1
|
Li B, Luo S, Wang W, Xu J, Liu D, Shameem M, Mattila J, Franklin MC, Hawkins PG, Atwal GS. PROPERMAB: an integrative framework for in silico prediction of antibody developability using machine learning. MAbs 2025; 17:2474521. [PMID: 40042626 PMCID: PMC11901398 DOI: 10.1080/19420862.2025.2474521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Selection of lead therapeutic molecules is often driven predominantly by pharmacological efficacy and safety. Candidate developability, such as biophysical properties that affect the formulation of the molecule into a product, is usually evaluated only toward the end of the drug development pipeline. The ability to evaluate developability properties early in the process of antibody therapeutic development could accelerate the timeline from discovery to clinic and save considerable resources. In silico predictive approaches, such as machine learning models, which map molecular features to predictions of developability properties could offer a cost-effective and high-throughput alternative to experiments for antibody developability assessment. We developed a computational framework, PROPERMAB (PROPERties of Monoclonal AntiBodies), for large-scale and efficient in silico prediction of developability properties for monoclonal antibodies, using custom molecular features and machine learning modeling. We demonstrate the power of PROPERMAB by using it to develop models to predict antibody hydrophobic interaction chromatography retention time and high-concentration viscosity. We further show that structure-derived features can be rapidly and accurately predicted directly from sequences by pre-training simple models for molecular features, thus providing the ability to scale these approaches to repertoire-scale sequence datasets.
Collapse
Affiliation(s)
- Bian Li
- Therapeutic Proteins, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Shukun Luo
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Wenhua Wang
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Jiahui Xu
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Dingjiang Liu
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Mohammed Shameem
- Formulation Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - John Mattila
- Preclinical Manufacturing and Process Development, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | | | - Peter G. Hawkins
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Gurinder S. Atwal
- Molecular Profiling and Data Science, Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| |
Collapse
|
2
|
Kalejaye LA, Chu JM, Wu IE, Amofah B, Lee A, Hutchinson M, Chakiath C, Dippel A, Kaplan G, Damschroder M, Stanev V, Pouryahya M, Boroumand M, Caldwell J, Hinton A, Kreitz M, Shah M, Gallegos A, Mody N, Lai PK. Accelerating high-concentration monoclonal antibody development with large-scale viscosity data and ensemble deep learning. MAbs 2025; 17:2483944. [PMID: 40170162 DOI: 10.1080/19420862.2025.2483944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Highly concentrated antibody solutions are necessary for developing subcutaneous injections but often exhibit high viscosities, posing challenges in antibody-drug development, manufacturing, and administration. Previous computational models were only limited to a few dozen data points for training, a bottleneck for generalizability. In this study, we measured the viscosity of a panel of 229 monoclonal antibodies (mAbs) to develop predictive models for high concentration mAb screening. We developed DeepViscosity, consisting of 102 ensemble artificial neural network models to classify low-viscosity (≤20 cP) and high-viscosity (>20 cP) mAbs at 150 mg/mL, using 30 features from a sequence-based DeepSP model. Two independent test sets, comprising 16 and 38 mAbs with known experimental viscosity, were used to assess DeepViscosity's generalizability. The model exhibited an accuracy of 87.5% and 89.5% on both test sets, respectively, surpassing other predictive methods. DeepViscosity will facilitate early-stage antibody development to select low-viscosity antibodies for improved manufacturability and formulation properties, critical for subcutaneous drug delivery. The webserver-based application can be freely accessed via https://devpred.onrender.com/DeepViscosity.
Collapse
Affiliation(s)
- Lateefat A Kalejaye
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jia-Min Chu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA
| | - I-En Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Bismark Amofah
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Amber Lee
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark Hutchinson
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chacko Chakiath
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew Dippel
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Gilad Kaplan
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Valentin Stanev
- Data Science and Modelling, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Maryam Pouryahya
- Data Science and Modelling, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mehdi Boroumand
- Data Science and Modelling, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jenna Caldwell
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Alison Hinton
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Madison Kreitz
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mitali Shah
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Austin Gallegos
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Neil Mody
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Pin-Kuang Lai
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA
| |
Collapse
|
3
|
Matsunaga R, Tsumoto K. Accelerating antibody discovery and optimization with high-throughput experimentation and machine learning. J Biomed Sci 2025; 32:46. [PMID: 40346589 PMCID: PMC12063268 DOI: 10.1186/s12929-025-01141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/23/2025] [Indexed: 05/11/2025] Open
Abstract
The integration of high-throughput experimentation and machine learning is transforming data-driven antibody engineering, revolutionizing the discovery and optimization of antibody therapeutics. These approaches employ extensive datasets comprising antibody sequences, structures, and functional properties to train predictive models that enable rational design. This review highlights the significant advancements in data acquisition and feature extraction, emphasizing the necessity of capturing both sequence and structural information. We illustrate how machine learning models, including protein language models, are used not only to enhance affinity but also to optimize other crucial therapeutic properties, such as specificity, stability, viscosity, and manufacturability. Furthermore, we provide practical examples and case studies to demonstrate how the synergy between experimental and computational approaches accelerates antibody engineering. Finally, this review discusses the remaining challenges in fully realizing the potential of artificial intelligence (AI)-powered antibody discovery pipelines to expedite therapeutic development.
Collapse
Affiliation(s)
- Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
4
|
Dewaker V, Morya VK, Kim YH, Park ST, Kim HS, Koh YH. Revolutionizing oncology: the role of Artificial Intelligence (AI) as an antibody design, and optimization tools. Biomark Res 2025; 13:52. [PMID: 40155973 PMCID: PMC11954232 DOI: 10.1186/s40364-025-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
Antibodies play a crucial role in defending the human body against diseases, including life-threatening conditions like cancer. They mediate immune responses against foreign antigens and, in some cases, self-antigens. Over time, antibody-based technologies have evolved from monoclonal antibodies (mAbs) to chimeric antigen receptor T cells (CAR-T cells), significantly impacting biotechnology, diagnostics, and therapeutics. Although these advancements have enhanced therapeutic interventions, the integration of artificial intelligence (AI) is revolutionizing antibody design and optimization. This review explores recent AI advancements, including large language models (LLMs), diffusion models, and generative AI-based applications, which have transformed antibody discovery by accelerating de novo generation, enhancing immune response precision, and optimizing therapeutic efficacy. Through advanced data analysis, AI enables the prediction and design of antibody sequences, 3D structures, complementarity-determining regions (CDRs), paratopes, epitopes, and antigen-antibody interactions. These AI-powered innovations address longstanding challenges in antibody development, significantly improving speed, specificity, and accuracy in therapeutic design. By integrating computational advancements with biomedical applications, AI is driving next-generation cancer therapies, transforming precision medicine, and enhancing patient outcomes.
Collapse
Affiliation(s)
- Varun Dewaker
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea
| | - Vivek Kumar Morya
- Department of Orthopedic Surgery, Hallym University Dongtan Sacred Hospital, Hwaseong-Si, 18450, Republic of Korea
| | - Yoo Hee Kim
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Seoul, 07247, Republic of Korea
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
- EIONCELL Inc, Chuncheon-Si, 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea.
- Department of Internal Medicine, Division of Hemato-Oncology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, 07441, Republic of Korea.
- EIONCELL Inc, Chuncheon-Si, 24252, Republic of Korea.
| | - Young Ho Koh
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Seoul, 07247, Republic of Korea.
| |
Collapse
|
5
|
Kalejaye L, Wu IE, Terry T, Lai PK. DeepSP: Deep learning-based spatial properties to predict monoclonal antibody stability. Comput Struct Biotechnol J 2024; 23:2220-2229. [PMID: 38827232 PMCID: PMC11140563 DOI: 10.1016/j.csbj.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Therapeutic antibody development faces challenges due to high viscosities and aggregation tendencies. The spatial charge map (SCM) and spatial aggregation propensity (SAP) are computational techniques that aid in predicting viscosity and aggregation, respectively. These methods rely on structural data derived from molecular dynamics (MD) simulations, which are computationally demanding. DeepSCM, a deep learning surrogate model based on sequence information to predict SCM, was recently developed to screen high-concentration antibody viscosity. This study further utilized a dataset of 20,530 antibody sequences to train a convolutional neural network deep learning surrogate model called Deep Spatial Properties (DeepSP). DeepSP directly predicts SAP and SCM scores in different domains of antibody variable regions based solely on their sequences without performing MD simulations. The linear correlation coefficient between DeepSP scores and MD-derived scores for 30 properties achieved values between 0.76 and 0.96 with an average of 0.87. DeepSP descriptors were employed as features to build machine learning models to predict the aggregation rate of 21 antibodies, and the performance is similar to the results obtained from the previous study using MD simulations. This result demonstrates that the DeepSP approach significantly reduces the computational time required compared to MD simulations. The DeepSP model enables the rapid generation of 30 structural properties that can also be used as features in other research to train machine learning models for predicting various antibody stability using sequences only. DeepSP is freely available as an online tool via https://deepspwebapp.onrender.com and the codes and parameters are freely available at https://github.com/Lailabcode/DeepSP.
Collapse
Affiliation(s)
- Lateefat Kalejaye
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - I-En Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - Taylor Terry
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - Pin-Kuang Lai
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| |
Collapse
|
6
|
Armstrong GB, Shah V, Sanches P, Patel M, Casey R, Jamieson C, Burley GA, Lewis W, Rattray Z. A framework for the biophysical screening of antibody mutations targeting solvent-accessible hydrophobic and electrostatic patches for enhanced viscosity profiles. Comput Struct Biotechnol J 2024; 23:2345-2357. [PMID: 38867721 PMCID: PMC11167247 DOI: 10.1016/j.csbj.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The formulation of high-concentration monoclonal antibody (mAb) solutions in low dose volumes for autoinjector devices poses challenges in manufacturability and patient administration due to elevated solution viscosity. Often many therapeutically potent mAbs are discovered, but their commercial development is stalled by unfavourable developability challenges. In this work, we present a systematic experimental framework for the computational screening of molecular descriptors to guide the design of 24 mutants with modified viscosity profiles accompanied by experimental evaluation. Our experimental observations using a model anti-IL8 mAb and eight engineered mutant variants reveal that viscosity reduction is influenced by the location of hydrophobic interactions, while targeting positively charged patches significantly increases viscosity in comparison to wild-type anti-IL-8 mAb. We conclude that most predicted in silico physicochemical properties exhibit poor correlation with measured experimental parameters for antibodies with suboptimal developability characteristics, emphasizing the need for comprehensive case-by-case evaluation of mAbs. This framework combining molecular design and triage via computational predictions with experimental evaluation aids the agile and rational design of mAbs with tailored solution viscosities, ensuring improved manufacturability and patient convenience in self-administration scenarios.
Collapse
Affiliation(s)
- Georgina B. Armstrong
- Drug Substance Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Vidhi Shah
- Large Molecule Discovery, GlaxoSmithKline, Gunnels Wood Road, Stevenage, UK
| | - Paula Sanches
- Drug Substance Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, UK
| | - Mitul Patel
- Drug Substance Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, UK
| | - Ricky Casey
- Drug Substance Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - William Lewis
- Drug Substance Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, UK
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
7
|
D’Orsi L, Capasso B, Lamacchia G, Pizzichini P, Ferranti S, Liverani A, Fontana C, Panunzi S, De Gaetano A, Lo Presti E. Recent Advances in Artificial Intelligence to Improve Immunotherapy and the Use of Digital Twins to Identify Prognosis of Patients with Solid Tumors. Int J Mol Sci 2024; 25:11588. [PMID: 39519142 PMCID: PMC11546512 DOI: 10.3390/ijms252111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
To date, the public health system has been impacted by the increasing costs of many diagnostic and therapeutic pathways due to limited resources. At the same time, we are constantly seeking to improve these paths through approaches aimed at personalized medicine. To achieve the required levels of diagnostic and therapeutic precision, it is necessary to integrate data from different sources and simulation platforms. Today, artificial intelligence (AI), machine learning (ML), and predictive computer models are more efficient at guiding decisions regarding better therapies and medical procedures. The evolution of these multiparametric and multimodal systems has led to the creation of digital twins (DTs). The goal of our review is to summarize AI applications in discovering new immunotherapies and developing predictive models for more precise immunotherapeutic decision-making. The findings from this literature review highlight that DTs, particularly predictive mathematical models, will be pivotal in advancing healthcare outcomes. Over time, DTs will indeed bring the benefits of diagnostic precision and personalized treatment to a broader spectrum of patients.
Collapse
Affiliation(s)
- Laura D’Orsi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Biagio Capasso
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Giuseppe Lamacchia
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Paolo Pizzichini
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Sergio Ferranti
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Andrea Liverani
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Costantino Fontana
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Simona Panunzi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Andrea De Gaetano
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
- Department of Biomatics, Óbuda University, Bécsi Road 96/B, H-1034 Budapest, Hungary
| | - Elena Lo Presti
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
| |
Collapse
|
8
|
Harrison MC, Lai PK. Investigating the Mechanisms of Antibody Binding to Alpha-Synuclein for the Treatment of Parkinson's Disease. Mol Pharm 2024; 21:5326-5334. [PMID: 39251364 DOI: 10.1021/acs.molpharmaceut.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Parkinson's disease (PD) is an idiopathic neurodegenerative disorder with the second-highest prevalence rate behind Alzheimer's disease. The pathophysiological hallmarks of PD are both degeneration of dopaminergic neurons in the substantia nigra pars compacta and the inclusion of misfolded α-synuclein (α-syn) aggregates known as Lewy bodies. Despite decades of research for potential PD treatments, none have been developed, and developing new therapeutic agents is a time-consuming and expensive process. Computational methods can be used to investigate the properties of drug candidates currently undergoing clinical trials to determine their theoretical efficiency at targeting α-syn. Monoclonal antibodies (mAbs) are biological drugs with high specificity, and Prasinezumab (PRX002) is an mAb currently in Phase II, which targets the C-terminus (AA 118-126) of α-syn. We utilized BioLuminate and PyMol for the structure prediction and preparation of the fragment antigen-binding (Fab) region of PRX002 and 34 different conformations of α-syn. Protein-protein docking simulations were performed using PIPER, and 3 of the docking poses were selected based on the best fit. Molecular dynamics simulations were conducted on the docked protein structures in triplicate for 1000 ns, and hydrogen bonds and electrostatic and hydrophobic interactions were analyzed using MDAnalysis to determine which residues were interacting and how often. Hydrogen bonds were shown to form frequently between the HCDR2 region of PRX002 and α-syn. Free energy was calculated to determine the binding affinity. The predicted binding affinity shows a strong antibody-antigen attraction between PRX002 and α-syn. RMSD was calculated to determine the conformational change of these regions throughout the simulation. The mAb's developability was determined using computational screening methods. Our results demonstrate the efficiency and developability of this therapeutic agent.
Collapse
Affiliation(s)
- Malcolm C Harrison
- Department of Biology and Chemistry, County College of Morris, 214 Center Grove Rd, Randolph, New Jersey 07869, United States
| | - Pin-Kuang Lai
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
9
|
Li W, Lin H, Huang Z, Xie S, Zhou Y, Gong R, Jiang Q, Xiang C, Huang J. DOTAD: A Database of Therapeutic Antibody Developability. Interdiscip Sci 2024; 16:623-634. [PMID: 38530613 DOI: 10.1007/s12539-024-00613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/28/2024]
Abstract
The development of therapeutic antibodies is an important aspect of new drug discovery pipelines. The assessment of an antibody's developability-its suitability for large-scale production and therapeutic use-is a particularly important step in this process. Given that experimental assays to assess antibody developability in large scale are expensive and time-consuming, computational methods have been a more efficient alternative. However, the antibody research community faces significant challenges due to the scarcity of readily accessible data on antibody developability, which is essential for training and validating computational models. To address this gap, DOTAD (Database Of Therapeutic Antibody Developability) has been built as the first database dedicated exclusively to the curation of therapeutic antibody developability information. DOTAD aggregates all available therapeutic antibody sequence data along with various developability metrics from the scientific literature, offering researchers a robust platform for data storage, retrieval, exploration, and downloading. In addition to serving as a comprehensive repository, DOTAD enhances its utility by integrating a web-based interface that features state-of-the-art tools for the assessment of antibody developability. This ensures that users not only have access to critical data but also have the convenience of analyzing and interpreting this information. The DOTAD database represents a valuable resource for the scientific community, facilitating the advancement of therapeutic antibody research. It is freely accessible at http://i.uestc.edu.cn/DOTAD/ , providing an open data platform that supports the continuous growth and evolution of computational methods in the field of antibody development.
Collapse
Affiliation(s)
- Wenzhen Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hongyan Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ziru Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shiyang Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Gong
- School of Computer Science and Technology, Aba Teachers University, Aba, 623002, China
| | - Qianhu Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - ChangCheng Xiang
- School of Computer Science and Technology, Aba Teachers University, Aba, 623002, China.
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, 611844, China.
| |
Collapse
|
10
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
11
|
Phillips A, Srinivas A, Prentoska I, O'Dea M, Kustrup M, Hurley S, Bruno S, Nguyen V, Lai PK. Teaching biologics design using molecular modeling and simulations. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:299-310. [PMID: 38197506 DOI: 10.1002/bmb.21813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/30/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Teaching chemistry and biology students about biologics design remains challenging despite its increasing importance in pharmaceutical development. Monoclonal antibodies, commonly called mAbs, are the most popular biologics. They have been developed into drugs to treat various diseases in the past decades. Multiple challenges exist for designing proper formulations to stabilize mAbs, such as preventing aggregation and mitigating viscosity. Molecular modeling and simulations can improve pharmaceutical products by examining the interactions between mAbs and other compounds, such as excipients. To introduce students to biopharmaceuticals, eight students at the Stevens Institute of Technology participated in a semester-long course to learn the challenges of pharmaceutical development and different computational skills to study biologics design. The students started with a limited background in this field. Throughout one semester, they were introduced to various literature and software tools for modeling antibodies and studying their interactions with excipients. This paper aims to develop a course structure to be replicated at other universities and institutions to teach biopharmaceutical development to students.
Collapse
Affiliation(s)
- Andrew Phillips
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Anusha Srinivas
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Ilina Prentoska
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Margaret O'Dea
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Matthew Kustrup
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Sarah Hurley
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Savannah Bruno
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Vy Nguyen
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Pin-Kuang Lai
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey, USA
| |
Collapse
|
12
|
Hao X, Fan L. ProtT5 and random forests-based viscosity prediction method for therapeutic mAbs. Eur J Pharm Sci 2024; 194:106705. [PMID: 38246432 DOI: 10.1016/j.ejps.2024.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Viscosity is a key characteristic of therapeutic antibodies for subcutaneous administration which requires low volume and high concentration formulations. It would be highly beneficial to accurately predict the viscosity of newly developed therapeutic antibodies in the early stages of development. In this work, a ProtT5-XL-UniRef50 (ProtT5) and Random Forests (RF)-based prediction method was proposed for accurately predicting the viscosity of monoclonal antibodies, with only corresponding sequences needed. Starting from the given heavy and light chain V-region sequences, corresponding features were first extracted from the ProtT5 pretrained model. Kernel principal analysis (Kernel-PCA) was then used for reducing the extracted 2048-D (1024-D for each sequence) feature vector to a reasonable level for efficient training of the RF-regressor. Then, the RF model was constructed on 40 commercially available therapeutic antibodies and tested with 3-folds cross-validation. Test results show that the model could reproduce the viscosity value at a high level (Pearson correlation coefficient (PCC) = 0.928). Performance on classifying high (>30 cP) and low (<30 cP) viscosity is much more satisfactory, the Accuracy (ACC) and the area under precision-recall curve (AUC) of the classification model from validation tests are 0.975 and 1.000, respectively. Compared to 5 existing state-of-the-art viscosity prediction methods, the proposed method performs best which would facilitate high concentration antibody viscosity high-throughput screening.
Collapse
Affiliation(s)
- Xiaohu Hao
- Production and R&D Center I of LSS (Life Science Service), GenScript Biotech Corporation, No. 28, Yongxi Rd., Nanjing, 211110, Jiangsu, China
| | - Long Fan
- Production and R&D Center I of LSS (Life Science Service), GenScript Biotech Corporation, No. 28, Yongxi Rd., Nanjing, 211110, Jiangsu, China; Production and R&D Center I of LSS (Life Science Service), GenScript (Shanghai) Biotech Corporation, No. 186, Hedan Rd., Shanghai, 200100, China.
| |
Collapse
|
13
|
Armstrong GB, Roche A, Lewis W, Rattray Z. Reconciling predicted and measured viscosity parameters in high concentration therapeutic antibody solutions. MAbs 2024; 16:2438172. [PMID: 39663541 PMCID: PMC11790245 DOI: 10.1080/19420862.2024.2438172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
Monoclonal antibody (mAb) solution viscosity in ultra-high concentration formulations is a key developability consideration in mAb development risk mitigation strategies that has implications for downstream processing and patient safety. Predicting viscosity at therapeutically relevant concentrations remains critical, despite the need for large mAb quantities for viscosity measurement being prohibitive. Using a panel of IgG1s, we examined the suitability of viscosity prediction and fitting models at different mAb test concentration regimes. Our findings caution against extrapolation from low concentration measurements, as they lack predictive ability for ultra-high concentration regimes. For the first time, we demonstrate the importance of analyte concentration range selection, and the need for bespoke viscosity model development.
Collapse
Affiliation(s)
- Georgina Bethany Armstrong
- Drug Substance Development, GlaxoSmithKline, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Aisling Roche
- Large Molecule Discovery, GlaxoSmithKline, Stevenage, UK
| | - William Lewis
- Drug Substance Development, GlaxoSmithKline, Stevenage, UK
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
14
|
Parthiban S, Vijeesh T, Gayathri T, Shanmugaraj B, Sharma A, Sathishkumar R. Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2023; 14:1252166. [PMID: 38034587 PMCID: PMC10684705 DOI: 10.3389/fpls.2023.1252166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Recombinant biopharmaceuticals including antigens, antibodies, hormones, cytokines, single-chain variable fragments, and peptides have been used as vaccines, diagnostics and therapeutics. Plant molecular pharming is a robust platform that uses plants as an expression system to produce simple and complex recombinant biopharmaceuticals on a large scale. Plant system has several advantages over other host systems such as humanized expression, glycosylation, scalability, reduced risk of human or animal pathogenic contaminants, rapid and cost-effective production. Despite many advantages, the expression of recombinant proteins in plant system is hindered by some factors such as non-human post-translational modifications, protein misfolding, conformation changes and instability. Artificial intelligence (AI) plays a vital role in various fields of biotechnology and in the aspect of plant molecular pharming, a significant increase in yield and stability can be achieved with the intervention of AI-based multi-approach to overcome the hindrance factors. Current limitations of plant-based recombinant biopharmaceutical production can be circumvented with the aid of synthetic biology tools and AI algorithms in plant-based glycan engineering for protein folding, stability, viability, catalytic activity and organelle targeting. The AI models, including but not limited to, neural network, support vector machines, linear regression, Gaussian process and regressor ensemble, work by predicting the training and experimental data sets to design and validate the protein structures thereby optimizing properties such as thermostability, catalytic activity, antibody affinity, and protein folding. This review focuses on, integrating systems engineering approaches and AI-based machine learning and deep learning algorithms in protein engineering and host engineering to augment protein production in plant systems to meet the ever-expanding therapeutics market.
Collapse
Affiliation(s)
- Subramanian Parthiban
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thandarvalli Vijeesh
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thashanamoorthi Gayathri
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Balamurugan Shanmugaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
15
|
Bauer J, Rajagopal N, Gupta P, Gupta P, Nixon AE, Kumar S. How can we discover developable antibody-based biotherapeutics? Front Mol Biosci 2023; 10:1221626. [PMID: 37609373 PMCID: PMC10441133 DOI: 10.3389/fmolb.2023.1221626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Antibody-based biotherapeutics have emerged as a successful class of pharmaceuticals despite significant challenges and risks to their discovery and development. This review discusses the most frequently encountered hurdles in the research and development (R&D) of antibody-based biotherapeutics and proposes a conceptual framework called biopharmaceutical informatics. Our vision advocates for the syncretic use of computation and experimentation at every stage of biologic drug discovery, considering developability (manufacturability, safety, efficacy, and pharmacology) of potential drug candidates from the earliest stages of the drug discovery phase. The computational advances in recent years allow for more precise formulation of disease concepts, rapid identification, and validation of targets suitable for therapeutic intervention and discovery of potential biotherapeutics that can agonize or antagonize them. Furthermore, computational methods for de novo and epitope-specific antibody design are increasingly being developed, opening novel computationally driven opportunities for biologic drug discovery. Here, we review the opportunities and limitations of emerging computational approaches for optimizing antigens to generate robust immune responses, in silico generation of antibody sequences, discovery of potential antibody binders through virtual screening, assessment of hits, identification of lead drug candidates and their affinity maturation, and optimization for developability. The adoption of biopharmaceutical informatics across all aspects of drug discovery and development cycles should help bring affordable and effective biotherapeutics to patients more quickly.
Collapse
Affiliation(s)
- Joschka Bauer
- Early Stage Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
| | - Nandhini Rajagopal
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Priyanka Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Pankaj Gupta
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Andrew E. Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| | - Sandeep Kumar
- In Silico Team, Boehringer Ingelheim, Hannover, Germany
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States
| |
Collapse
|
16
|
Chen Z, Wang X, Chen X, Huang J, Wang C, Wang J, Wang Z. Accelerating therapeutic protein design with computational approaches toward the clinical stage. Comput Struct Biotechnol J 2023; 21:2909-2926. [PMID: 38213894 PMCID: PMC10781723 DOI: 10.1016/j.csbj.2023.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 01/13/2024] Open
Abstract
Therapeutic protein, represented by antibodies, is of increasing interest in human medicine. However, clinical translation of therapeutic protein is still largely hindered by different aspects of developability, including affinity and selectivity, stability and aggregation prevention, solubility and viscosity reduction, and deimmunization. Conventional optimization of the developability with widely used methods, like display technologies and library screening approaches, is a time and cost-intensive endeavor, and the efficiency in finding suitable solutions is still not enough to meet clinical needs. In recent years, the accelerated advancement of computational methodologies has ushered in a transformative era in the field of therapeutic protein design. Owing to their remarkable capabilities in feature extraction and modeling, the integration of cutting-edge computational strategies with conventional techniques presents a promising avenue to accelerate the progression of therapeutic protein design and optimization toward clinical implementation. Here, we compared the differences between therapeutic protein and small molecules in developability and provided an overview of the computational approaches applicable to the design or optimization of therapeutic protein in several developability issues.
Collapse
Affiliation(s)
- Zhidong Chen
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Juyang Huang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd, Shenzhen 518107, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
17
|
Li T, Li Y, Zhu X, He Y, Wu Y, Ying T, Xie Z. Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Semin Cancer Biol 2023; 91:50-69. [PMID: 36870459 DOI: 10.1016/j.semcancer.2023.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Cancer immunotherapy is a method of controlling and eliminating tumors by reactivating the body's cancer-immunity cycle and restoring its antitumor immune response. The increased availability of data, combined with advancements in high-performance computing and innovative artificial intelligence (AI) technology, has resulted in a rise in the use of AI in oncology research. State-of-the-art AI models for functional classification and prediction in immunotherapy research are increasingly used to support laboratory-based experiments. This review offers a glimpse of the current AI applications in immunotherapy, including neoantigen recognition, antibody design, and prediction of immunotherapy response. Advancing in this direction will result in more robust predictive models for developing better targets, drugs, and treatments, and these advancements will eventually make their way into the clinical setting, pushing AI forward in the field of precision oncology.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yupeng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Zhu
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China
| | - Yao He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, China.
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Schmitt J, Razvi A, Grapentin C. Predictive modeling of concentration-dependent viscosity behavior of monoclonal antibody solutions using artificial neural networks. MAbs 2023; 15:2169440. [PMID: 36705325 PMCID: PMC9888472 DOI: 10.1080/19420862.2023.2169440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Solutions of monoclonal antibodies (mAbs) can show increased viscosity at high concentration, which can be a disadvantage during protein purification, filling, and administration. The viscosity is determined by protein-protein-interactions, which are influenced by the antibody's sequence as well as solution conditions, like pH, buffer type, or the presence of salts and other excipients. To predict viscosity, experimental parameters, like the diffusion interaction parameter (kD), or computational tools harnessing information derived from primary sequence, are often used, but a reliable predictive tool is still missing. We present a modeling approach employing artificial neural networks (ANNs) using experimental factors combined with simulation-derived parameters plus viscosity data from 27 highly concentrated (180 mg/mL) mAbs. These ANNs can be used to predict if mAbs exhibit problematic viscosity at distinct concentrations or to model viscosity-concentration-curves.
Collapse
Affiliation(s)
| | - Abbas Razvi
- Lonza AG/Ltd, Drug Product Services, Basel, Switzerland
| | - Christoph Grapentin
- Lonza AG/Ltd, Drug Product Services, Basel, Switzerland,CONTACT Christoph Grapentin
| |
Collapse
|