1
|
Huang CY, Wang RC, Hsu TS, Hung TN, Shen MY, Chang CH, Wu HC. Developing an E. coli-Based Cell-Free Protein Synthesis System for Artificial Spidroin Production and Characterization. ACS Synth Biol 2025; 14:1829-1842. [PMID: 40256795 DOI: 10.1021/acssynbio.5c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Spider silk spidroins, nature's advanced polymers, have long hampered efficient in vitro production due to their considerable size, repetitive sequences, and aggregation-prone nature. This study harnesses the power of a cell-free protein synthesis (CFPS) system, presenting the first successful in vitro production and detailed characterization of recombinant spider silk major ampullate spidroins (MaSps) utilizing a reformulated and optimizedEscherichia coli based CFPS system. Through systematic optimization, including cell strain engineering via knockout generation, energy sources, crowding agents, and amino acid supplementation, we effectively addressed the specific challenges associated with recombinant spidroin biosynthesis, resulting in high yields of 0.61 mg/mL for MaSp1 (69 kDa) and 0.52 mg/mL for MaSp2 (73 kDa). The synthesized spidroins self-assembled into micelles, facilitating efficient purification compared to in vivo methods, and were further processed into prototype silk fiber products. The functional characterization demonstrated that the purified spidroins maintain essential natural properties, such as phase separation and fiber formation triggered by pH and ions. This tailored CFPS platform also facilitates versatile cosynthesis and serves as an accessible platform for studying the supramolecular coassembly and dynamic interactions among spidroins. This CFPS platform offers a viable alternative to conventional in vivo methods, facilitating innovative approaches for silk protein engineering and biomaterial development in a high-throughput, efficient manner.
Collapse
Affiliation(s)
- Chang-Yen Huang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Ruei-Chi Wang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Tzy-Shyuan Hsu
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Tzu-Ning Hung
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Ming-Yan Shen
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Chung-Heng Chang
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (ROC)
| |
Collapse
|
2
|
Laverick A, Convey K, Harrison C, Tomlinson J, Stach J, Howard TP. OT-Mation: an open-source code for parsing CSV files into Python scripts for control of OT-2 liquid-handling robotics. Synth Biol (Oxf) 2025; 10:ysaf009. [PMID: 40351370 PMCID: PMC12063526 DOI: 10.1093/synbio/ysaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
OT-Mation is an open-source Python script designed to automate the programming of OT-2 liquid-handling robots, making combinatorial experiments more accessible to researchers. By parsing user-defined CSV files containing information on labware, reagents, pipettes, and experimental design, OT-Mation generates a bespoke Python script compatible with the OT-2 system. OT-Mation enhances reproducibility, reduces human error, and streamlines workflows, making it a valuable addition to any laboratory utilizing OT-2 robotics for liquid handling. While OT-Mation can be used for setting up any type of experiment on the OT-2, its real utility lies in making the connection between multifactorial experimental design software outputs (i.e. design of experiments arrays) and liquid-handling robot executable code. As such, OT-Mation helps bridge the gap between code-based flexibility and user-friendly operation, allowing researchers with limited programming skills to design and execute complex experiments efficiently. Graphical Abstract.
Collapse
Affiliation(s)
- Alex Laverick
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Katherine Convey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Catherine Harrison
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Plant Protection, Fera Science Ltd, York Biotech Campus, York YO41 1LZ, United Kingdoms
| | - Jenny Tomlinson
- Plant Protection, Fera Science Ltd, York Biotech Campus, York YO41 1LZ, United Kingdoms
| | - Jem Stach
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Thomas P Howard
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
3
|
Nour El-Din H, Kettal M, Lam S, Granados Maciel J, Peters DL, Chen W. Cell-free expression system: a promising platform for bacteriophage production and engineering. Microb Cell Fact 2025; 24:42. [PMID: 39962567 PMCID: PMC11834285 DOI: 10.1186/s12934-025-02661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Cell-free expression is a technique used to synthesize proteins without utilising living cells. This technique relies mainly on the cellular machinery -ribosomes, enzymes, and other components - extracted from cells to produce proteins in vitro. Thus far, cell-free expression systems have been used for an array of biologically important purposes, such as studying protein functions and interactions, designing synthetic pathways, and producing novel proteins and enzymes. In this review article, we aim to provide bacteriophage (phage) researchers with an understanding of the cell-free expression process and the potential it holds to accelerate phage production and engineering for phage therapy and other applications. Throughout the review, we summarize the system's main steps and components, both generally and particularly for the self-assembly and engineering of phages and discuss their potential optimization for better protein and phage production. Cell-free expression systems have the potential to serve as a platform for the biosynthetic production of personalized phage therapeutics. This is an area of in vitro biosynthesis that is becoming increasingly attractive, given the current high interest in phages and their promising potential role in the fight against antimicrobial resistant infections.
Collapse
Affiliation(s)
- Hanzada Nour El-Din
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada.
| | - Maryam Kettal
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Serena Lam
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - José Granados Maciel
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Danielle L Peters
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, ON, K1N 5A2, Canada
- Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
4
|
Yadav S, Perkins AJP, Liyanagedera SBW, Bougas A, Laohakunakorn N. ATP Regeneration from Pyruvate in the PURE System. ACS Synth Biol 2025; 14:247-256. [PMID: 39754602 PMCID: PMC11744923 DOI: 10.1021/acssynbio.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP in situ. Successful ATP regeneration requires a high initial concentration of ∼10 mM phosphate buffer, which surprisingly does not affect the protein synthesis activity of PURE. The pathway can function independently or in combination with the existing creatine-based system in PURE; the combined system produces up to 233 μg/mL of mCherry, an enhancement of 78% compared to using the creatine system alone. The results are reproducible across multiple batches of homemade PURE and importantly also generalize to commercial systems such as PURExpress from New England Biolabs. These results demonstrate a rational bottom-up approach to engineering PURE, paving the way for applications in cell-free synthetic biology and synthetic cell construction.
Collapse
Affiliation(s)
- Surendra Yadav
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Alexander J. P. Perkins
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Sahan B. W. Liyanagedera
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Anthony Bougas
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| | - Nadanai Laohakunakorn
- Centre for Engineering Biology,
Institute of Quantitative Biology, Biochemistry and Biotechnology,
School of Biological Sciences, University
of Edinburgh, Edinburgh EH9 3FF, U.K.
| |
Collapse
|
5
|
Kapasiawala M, Murray RM. Metabolic Perturbations to an Escherichia coli-based Cell-Free System Reveal a Trade-off between Transcription and Translation. ACS Synth Biol 2024; 13:3976-3990. [PMID: 39565716 DOI: 10.1021/acssynbio.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cell-free transcription-translation (TX-TL) systems have been used for diverse applications, but their performance and scope are limited by variability and poor predictability. To understand the drivers of this variability, we explored the effects of metabolic perturbations to anEscherichia coli (E. coli) Rosetta2 TX-TL system. We targeted three classes of molecules: energy molecules, in the form of nucleotide triphosphates (NTPs); central carbon "fuel" molecules, which regenerate NTPs; and magnesium ions (Mg2+). Using malachite green mRNA aptamer (MG aptamer) and destabilized enhanced green fluorescent protein (deGFP) as transcriptional and translational readouts, respectively, we report the presence of a trade-off between optimizing total protein yield and optimizing total mRNA yield, as measured by integrating the area under the curve for mRNA time-course dynamics. We found that a system's position along the trade-off curve is strongly determined by Mg2+ concentration, fuel type and concentration, and cell lysate preparation and that variability can be reduced by modulating these components. Our results further suggest that the trade-off arises from limitations in translation regulation and inefficient energy regeneration. This work advances our understanding of the effects of fuel and energy metabolism on TX-TL in cell-free systems and lays a foundation for improving TX-TL performance, lifetime, standardization, and prediction.
Collapse
Affiliation(s)
- Manisha Kapasiawala
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Richard M Murray
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Morini L, Sakai A, Vibhute MA, Koch Z, Voss M, Schoenmakers LLJ, Huck WTS. Leveraging Active Learning to Establish Efficient In Vitro Transcription and Translation from Bacterial Chromosomal DNA. ACS OMEGA 2024; 9:19227-19235. [PMID: 38708277 PMCID: PMC11064174 DOI: 10.1021/acsomega.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Gene expression is a fundamental aspect in the construction of a minimal synthetic cell, and the use of chromosomes will be crucial for the integration and regulation of complex modules. Expression from chromosomes in vitro transcription and translation (IVTT) systems presents limitations, as their large size and low concentration make them far less suitable for standard IVTT reactions. Here, we addressed these challenges by optimizing lysate-based IVTT systems at low template concentrations. We then applied an active learning tool to adapt IVTT to chromosomes as template DNA. Further insights into the dynamic data set led us to adjust the previous protocol for chromosome isolation and revealed unforeseen trends pointing at limiting transcription kinetics in our system. The resulting IVTT conditions allowed a high template DNA efficiency for the chromosomes. In conclusion, our system shows a protein-to-chromosome ratio that moves closer to in vivo biology and represents an advancement toward chromosome-based synthetic cells.
Collapse
Affiliation(s)
- Leonardo Morini
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Andrei Sakai
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Mahesh A. Vibhute
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Zef Koch
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
- HAN
University of Applied Sciences, Nijmegen 6503GL, The Netherlands
| | - Margo Voss
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Ludo L. J. Schoenmakers
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
- Konrad
Lorenz Institute for Evolution and Cognition Research, Klosterneuburg 3400, Austria
| | - Wilhelm T. S. Huck
- Institute
for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
7
|
Multiple Gene Expression in Cell-Free Protein Synthesis Systems for Reconstructing Bacteriophages and Metabolic Pathways. Microorganisms 2022; 10:microorganisms10122477. [PMID: 36557730 PMCID: PMC9786908 DOI: 10.3390/microorganisms10122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
As a fast and reliable technology with applications in diverse biological studies, cell-free protein synthesis has become popular in recent decades. The cell-free protein synthesis system can be considered a complex chemical reaction system that is also open to exogenous manipulation, including that which could otherwise potentially harm the cell's viability. On the other hand, since the technology depends on the cell lysates by which genetic information is transformed into active proteins, the whole system resembles the cell to some extent. These features make cell-free protein synthesis a valuable addition to synthetic biology technologies, expediting the design-build-test-learn cycle of synthetic biology routines. While the system has traditionally been used to synthesize one protein product from one gene addition, recent studies have employed multiple gene products in order to, for example, develop novel bacteriophages, viral particles, or synthetic metabolisms. Thus, we would like to review recent advancements in applying cell-free protein synthesis technology to synthetic biology, with an emphasis on multiple gene expressions.
Collapse
|
8
|
Thornton EL, Paterson SM, Gidden Z, Horrocks MH, Laohakunakorn N, Regan L. Self-Assembling Protein Surfaces for In Situ Capture of Cell-Free-Synthesized Proteins. Front Bioeng Biotechnol 2022; 10:915035. [PMID: 35875503 PMCID: PMC9300835 DOI: 10.3389/fbioe.2022.915035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
We present a new method for the surface capture of proteins in cell-free protein synthesis (CFPS). We demonstrate the spontaneous self-assembly of the protein BslA into functionalizable surfaces on the surface of a CFPS reaction chamber. We show that proteins can be covalently captured by such surfaces, using “Catcher/Tag” technology. Importantly, proteins of interest can be captured either when synthesised in situ by CFPS above the BslA surfaces, or when added as pure protein. The simplicity and cost efficiency of this method suggest that it will find many applications in cell-free-based methods.
Collapse
Affiliation(s)
- Ella Lucille Thornton
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah Maria Paterson
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zoe Gidden
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Nadanai Laohakunakorn
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Nadanai Laohakunakorn, ; Lynne Regan,
| | - Lynne Regan
- Centre for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Nadanai Laohakunakorn, ; Lynne Regan,
| |
Collapse
|