamics (LiGaMD). Our simulations resulted in eight complete ligand dissociation trajectories, unveiling two distinct ligand unbinding pathways. The preference between these two pathways depends on the gate distance between two α-helices in the receptor binding domain (RBD) and the position of the N-linked glycan at N343. Our study also highlights the essential contributions of K417, N121 glycan, and N165 glycan in ligand unbinding, which are equally crucial in enhancing spike-ACE2 binding. We suggest that the presence of the ligand influences the motions of these residues and glycans, consequently reducing accessibility for spike-ACE2 binding. These findings enhance our understanding of ligand dissociation from the spike glycoprotein and offer significant implications for drug design strategies in the battle against COVID-19.
Collapse
Affiliation(s)
- Timothy Hasse
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Esra Mantei
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Rezvan Shahoei
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| | - Shristi Pawnikar
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Jinan Wang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Yinglong Miao
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Yu-ming M. Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
7
|
Samsudin F, Zuzic L, Marzinek JK, Bond PJ. Mechanisms of allostery at the viral surface through the eyes of molecular simulation. Curr Opin Struct Biol 2024; 84:102761. [PMID: 38142635 DOI: 10.1016/j.sbi.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
The outermost surface layer of any virus is formed by either a capsid shell or envelope. Such layers have traditionally been thought of as immovable structures, but it is becoming apparent that they cannot be viewed exclusively as static architectures protecting the viral genome. A limited number of proteins on the virion surface must perform a multitude of functions in order to orchestrate the viral life cycle, and allostery can regulate their structures at multiple levels of organization, spanning individual molecules, protomers, large oligomeric assemblies, or entire viral surfaces. Here, we review recent contributions from the molecular simulation field to viral surface allostery, with a particular focus on the trimeric spike glycoprotein emerging from the coronavirus surface, and the icosahedral flaviviral envelope complex. As emerging viral pathogens continue to pose a global threat, an improved understanding of viral dynamics and allosteric regulation will prove crucial in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Firdaus Samsudin
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Lorena Zuzic
- Department of Chemistry, Langelandsgade 140, Aarhus University, Aarhus 8000, Denmark
| | - Jan K Marzinek
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (A∗STAR), 30 Biopolis Street, 07-01 Matrix, 138671, Singapore; Department of Biological Sciences, 16 Science Drive 4, National University of Singapore, 117558, Singapore.
| |
Collapse
|
8
|
Queirós-Reis L, Mesquita JR, Brancale A, Bassetto M. Exploring the Fatty Acid Binding Pocket in the SARS-CoV-2 Spike Protein - Confirmed and Potential Ligands. J Chem Inf Model 2023; 63:7282-7298. [PMID: 37991468 DOI: 10.1021/acs.jcim.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Severe Acute Respiratory syndrome 2 (SARS-CoV-2) is a respiratory virus responsible for coronavirus disease 19 (COVID-19) and the still ongoing and unprecedented global pandemic. The key viral protein for cell infection is the spike glycoprotein, a surface-exposed fusion protein that both recognizes and mediates entry into host cells. Within the spike glycoprotein, a fatty acid binding pocket (FABP) was confirmed, with the crystallization of linoleic acid (LA) occupying a well-defined site. Importantly, when the pocket is occupied by a fatty acid, an inactive conformation is stabilized, and cell recognition is hindered. In this review, we discuss ligands reported so far for this site, correlating their activity predicted through in silico studies with antispike experimental activity, assessed by either binding assays or cell-infection assays. LA was the first confirmed ligand, cocrystallized in a cryo-EM structure of the spike protein, resulting in increased stability of the inactive conformation of the spike protein. The next identified ligand, lifitegrast, was also experimentally confirmed as a ligand with antiviral activity, suggesting the potential for diverse chemical scaffolds to bind this site. Finally, SPC-14 was also confirmed as a ligand, although no inhibition assays were performed. In this review, we identified 20 studies describing small-molecule compounds predicted to bind the pocket in in silico studies and with confirmed binding or in vitro activity, either inhibitory activity against the spike-ACE2 interaction or antiviral activity in cell-based assays. When considering all ligands confirmed with in vitro assays, a good overall occupation of the pocket should be complemented with the ability to make direct interactions, both hydrophilic and hydrophobic, with key amino acid residues defining the pocket surface. Among the active compounds, long flexible carbon chains are recurrent, with retinoids capable of binding the FABP, although bulkier systems are also capable of affecting viral fitness. Compounds able to bind this site with high affinity have the potential to stabilize the inactive conformation of the SARS-CoV-2 spike protein and therefore reduce the virus's ability to infect new cells. Since this pocket is conserved in highly pathogenic human coronaviruses, including MERS-CoV and SARS-CoV, this effect could be exploited for the development of new antiviral agents, with broad-spectrum anticoronavirus activity.
Collapse
Affiliation(s)
- Luís Queirós-Reis
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João R Mesquita
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4050-091 Porto, Portugal
| | - Andrea Brancale
- University of Chemistry and Technology, Prague, 166 28 Praha, Czechia
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3BN, U.K
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K
| |
Collapse
|
9
|
de Souza AS, de Souza RF, Guzzo CR. Cooperative and structural relationships of the trimeric Spike with infectivity and antibody escape of the strains Delta (B.1.617.2) and Omicron (BA.2, BA.5, and BQ.1). J Comput Aided Mol Des 2023; 37:585-606. [PMID: 37792106 DOI: 10.1007/s10822-023-00534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Herein, we conducted simulations of trimeric Spike from several SARS-CoV-2 variants of concern (Delta and Omicron sub-variants BA.2, BA.5, and BQ.1) and investigated the mechanisms by which specific mutations confer resistance to neutralizing antibodies. We observed that the mutations primarily affect the cooperation between protein domains within and between protomers. The substitutions K417N and L452R expand hydrogen bonding interactions, reducing their interaction with neutralizing antibodies. By interacting with nearby residues, the K444T and N460K mutations in the SpikeBQ.1 variant potentially reduces solvent exposure, thereby promoting resistance to antibodies. We also examined the impact of D614G, P681R, and P681H substitutions on Spike protein structure that may be related to infectivity. The D614G substitution influences communication between a glycine residue and neighboring domains, affecting the transition between up- and -down RBD states. The P681R mutation, found in the Delta variant, enhances correlations between protein subunits, while the P681H mutation in Omicron sub-variants weakens long-range interactions that may be associated with reduced fusogenicity. Using a multiple linear regression model, we established a connection between inter-protomer communication and loss of sensitivity to neutralizing antibodies. Our findings underscore the importance of structural communication between protein domains and provide insights into potential mechanisms of immune evasion by SARS-CoV-2. Overall, this study deepens our understanding of how specific mutations impact SARS-CoV-2 infectivity and shed light on how the virus evades the immune system.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, Sao Paulo, SP, 5508-900, Brazil.
| |
Collapse
|
10
|
Oliveira ASF, Shoemark DK, Davidson AD, Berger I, Schaffitzel C, Mulholland AJ. SARS-CoV-2 spike variants differ in their allosteric responses to linoleic acid. J Mol Cell Biol 2023; 15:mjad021. [PMID: 36990513 PMCID: PMC10563148 DOI: 10.1093/jmcb/mjad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/07/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The SARS-CoV-2 spike protein contains a functionally important fatty acid (FA) binding site, which is also found in some other coronaviruses, e.g. SARS-CoV and MERS-CoV. The occupancy of the FA site by linoleic acid (LA) reduces infectivity by 'locking' the spike in a less infectious conformation. Here, we use dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations to compare the allosteric responses of spike variants to LA removal. D-NEMD simulations show that the FA site is coupled to other functional regions of the protein, e.g. the receptor-binding motif (RBM), N-terminal domain (NTD), furin cleavage site, and regions surrounding the fusion peptide. D-NEMD simulations also identify the allosteric networks connecting the FA site to these functional regions. The comparison between the wild-type spike and four variants (Alpha, Delta, Delta plus, and Omicron BA.1) shows that the variants differ significantly in their responses to LA removal. The allosteric connections to the FA site on Alpha are generally similar to those on the wild-type protein, with the exception of the RBM and the S71-R78 region, which show a weaker link to the FA site. In contrast, Omicron is the most different variant, exhibiting significant differences in the RBM, NTD, V622-L629, and furin cleavage site. These differences in the allosteric modulation may be of functional relevance, potentially affecting transmissibility and virulence. Experimental comparison of the effects of LA on SARS-CoV-2 variants, including emerging variants, is warranted.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, Max Planck Bristol Centre for Minimal Biology, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
11
|
Chan HT, Oliveira ASF, Schofield CJ, Mulholland AJ, Duarte F. Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease. JACS AU 2023; 3:1767-1774. [PMID: 37384148 PMCID: PMC10262681 DOI: 10.1021/jacsau.3c00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) plays an essential role in the coronavirus lifecycle by catalyzing hydrolysis of the viral polyproteins at specific sites. Mpro is the target of drugs, such as nirmatrelvir, though resistant mutants have emerged that threaten drug efficacy. Despite its importance, questions remain on the mechanism of how Mpro binds its substrates. Here, we apply dynamical nonequilibrium molecular dynamics (D-NEMD) simulations to evaluate structural and dynamical responses of Mpro to the presence and absence of a substrate. The results highlight communication between the Mpro dimer subunits and identify networks, including some far from the active site, that link the active site with a known allosteric inhibition site, or which are associated with nirmatrelvir resistance. They imply that some mutations enable resistance by altering the allosteric behavior of Mpro. More generally, the results show the utility of the D-NEMD technique for identifying functionally relevant allosteric sites and networks including those relevant to resistance.
Collapse
Affiliation(s)
- H. T.
Henry Chan
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - A. Sofia F. Oliveira
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Fernanda Duarte
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
12
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
13
|
Triveri A, Casali E, Frasnetti E, Doria F, Frigerio F, Cinquini F, Pavoni S, Moroni E, Marchetti F, Serapian SA, Colombo G. Conformational Behavior of SARS-Cov-2 Spike Protein Variants: Evolutionary Jumps in Sequence Reverberate in Structural Dynamic Differences. J Chem Theory Comput 2023; 19:2120-2134. [PMID: 36926878 PMCID: PMC10029694 DOI: 10.1021/acs.jctc.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
SARS-CoV-2 has evolved rapidly in the first 3 years of pandemic diffusion. The initial evolution of the virus appeared to proceed through big jumps in sequence changes rather than through the stepwise accumulation of point mutations on already established variants. Here, we examine whether this nonlinear mutational process reverberates in variations of the conformational dynamics of the SARS-CoV-2 Spike protein (S-protein), the first point of contact between the virus and the human host. We run extensive microsecond-scale molecular dynamics simulations of seven distinct variants of the protein in their fully glycosylated state and set out to elucidate possible links between the mutational spectrum of the S-protein and the structural dynamics of the respective variant, at global and local levels. The results reveal that mutation-dependent structural and dynamic modulations mostly consist of increased coordinated motions in variants that acquire stability and in an increased internal flexibility in variants that are less stable. Importantly, a limited number of functionally important substructures (the receptor binding domain, in particular) share the same time of movements in all variants, indicating efficient preorganization for functional regions dedicated to host interactions. Our results support a model in which the internal dynamics of the S-proteins from different strains varies in a way that reflects the observed random and non-stepwise jumps in sequence evolution, while conserving the functionally oriented traits of conformational dynamics necessary to support productive interactions with host receptors.
Collapse
Affiliation(s)
- Alice Triveri
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Emanuele Casali
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Elena Frasnetti
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Filippo Doria
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D
Eni SpA, via Maritano 27, 20097 San Donato Milanese (Mi),
Italy
| | - Fabrizio Cinquini
- Upstream & Technical
Services—TECS/STES—Eni Spa, via Emilia 1, 20097 San Donato
Milanese (Mi), Italy
| | - Silvia Pavoni
- Department of Physical Chemistry, R&D
Eni SpA, via Maritano 27, 20097 San Donato Milanese (Mi),
Italy
| | | | - Filippo Marchetti
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Stefano A. Serapian
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Giorgio Colombo
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| |
Collapse
|
14
|
Toelzer C, Gupta K, Berger I, Schaffitzel C. Cryo-EM reveals binding of linoleic acid to SARS-CoV-2 spike glycoprotein, suggesting an antiviral treatment strategy. Acta Crystallogr D Struct Biol 2023; 79:111-121. [PMID: 36762857 PMCID: PMC9912919 DOI: 10.1107/s2059798323000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic and concomitant lockdowns presented a global health challenge and triggered unprecedented research efforts to elucidate the molecular mechanisms and pathogenicity of SARS-CoV-2. The spike glycoprotein decorating the surface of SARS-CoV-2 virions is a prime target for vaccine development, antibody therapy and serology as it binds the host cell receptor and is central for viral cell entry. The electron cryo-microscopy structure of the spike protein revealed a hydrophobic pocket in the receptor-binding domain that is occupied by an essential fatty acid, linoleic acid (LA). The LA-bound spike protein adopts a non-infectious locked conformation which is more stable than the infectious form and shields important immunogenic epitopes. Here, the impact of LA binding on viral infectivity and replication, and the evolutionary conservation of the pocket in other highly pathogenic coronaviruses, including SARS-CoV-2 variants of concern (VOCs), are reviewed. The importance of LA metabolic products, the eicosanoids, in regulating the human immune response and inflammation is highlighted. Lipid and fatty-acid binding to a hydrophobic pocket in proteins on the virion surface appears to be a broader strategy employed by viruses, including picornaviruses and Zika virus. Ligand binding stabilizes their protein structure and assembly, and downregulates infectivity. In the case of rhinoviruses, this has been exploited to develop small-molecule antiviral drugs that bind to the hydrophobic pocket. The results suggest a COVID-19 antiviral treatment based on the LA-binding pocket.
Collapse
Affiliation(s)
- Christine Toelzer
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Kapil Gupta
- Imophoron Ltd, St Philips Central, Albert Road, Bristol BS2 0XJ, United Kingdom
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, United Kingdom
- Bristol Synthetic Biology Centre: BrisSynBio, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
15
|
Overduin M, Kervin TA, Tran A. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. iScience 2022; 25:104722. [PMID: 35813872 PMCID: PMC9251956 DOI: 10.1016/j.isci.2022.104722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 12/09/2022] Open
Abstract
Membrane recognition by viral spike proteins is critical for infection. Here we show the host cell membrane-binding surfaces of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike variants Alpha, Beta, Gamma, Delta, Epsilon, Kappa, and Omicron as well as SARS-CoV-1 and pangolin and bat relatives. They show increases in membrane binding propensities over time, with all spike head mutations in variants, and particularly BA.1, impacting the protein's affinity to cell membranes. Comparison of hundreds of structures yields a progressive model of membrane docking in which spike protein trimers shift from initial perpendicular stances to increasingly tilted positions that draw viral particles alongside host cell membranes before optionally engaging angiotensin-converting enzyme 2 (ACE2) receptors. This culminates in the assembly of the symmetric fusion apparatus, with enhanced membrane interactions of variants explaining their unique cell fusion capacities and COVID-19 disease transmission rates.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Zuzic L, Samsudin F, Shivgan AT, Raghuvamsi PV, Marzinek JK, Boags A, Pedebos C, Tulsian NK, Warwicker J, MacAry P, Crispin M, Khalid S, Anand GS, Bond PJ. Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein. Structure 2022; 30:1062-1074.e4. [PMID: 35660160 PMCID: PMC9164293 DOI: 10.1016/j.str.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets. This approach recapitulated lipid and host metabolite binding sites previously characterized by cryo-electron microscopy, revealing likely ligand entry routes, and uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop. A full representation of glycan moieties was essential to accurately describe pocket dynamics. A multi-conformational behavior of the 617-628 loop in simulations was validated using hydrogen-deuterium exchange mass spectrometry experiments, supportive of opening and closing dynamics. The pocket is the site of multiple mutations associated with increased transmissibility found in SARS-CoV-2 variants of concern including Omicron. Collectively, this work highlights the utility of the benzene mapping approach in uncovering potential druggable sites on the surface of SARS-CoV-2 targets.
Collapse
Affiliation(s)
- Lorena Zuzic
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; Department of Chemistry, Faculty of Science and Engineering, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Aishwary T Shivgan
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Palur V Raghuvamsi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Alister Boags
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117546, Singapore
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Paul MacAry
- Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore 117546, Singapore
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
17
|
Tran A, Kervin TA, Overduin M. Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Curr Res Struct Biol 2022; 4:146-157. [PMID: 35602928 PMCID: PMC9109970 DOI: 10.1016/j.crstbi.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 spike protein presents a surface with enormous membrane binding potential to host tissues and organelles of infected cells. Its exposed trimeric head binds not only the angiotensin-converting enzyme 2 (ACE2), but also host phospholipids which are missing from all existing structures. Hence, the membrane interaction surfaces that mediate viral fusion, entry, assembly and egress remain unclear. Here the spike:membrane docking sites are identified based on membrane optimal docking area (MODA) analysis of 3D structures of spike proteins in closed and open conformations at endocytic and neutral pH levels as well as ligand complexes. This reveals multiple membrane binding sites in the closed spike head that together prefer convex membranes and are modulated by pH, fatty acids and post-translational modifications including glycosylation. The exposure of the various membrane interaction sites adjusts upon domain repositioning within the trimer, allowing formation of intermediate bilayer complexes that lead to the prefusion state while also enabling ACE2 receptor recognition. In contrast, all antibodies that target the spike head would block the membrane docking process that precedes ACE2 recognition. Together this illuminates the engagements of the spike protein with plasma, endocytic, ER or exocytic vesicle membranes that help to drive the cycle of viral infection, and offers novel sites for intervention.
Collapse
Affiliation(s)
- Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Zhang M, Wang H, Foster ER, Nikolov ZL, Fernando SD, King MD. Binding behavior of spike protein and receptor binding domain of the SARS-CoV-2 virus at different environmental conditions. Sci Rep 2022; 12:789. [PMID: 35039570 PMCID: PMC8763896 DOI: 10.1038/s41598-021-04673-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of the COVID-19 pandemic that originated in China in December 2019. Although extensive research has been performed on SARS-CoV-2, the binding behavior of spike (S) protein and receptor binding domain (RBD) of SARS-CoV-2 at different environmental conditions have yet to be studied. The objective of this study is to investigate the effect of temperature, fatty acids, ions, and protein concentration on the binding behavior and rates of association and dissociation between the S protein and RBD of SARS-CoV-2 and the hydrophobic aminopropylsilane (APS) biosensors using biolayer interferometry (BLI) validated with molecular dynamics simulation. Our results suggest three conditions-high ionic concentration, presence of hydrophobic fatty acids, and low temperature-favor the attachment of S protein and RBD to hydrophobic surfaces. Increasing the temperature within an hour from 0 to 25 °C results in S protein detachment, suggesting that freezing can cause structural changes in the S protein, affecting its binding kinetics at higher temperature. At all the conditions, RBD exhibits lower dissociation capabilities than the full-length S trimer protein, indicating that the separated RBD formed stronger attachment to hydrophobic surfaces compared to when it was included in the S protein.
Collapse
Affiliation(s)
- Meiyi Zhang
- Department of Biological and Agricultural Engineering, Texas A&M University, 2117 TAMU, College Station, TX, 77843, USA
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, 2117 TAMU, College Station, TX, 77843, USA
| | - Emma R Foster
- Department of Biological and Agricultural Engineering, Texas A&M University, 2117 TAMU, College Station, TX, 77843, USA
| | - Zivko L Nikolov
- Department of Biological and Agricultural Engineering, Texas A&M University, 2117 TAMU, College Station, TX, 77843, USA
| | - Sandun D Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, 2117 TAMU, College Station, TX, 77843, USA
| | - Maria D King
- Department of Biological and Agricultural Engineering, Texas A&M University, 2117 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|