1
|
Lu H, Xiao L, Liao W, Yan X, Nielsen J. Cell factory design with advanced metabolic modelling empowered by artificial intelligence. Metab Eng 2024; 85:61-72. [PMID: 39038602 DOI: 10.1016/j.ymben.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
Advances in synthetic biology and artificial intelligence (AI) have provided new opportunities for modern biotechnology. High-performance cell factories, the backbone of industrial biotechnology, are ultimately responsible for determining whether a bio-based product succeeds or fails in the fierce competition with petroleum-based products. To date, one of the greatest challenges in synthetic biology is the creation of high-performance cell factories in a consistent and efficient manner. As so-called white-box models, numerous metabolic network models have been developed and used in computational strain design. Moreover, great progress has been made in AI-powered strain engineering in recent years. Both approaches have advantages and disadvantages. Therefore, the deep integration of AI with metabolic models is crucial for the construction of superior cell factories with higher titres, yields and production rates. The detailed applications of the latest advanced metabolic models and AI in computational strain design are summarized in this review. Additionally, approaches for the deep integration of AI and metabolic models are discussed. It is anticipated that advanced mechanistic metabolic models powered by AI will pave the way for the efficient construction of powerful industrial chassis strains in the coming years.
Collapse
Affiliation(s)
- Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Luchi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wenbin Liao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xuefeng Yan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jens Nielsen
- BioInnovation Institute, Ole Måløes Vej, DK2200, Copenhagen N, Denmark; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE412 96, Gothenburg, Sweden.
| |
Collapse
|
2
|
Bae SH, Sim MS, Jeong KJ, He D, Kwon I, Kim TW, Kim HU, Choi JI. Intracellular Flux Prediction of Recombinant Escherichia coli Producing Gamma-Aminobutyric Acid. J Microbiol Biotechnol 2024; 34:978-984. [PMID: 38379308 DOI: 10.4014/jmb.2312.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.
Collapse
Affiliation(s)
- Sung Han Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myung Sub Sim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dan He
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, China
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tae Wan Kim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
3
|
Lee G, Lee SM, Lee S, Jeong CW, Song H, Lee SY, Yun H, Koh Y, Kim HU. Prediction of metabolites associated with somatic mutations in cancers by using genome-scale metabolic models and mutation data. Genome Biol 2024; 25:66. [PMID: 38468344 PMCID: PMC11290261 DOI: 10.1186/s13059-024-03208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Oncometabolites, often generated as a result of a gene mutation, show pro-oncogenic function when abnormally accumulated in cancer cells. Identification of such mutation-associated metabolites will facilitate developing treatment strategies for cancers, but is challenging due to the large number of metabolites in a cell and the presence of multiple genes associated with cancer development. RESULTS Here we report the development of a computational workflow that predicts metabolite-gene-pathway sets. Metabolite-gene-pathway sets present metabolites and metabolic pathways significantly associated with specific somatic mutations in cancers. The computational workflow uses both cancer patient-specific genome-scale metabolic models (GEMs) and mutation data to generate metabolite-gene-pathway sets. A GEM is a computational model that predicts reaction fluxes at a genome scale and can be constructed in a cell-specific manner by using omics data. The computational workflow is first validated by comparing the resulting metabolite-gene pairs with multi-omics data (i.e., mutation data, RNA-seq data, and metabolome data) from acute myeloid leukemia and renal cell carcinoma samples collected in this study. The computational workflow is further validated by evaluating the metabolite-gene-pathway sets predicted for 18 cancer types, by using RNA-seq data publicly available, in comparison with the reported studies. Therapeutic potential of the resulting metabolite-gene-pathway sets is also discussed. CONCLUSIONS Validation of the metabolite-gene-pathway set-predicting computational workflow indicates that a decent number of metabolites and metabolic pathways appear to be significantly associated with specific somatic mutations. The computational workflow and the resulting metabolite-gene-pathway sets will help identify novel oncometabolites and also suggest cancer treatment strategies.
Collapse
Affiliation(s)
- GaRyoung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Mi Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, and Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyojin Song
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, BioProcess Engineering Research Center, and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, BioProcess Engineering Research Center, and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Occhipinti A, Verma S, Doan LMT, Angione C. Mechanism-aware and multimodal AI: beyond model-agnostic interpretation. Trends Cell Biol 2024; 34:85-89. [PMID: 38087709 DOI: 10.1016/j.tcb.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/04/2024]
Abstract
Artificial intelligence (AI) is widely used for exploiting multimodal biomedical data, with increasingly accurate predictions and model-agnostic interpretations, which are however also agnostic to biological mechanisms. Combining metabolic modelling, 'omics, and imaging data via multimodal AI can generate predictions that can be interpreted mechanistically and transparently, therefore with significantly higher therapeutic potential.
Collapse
Affiliation(s)
- Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesborough, UK; Centre for Digital Innovation, Teesside University, Middlesborough, UK; National Horizons Centre, Teesside University, Darlington, UK
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesborough, UK
| | - Le Minh Thao Doan
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesborough, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesborough, UK; Centre for Digital Innovation, Teesside University, Middlesborough, UK; National Horizons Centre, Teesside University, Darlington, UK.
| |
Collapse
|
5
|
Karlsen ST, Rau MH, Sánchez BJ, Jensen K, Zeidan AA. From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry. FEMS Microbiol Rev 2023; 47:fuad030. [PMID: 37286882 PMCID: PMC10337747 DOI: 10.1093/femsre/fuad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.
Collapse
Affiliation(s)
- Signe T Karlsen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Martin H Rau
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Benjamín J Sánchez
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Kristian Jensen
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| | - Ahmad A Zeidan
- Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, Bøge Allé 10-12, 2970 Hørsholm, Denmark
| |
Collapse
|
6
|
Molversmyr H, Øyås O, Rotnes F, Vik JO. Extracting functionally accurate context-specific models of Atlantic salmon metabolism. NPJ Syst Biol Appl 2023; 9:19. [PMID: 37244928 DOI: 10.1038/s41540-023-00280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023] Open
Abstract
Constraint-based models (CBMs) are used to study metabolic network structure and function in organisms ranging from microbes to multicellular eukaryotes. Published CBMs are usually generic rather than context-specific, meaning that they do not capture differences in reaction activities, which, in turn, determine metabolic capabilities, between cell types, tissues, environments, or other conditions. Only a subset of a CBM's metabolic reactions and capabilities are likely to be active in any given context, and several methods have therefore been developed to extract context-specific models from generic CBMs through integration of omics data. We tested the ability of six model extraction methods (MEMs) to create functionally accurate context-specific models of Atlantic salmon using a generic CBM (SALARECON) and liver transcriptomics data from contexts differing in water salinity (life stage) and dietary lipids. Three MEMs (iMAT, INIT, and GIMME) outperformed the others in terms of functional accuracy, which we defined as the extracted models' ability to perform context-specific metabolic tasks inferred directly from the data, and one MEM (GIMME) was faster than the others. Context-specific versions of SALARECON consistently outperformed the generic version, showing that context-specific modeling better captures salmon metabolism. Thus, we demonstrate that results from human studies also hold for a non-mammalian animal and major livestock species.
Collapse
Affiliation(s)
- Håvard Molversmyr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ove Øyås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Filip Rotnes
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
7
|
Lee G, Lee SM, Kim HU. A contribution of metabolic engineering to addressing medical problems: Metabolic flux analysis. Metab Eng 2023; 77:283-293. [PMID: 37075858 DOI: 10.1016/j.ymben.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Metabolic engineering has served as a systematic discipline for industrial biotechnology as it has offered systematic tools and methods for strain development and bioprocess optimization. Because these metabolic engineering tools and methods are concerned with the biological network of a cell with emphasis on metabolic network, they have also been applied to a range of medical problems where better understanding of metabolism has also been perceived to be important. Metabolic flux analysis (MFA) is a unique systematic approach initially developed in the metabolic engineering community, and has proved its usefulness and potential when addressing a range of medical problems. In this regard, this review discusses the contribution of MFA to addressing medical problems. For this, we i) provide overview of the milestones of MFA, ii) define two main branches of MFA, namely constraint-based reconstruction and analysis (COBRA) and isotope-based MFA (iMFA), and iii) present successful examples of their medical applications, including characterizing the metabolism of diseased cells and pathogens, and identifying effective drug targets. Finally, synergistic interactions between metabolic engineering and biomedical sciences are discussed with respect to MFA.
Collapse
Affiliation(s)
- GaRyoung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Mi Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Context-Specific Genome-Scale Metabolic Modelling and Its Application to the Analysis of COVID-19 Metabolic Signatures. Metabolites 2023; 13:metabo13010126. [PMID: 36677051 PMCID: PMC9866716 DOI: 10.3390/metabo13010126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Genome-scale metabolic models (GEMs) have found numerous applications in different domains, ranging from biotechnology to systems medicine. Herein, we overview the most popular algorithms for the automated reconstruction of context-specific GEMs using high-throughput experimental data. Moreover, we describe different datasets applied in the process, and protocols that can be used to further automate the model reconstruction and validation. Finally, we describe recent COVID-19 applications of context-specific GEMs, focusing on the analysis of metabolic implications, identification of biomarkers and potential drug targets.
Collapse
|