1
|
Li H, Zhang R, Xie H, Zhou Y, Wang X. Key Amino Acids in RNA Polymerase and Helicase Proteins Regulate RNA Synthesis Efficiency in Porcine Reproductive and Respiratory Syndrome Virus. J Biol Chem 2025:110247. [PMID: 40383149 DOI: 10.1016/j.jbc.2025.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) exhibits rapid evolution due to its high mutation rate and frequent recombination, posing significant challenges for disease control. In this study, we investigated the molecular mechanisms underlying strain-specific variations in PRRSV replication phenotypes. Using reverse genetics and molecular biology approaches, we established a non-infectious replicon model that simulates PRRSV genomic replication and subgenomic (sg) mRNA transcription at the cellular level. This model enabled the evaluation of regulatory effects of viral non-structural proteins (nsps) and transcription-regulating sequences (TRSs) on viral replication and transcription, revealing the crucial roles of nsp9 and nsp12 in RNA synthesis. Furthermore, we developed a subgenomic replicon system (sg-Rep-PRRSV) driven by a minimal replication-transcription complex (mini-RTC) to investigate the impact of specific mutations in PRRSV replicase-associated proteins on viral RNA synthesis efficiency. Our findings demonstrated that mini-RTC components derived from XM-2020 exhibited significantly higher transcriptional driving efficiency compared to those from GD strain (p < 0.01). Site-directed mutagenesis analysis identified critical amino acid residues contributing to differential RNA synthesis efficiency between strains: E141N, N416H, and S591A in nsp9, and S51D, L57T, and K349E in nsp10. These adaptive mutations likely modulate the catalytic conformations of RNA-dependent RNA polymerase (RdRp) and helicase, ultimately contributing to the distinct replication phenotypes observed among PRRSV strains. Our findings provide an insight into the molecular mechanisms underlying PRRSV evolution and adaptation, which have significant implications for mitigating future PRRS outbreak risks and maintaining sustainable development of the swine industry.
Collapse
Affiliation(s)
- Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Honglin Xie
- School of Life Science and Engineering, Foshan University, Guangdong 528225, P. R. China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 210000, Jiangsu, China.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Neilsen G, Mathew AM, Castro JM, McFadden WM, Wen X, Ong YT, Tedbury PR, Lan S, Sarafianos SG. Dimming the corona: studying SARS-coronavirus-2 at reduced biocontainment level using replicons and virus-like particles. mBio 2024; 15:e0336823. [PMID: 39530689 PMCID: PMC11633226 DOI: 10.1128/mbio.03368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential. Viral replicon- and virus-like particle (VLP)-based systems are excellent examples of such tools. This review outlines the importance, advantages, and disadvantages of both the replicon- and VLP-based systems that have been developed for SARS-CoV-2 and have helped the scientific community in dimming the intensity of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Grace Neilsen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Asha Maria Mathew
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jose M. Castro
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Friedhoff R, Elfayres G, Mérindol N, Desgagné-Penix I, Berthoux L. RNA replication-independent, DNA linearization-dependent expression of reporter genes from a SARS-CoV-2 replicon-encoding DNA in human cells. PLoS One 2024; 19:e0300491. [PMID: 39150942 PMCID: PMC11329111 DOI: 10.1371/journal.pone.0300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/13/2024] [Indexed: 08/18/2024] Open
Abstract
Replicons, derived from RNA viruses, are genetic constructs retaining essential viral enzyme genes while lacking key structural protein genes. Upon introduction into cells, the genes carried by the replicon RNA are expressed, and the RNA self-replicates, yet viral particle production does not take place. Typically, RNA replicons are transcribed in vitro and are then electroporated in cells. However, it would be advantageous for the replicon to be generated in cells following DNA transfection instead of RNA. In this study, a bacterial artificial chromosome (BAC) DNA encoding a SARS-CoV-2 replicon under control of a T7 promoter was transfected into HEK293T cells engineered to functionally express the T7 RNA polymerase (T7 RNAP). Upon transfection of the BAC DNA, we observed low, but reproducible expression of reporter proteins GFP and luciferase carried by this replicon. Expression of the reporter proteins required linearization of the BAC DNA prior to transfection. Moreover, expression occurred independently of T7 RNAP. Gene expression was also insensitive to remdesivir treatment, suggesting that it did not involve self-replication of replicon RNA. Similar results were obtained in highly SARS-CoV-2 infection-permissive Calu-3 cells. Strikingly, prior expression of the SARS-CoV-2 N protein boosted expression from transfected SARS-CoV-2 RNA replicon but not from the replicon BAC DNA. In conclusion, transfection of a large DNA encoding a coronaviral replicon led to reproducible replicon gene expression through an unidentified mechanism. These findings highlight a novel pathway toward replicon gene expression from transfected replicon cDNA, offering valuable insights for the development of methods for DNA-based RNA replicon applications.
Collapse
Affiliation(s)
- Ronja Friedhoff
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Ghada Elfayres
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Mérindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Lionel Berthoux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
4
|
Li Y, Tan X, Deng J, Liu X, Liu Q, Zhang Z, Huang X, Shen C, Xu K, Zhou L, Chen Y. An optimized high-throughput SARS-CoV-2 dual reporter trans-complementation system for antiviral screening in vitro and in vivo. Virol Sin 2024; 39:447-458. [PMID: 38548102 PMCID: PMC11280264 DOI: 10.1016/j.virs.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still epidemic around the world. The manipulation of SARS-CoV-2 is restricted to biosafety level 3 laboratories (BSL-3). In this study, we developed a SARS-CoV-2 ΔN-GFP-HiBiT replicon delivery particles (RDPs) encoding a dual reporter gene, GFP-HiBiT, capable of producing both GFP signal and luciferase activities. Through optimal selection of the reporter gene, GFP-HiBiT demonstrated superior stability and convenience for antiviral evaluation. Additionally, we established a RDP infection mouse model by delivering the N gene into K18-hACE2 KI mouse through lentivirus. This mouse model supports RDP replication and can be utilized for in vivo antiviral evaluations. In summary, the RDP system serves as a valuable tool for efficient antiviral screening and studying the gene function of SARS-CoV-2. Importantly, this system can be manipulated in BSL-2 laboratories, decreasing the threshold of experimental requirements.
Collapse
Affiliation(s)
- Yingjian Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xue Tan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Jikai Deng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xuemei Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Zhen Zhang
- Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xiaoya Huang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Chao Shen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Cai HL, Huang YW. Reverse genetics systems for SARS-CoV-2: Development and applications. Virol Sin 2023; 38:837-850. [PMID: 37832720 PMCID: PMC10786661 DOI: 10.1016/j.virs.2023.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused serious harm to human health and struck a blow to global economic development. Research on SARS-CoV-2 has greatly benefited from the use of reverse genetics systems, which have been established to artificially manipulate the viral genome, generating recombinant and reporter infectious viruses or biosafety level 2 (BSL-2)-adapted non-infectious replicons with desired modifications. These tools have been instrumental in studying the molecular biological characteristics of the virus, investigating antiviral therapeutics, and facilitating the development of attenuated vaccine candidates. Here, we review the construction strategies, development, and applications of reverse genetics systems for SARS-CoV-2, which may be applied to other CoVs as well.
Collapse
Affiliation(s)
- Hou-Li Cai
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Hussein M, Andrade dos Ramos Z, Vink MA, Kroon P, Yu Z, Enjuanes L, Zuñiga S, Berkhout B, Herrera-Carrillo E. Efficient CRISPR-Cas13d-Based Antiviral Strategy to Combat SARS-CoV-2. Viruses 2023; 15:v15030686. [PMID: 36992394 PMCID: PMC10051389 DOI: 10.3390/v15030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The current SARS-CoV-2 pandemic forms a major global health burden. Although protective vaccines are available, concerns remain as new virus variants continue to appear. CRISPR-based gene-editing approaches offer an attractive therapeutic strategy as the CRISPR-RNA (crRNA) can be adjusted rapidly to accommodate a new viral genome sequence. This study aimed at using the RNA-targeting CRISPR-Cas13d system to attack highly conserved sequences in the viral RNA genome, thereby preparing for future zoonotic outbreaks of other coronaviruses. We designed 29 crRNAs targeting highly conserved sequences along the complete SARS-CoV-2 genome. Several crRNAs demonstrated efficient silencing of a reporter with the matching viral target sequence and efficient inhibition of a SARS-CoV-2 replicon. The crRNAs that suppress SARS-CoV-2 were also able to suppress SARS-CoV, thus demonstrating the breadth of this antiviral strategy. Strikingly, we observed that only crRNAs directed against the plus-genomic RNA demonstrated antiviral activity in the replicon assay, in contrast to those that bind the minus-genomic RNA, the replication intermediate. These results point to a major difference in the vulnerability and biology of the +RNA versus −RNA strands of the SARS-CoV-2 genome and provide important insights for the design of RNA-targeting antivirals.
Collapse
Affiliation(s)
- Mouraya Hussein
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zaria Andrade dos Ramos
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Monique A. Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Pascal Kroon
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zhenghao Yu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|