1
|
Zhu L, Wang Y, Wu X, Wu G, Zhang G, Liu C, Zhang S. Protein design accelerates the development and application of optogenetic tools. Comput Struct Biotechnol J 2025; 27:717-732. [PMID: 40092664 PMCID: PMC11908464 DOI: 10.1016/j.csbj.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
Collapse
Affiliation(s)
| | | | - Xiaomin Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohua Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohao Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shaowei Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
2
|
Gu Y, Li H, Deep A, Enustun E, Zhang D, Corbett KD. Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains. Mol Cell 2025; 85:523-536.e6. [PMID: 39742666 PMCID: PMC11805627 DOI: 10.1016/j.molcel.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD). We find that B. cereus Shedu cleaves near DNA ends with a 3' single-stranded overhang, likely enabling it to specifically degrade the DNA injected by certain bacteriophages. Bioinformatic analysis of Shedu homologs reveals a conserved nuclease domain with remarkably diverse N-terminal regulatory domains: we identify 79 distinct NTD types falling into eight broad classes, including those with predicted nucleic acid binding, enzymatic, and other activities. Together, these data reveal Shedu as a broad family of immune nucleases with a common nuclease core regulated by diverse NTDs that likely respond to a range of signals.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Huan Li
- Department of Biology, Saint Louis University, Saint Louis, MO, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eray Enustun
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, MO, USA.
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Yu Y, Jeffreys LN, Poddar H, Hill A, Johannissen L, Dai F, Sakuma M, Leys D, Heyes DJ, Zhang S, Scrutton NS. SignatureFinder enables sequence mining to identify cobalamin-dependent photoreceptor proteins. FEBS J 2025; 292:635-652. [PMID: 39718193 PMCID: PMC11796333 DOI: 10.1111/febs.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
Photoreceptors control cellular processes in response to light. Most photoreceptors sense blue or red light, but the recent discovery of the cobalamin-dependent photoreceptor, CarH, has expanded the wavelength range of photoreception to other regions of the electromagnetic spectrum to include the green light region. Further identification of cobalamin-dependent green light-sensitive photoreceptors has been hampered owing to poor annotation of the light responsiveness of cobalamin-binding domains (CBDs) in public databases. Here we report a computational workflow, SignatureFinder, that uses a combination of sequence and structural analyses to identify new light-responsive CBD-containing proteins. The light response of exemplar proteins containing the proposed signature were confirmed experimentally. A structural analysis of these new photoreceptors, including the crystal structure of a new CBD domain, highlights how the signature elements interact with the cobalamin chromophore to sense light. Database mining of 128 000 CBD-containing sequences using the identified signature revealed more diverse CBD-containing photoreceptors, thereby expanding the family of green-light photoreceptors. A SignatureFinder web server is available (https://enzymeevolver.com) for wider applications, including the identification of signature sequences of other biological ligands of interest.
Collapse
Affiliation(s)
- Yuqi Yu
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
- Present address:
Astra ZenecaCambridgeUK
| | - Laura N. Jeffreys
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Harshwardhan Poddar
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Adam Hill
- Department of ChemistryThe University of ManchesterUK
| | - Linus Johannissen
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Fanzhuo Dai
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Michiyo Sakuma
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - David Leys
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Derren J. Heyes
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Shaowei Zhang
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
- Present address:
Department of Biology and Chemistry, College of SciencesNational University of Defense TechnologyChangshaChina
| | - Nigel S. Scrutton
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| |
Collapse
|
4
|
Megalizzi V, Tanina A, Grosse C, Mirgaux M, Legrand P, Dias Mirandela G, Wohlkönig A, Bifani P, Wintjens R. Domain architecture of the Mycobacterium tuberculosis MabR ( Rv2242), a member of the PucR transcription factor family. Heliyon 2024; 10:e40494. [PMID: 39641026 PMCID: PMC11617747 DOI: 10.1016/j.heliyon.2024.e40494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
MabR (Rv2242), a PucR-type transcription factor, plays a crucial role in regulating mycolic acid biosynthesis in Mycobacterium tuberculosis. To understand its regulatory mechanisms, we determined the crystal structures of its N-terminal and C-terminal domains. The N-terminal domain adopts a globin-like fold, while the C-terminal domain comprises an α/β GGDEF domain and an all-α effector domain with a helix-turn-helix DNA-binding motif. This unique domain combination is specific to Actinomycetes. Biochemical and computational studies suggest that full-length MabR forms both dimeric and tetrameric assemblies in solution. Structural analysis revealed two distinct dimerization interfaces within the N- and C-terminal domains, further supporting a tetrameric organization. These findings provide valuable insights into the domain architecture, oligomeric state, and potential regulatory mechanisms of MabR.
Collapse
Affiliation(s)
- Véronique Megalizzi
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Abdalkarim Tanina
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Camille Grosse
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| | - Manon Mirgaux
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
- Laboratoire de Chimie Biologique Structurale (CBS), Unité de Chimie Physique Théorique et Structurale (UCPTS), Department of Chemistry, Faculty of Sciences, University of Namur, Belgium
- Center of Microscopy and Molecular Imaging (CMMI), Biopark Charleroi, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Gaëtan Dias Mirandela
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Faculty of Sciences, Université Libre de Bruxelles, Belgium
| | - Alexandre Wohlkönig
- Center for Structural Biology, Vlaams Institute voor Biotechnology (VIB), Brussels, Belgium
| | - Pablo Bifani
- A∗STAR Infectious Diseases Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - René Wintjens
- Unit of Microbiology, Bioorganic and Macromolecular Chemistry, Department of Research in Drug Development, Faculty of Pharmacy, Université Libre de Bruxelles, Belgium
| |
Collapse
|
5
|
Fok HKF, Dai X, Yi Q, Che CM, Jiang L, Duan L, Huang J, Yang Z, Sun F. Red-Shifting B 12-Dependent Photoreceptor Protein via Optical Coupling for Inducible Living Materials. Angew Chem Int Ed Engl 2024:e202411105. [PMID: 39239776 DOI: 10.1002/anie.202411105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Cobalamin (B12)-dependent photoreceptors are gaining traction in materials synthetic biology, especially for optically controlling cell-to-cell adhesion in living materials. However, these proteins are mostly responsive to green light, limiting their deep-tissue applications. Here, we present a general strategy for shifting photoresponse of B12-dependent photoreceptor CarHC from green to red/far-red light via optical coupling. Using thiol-maleimide click chemistry, we labeled cysteine-containing CarHC mutants with SulfoCyanine5 (Cy5), a red light-capturing fluorophore. The resulting photoreceptors not only retained the ability to tetramerize in the presence of adenosylcobalamin (AdoB12), but also gained sensitivity to red light; labeled tetramers disassembled on red light exposure. Using genetically encoded click chemistry, we assembled the red-shifted proteins into hydrogels that degraded rapidly in response to red light. Furthermore, Saccharomyces cerevisiae cells were genetically engineered to display CarHC variants, which, alongside in situ Cy5 labeling, led to living materials that could assemble and disassemble in response to AdoB12 and red light, respectively. These results illustrate the CarHC spectrally tuned by optical coupling as a versatile motif for dynamically controlling cell-to-cell interactions within engineered living materials. Given their prevalence and ecological diversity in nature, this spectral tuning method will expand the use of B12-dependent photoreceptors in optogenetics and living materials.
Collapse
Affiliation(s)
- Hong Kiu Francis Fok
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Qikun Yi
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Chi Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, 999077, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518036, China
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Research Institute of Tsinghua Pearl River Delta, Guangzhou, 510530, China
| |
Collapse
|
6
|
Lecomte JTJ, Johnson EA. The globins of cyanobacteria and green algae: An update. Adv Microb Physiol 2024; 85:97-144. [PMID: 39059824 DOI: 10.1016/bs.ampbs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The globin superfamily of proteins is ancient and diverse. Regular assessments based on the increasing number of available genome sequences have elaborated on a complex evolutionary history. In this review, we present a summary of a decade of advances in characterising the globins of cyanobacteria and green algae. The focus is on haem-containing globins with an emphasis on recent experimental developments, which reinforce links to nitrogen metabolism and nitrosative stress response in addition to dioxygen management. Mention is made of globins that do not bind haem to provide an encompassing view of the superfamily and perspective on the field. It is reiterated that an effort toward phenotypical and in-vivo characterisation is needed to elucidate the many roles that these versatile proteins fulfil in oxygenic photosynthetic microbes. It is also proposed that globins from oxygenic organisms are promising proteins for applications in the biotechnology arena.
Collapse
Affiliation(s)
- Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| | - Eric A Johnson
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
Pérez-Castaño R, Aranda J, Widner FJ, Kieninger C, Deery E, Warren MJ, Orozco M, Elías-Arnanz M, Padmanabhan S, Kräutler B. The Rhodium Analogue of Coenzyme B 12 as an Anti-Photoregulatory Ligand Inhibiting Bacterial CarH Photoreceptors. Angew Chem Int Ed Engl 2024; 63:e202401626. [PMID: 38416546 DOI: 10.1002/anie.202401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Coenzyme B12 (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression. Here, we have examined AdoRhbl, the non-natural rhodium analogue of AdoCbl, as a photostable isostructural surrogate for AdoCbl. We show that AdoRhbl closely emulates AdoCbl in its uptake by bacterial cells and structural functionality as a regulatory ligand for CarH tetramerization, DNA binding, and repressor activity. Remarkably, we find AdoRhbl is photostable even when bound "base-off/His-on" to CarH in vitro and in vivo. Thus, AdoRhbl, an antivitamin B12, also represents an unprecedented anti-photoregulatory ligand, opening a pathway to precisely target biomimetic inhibition of AdoCbl-based photoregulation, with new possibilities for selective antibacterial applications. Computational biomolecular analysis of AdoRhbl binding to CarH yields detailed structural insights into this complex, which suggest that the adenosyl group of photoexcited AdoCbl bound to CarH may specifically undergo a concerted non-radical syn-1,2-elimination mechanism, an aspect not previously considered for this photoreceptor.
Collapse
Affiliation(s)
- Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Juan Aranda
- Institute for Research in Biomedicine, IRB Barcelona), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Florian J Widner
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine, IRB Barcelona), Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona (Spain); the Joint BSC-IRB Research Program in Computational Biology, and Department of Biochemistry and Biomedicine, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física Blas Cabrera (IQF-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 119 c/Serrano, 28006, Madrid, Spain
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| |
Collapse
|
8
|
Zhang S, Jeffreys LN, Poddar H, Yu Y, Liu C, Patel K, Johannissen LO, Zhu L, Cliff MJ, Yan C, Schirò G, Weik M, Sakuma M, Levy CW, Leys D, Heyes DJ, Scrutton NS. Photocobilins integrate B 12 and bilin photochemistry for enzyme control. Nat Commun 2024; 15:2740. [PMID: 38548733 PMCID: PMC10979010 DOI: 10.1038/s41467-024-46995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.
Collapse
Affiliation(s)
- Shaowei Zhang
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China.
| | - Laura N Jeffreys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Harshwardhan Poddar
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yuqi Yu
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Kaylee Patel
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Cunyu Yan
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
9
|
Gu Y, Li H, Deep A, Enustun E, Zhang D, Corbett KD. Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552793. [PMID: 37609250 PMCID: PMC10441436 DOI: 10.1101/2023.08.10.552793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Prokaryotes encode diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here we reveal the structural basis for activation of Bacillus cereus Shedu. In the inactive homotetramer, a key catalytic residue in Shedu's nuclease domain is sequestered away from the catalytic site. Activation involves a conformational change that completes the active site and promotes assembly of a homo-octamer for coordinated double-strand DNA cleavage. Removal of Shedu's N-terminal domain ectopically activates the enzyme, suggesting that this domain allosterically inhibits Shedu in the absence of infection. Bioinformatic analysis of nearly 8,000 Shedu homologs reveals remarkable diversity in their N-terminal regulatory domains: we identify 79 domain families falling into eight functional classes, including diverse nucleic acid binding, enzymatic, and other domains. Together, these data reveal Shedu as a broad family of immune nucleases with a common nuclease core regulated by diverse N-terminal domains that likely respond to a range of infection-related signals.
Collapse
Affiliation(s)
- Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Huan Li
- Department of Biology, Saint Louis University, Saint Louis, MO 63103
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
| | - Eray Enustun
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, MO 63103
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla CA 92093
- Department of Molecular Biology, University of California San Diego, La Jolla CA 92093
| |
Collapse
|
10
|
Li H, Schneider T, Tan Y, Zhang D. Ribonuclease T2 represents a distinct circularly permutated version of the BECR RNases. Protein Sci 2023; 32:e4531. [PMID: 36477982 PMCID: PMC9793965 DOI: 10.1002/pro.4531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Detection of homologous relationships among proteins and understanding their mechanisms of diversification are major topics in the fields of protein science, bioinformatics, and phylogenetics. Recent developments in sequence/profile-based and structural similarity-based methods have greatly facilitated the unification and classification of many protein families into superfamilies or folds, yet many proteins remain unclassified in current protein databases. As one of the three earliest identified RNases in biology, ribonuclease T2, also known as RNase I in Escherichia coli, RNase Rh in fungi, or S-RNase in plant, is thought to be an ancient RNase family due to its widespread distribution and distinct structure. In this study, we present evidence that RNase T2 represents a circularly permutated version of the BECR (Barnase-EndoU-Colicin E5/D-RelE) fold RNases. This subtle relationship cannot be detected by traditional methods such as sequence/profile-based comparisons, structure-similarity searches, and circular permutation detections. However, we were able to identify the structural similarity using rational reconstruction of a theoretical RNase T2 ancestor via a reverse circular permutation process, followed by structural modeling using AlphaFold2, and structural comparisons. This relationship is further supported by the fact that RNase T2 and other typical BECR RNases, namely Colicin D, RNase A, and BrnT, share similar catalytic site configurations, all involving an analogous set of conserved residues on the α0 helix and the β4 strand of the BECR fold. This study revealed a hidden root of RNase T2 in bacterial toxin systems and demonstrated that reconstruction and modeling of ancestral topology is an effective strategy to identify remote relationship between proteins.
Collapse
Affiliation(s)
- Huan Li
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Theresa Schneider
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Yongjun Tan
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
| | - Dapeng Zhang
- Department of BiologyCollege of Arts & Sciences, Saint Louis UniversitySaint LouisMissouriUSA
- Program of Bioinformatics and Computational BiologySchool of Science and Engineering, Saint Louis UniversitySaint LouisMissouriUSA
| |
Collapse
|