1
|
Wu Q, Yang M, Yang Y, Iqbal A, Zhou L. Assessment of bisulfite sequencing alignment tools for whole genome analysis in plants. Int J Biol Macromol 2025; 305:140940. [PMID: 39952492 DOI: 10.1016/j.ijbiomac.2025.140940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
DNA methylation, a key component of epigenetic regulation, is essential for preserving normal cellular functions, supporting plant growth, and facilitating development and responses to stress. Whole genome bisulfite sequencing (WGBS) is the definitive method for studying DNA methylation and is extensively used in functional genomics research across both animal and plant species. While various analysis tools have been created for WGBS, a thorough evaluation of their performance in analyzing plant data remains lacking. This study provides a comprehensive assessment of six widely used alignment methods (Abismal, Bismark-his2, BSSeeker2-bwt2-local, BSSeeker2-bwt2-e2e, Bismark-bwt2-e2e, and BSMAP) across four DNA methylation analysis tools. The evaluation encompassed aspects such as runtime efficiency, memory resource utilization, alignment quality, and identification of methylation sites by analyzing DNA methylation data from three major crops: Arabidopsis thaliana, Oryza sativa, and Glycine max. The results indicated that although BSMAP required larger memory requirements, it exhibited higher efficiency in terms of running speed, particularly when dealing with large-scale genomic data. Furthermore, BSMAP showed excellent performance in alignment quality and identification of methylated sites, ensuring the reliability and precision of the results. The study highlights the importance of researchers carefully selecting alignment tools and considering factors like available computational resources, specific research needs, and the balance between processing speed and memory usage. This work offers valuable analytical guidance for scientists engaged in DNA methylation studies plants, contributing to improved research efficiency and result reliability. 1 t holds significant scientific importance for a deeper analysis of DNA methylation in plant biology.
Collapse
Affiliation(s)
- Qiufei Wu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Mengdi Yang
- Qionghai Tropical Crops Service Center, Qionghai 571400, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China.
| |
Collapse
|
2
|
Pagano L, Lagrotteria D, Facconi A, Saraceno C, Longobardi A, Bellini S, Ingannato A, Bagnoli S, Ducci T, Mingrino A, Laganà V, Paparazzo E, Borroni B, Maletta R, Nacmias B, Montesanto A, Ghidoni R. Evaluation of Illumina and Oxford Nanopore Sequencing for the Study of DNA Methylation in Alzheimer's Disease and Frontotemporal Dementia. Int J Mol Sci 2025; 26:4198. [PMID: 40362435 PMCID: PMC12071509 DOI: 10.3390/ijms26094198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
DNA methylation is a critical epigenetic mechanism involved in numerous physiological processes. Alterations in DNA methylation patterns are associated with various brain disorders, including dementias such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Investigating these alterations is essential for understanding the pathogenesis and progression of these disorders. Among the various methods for detecting DNA methylation, DNA sequencing is one of the most widely employed. Specifically, two main sequencing approaches are commonly used for DNA methylation analysis: bisulfite sequencing and single-molecule long-read sequencing. In this review, we compared the performances of CpG methylation detection obtained using two popular sequencing platforms, Illumina for bisulfite sequencing and Oxford Nanopore (ON) for long-read sequencing. Our comparison considers several factors, including accuracy, efficiency, genomic regions, costs, wet-lab protocols, and bioinformatics pipelines. We provide insights into the strengths and limitations of both methods with a particular focus on their application in research on AD and FTD.
Collapse
Affiliation(s)
- Lorenzo Pagano
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Davide Lagrotteria
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.); (E.P.); (A.M.)
| | - Alessandro Facconi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (A.I.); (S.B.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (A.I.); (S.B.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Tommaso Ducci
- Azienda Ospedaliero-Universitaria Careggi SOD Neurologia 1, 50100 Florence, Italy; (T.D.); (A.M.)
| | - Alessandra Mingrino
- Azienda Ospedaliero-Universitaria Careggi SOD Neurologia 1, 50100 Florence, Italy; (T.D.); (A.M.)
| | - Valentina Laganà
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.)
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.); (E.P.); (A.M.)
| | - Barbara Borroni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy; (V.L.); (R.M.)
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy; (A.I.); (S.B.); (B.N.)
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.L.); (E.P.); (A.M.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (L.P.); (A.F.); (C.S.); (A.L.); (S.B.); (B.B.)
| |
Collapse
|
3
|
Zhao S, Xu D, Cai J, Shen Q, He M, Pan X, Gao Y, Li J, Yuan X. Benchmarking strategies for CNV calling from whole genome bisulfite data in humans. Comput Struct Biotechnol J 2025; 27:912-919. [PMID: 40123798 PMCID: PMC11929052 DOI: 10.1016/j.csbj.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
It's important to dissect the relationship between copy number variations (CNVs) and DNA methylation, because both greatly change the dosages of genes and are responsible for diverse human cancers. Although whole genome bisulfite sequencing (WGBS) informs CNVs and DNA methylation, no study has provided a systematic benchmark for detecting CNVs from WGBS data. Herein, based on simulated and real WGBS datasets of 84.62 billion reads, we undertook 714 CNV detections to comprehensively benchmark the performance of 35 strategies, 5 alignment algorithms (bismarkbt2, bsbolt, bsmap, bwameth, and walt) wrapping with 7 CNV detection applications (BreakDancer, cn.mops, CNVkit, CNVnator, DELLY, GASV and Pindel). The results highlighted a subset of strategies that accurately called CNVs depending on numbers, lengths, precision, recall, and F1 scores of CNV detections. We found that bwameth-DELLY and bwameth-BreakDancer were the best strategies for calling deletions, and walt-CNVnator and bismarkbt2-CNVnator were the best strategies for calling duplications. These works provided investigators with useful information to accurately explore CNVs from WGBS data in humans.
Collapse
Affiliation(s)
- Shanghui Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Dantong Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiali Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingpeng Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Mingran He
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangchun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yahui Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
4
|
Velikaneye BA, Kozak GM. Epigenomic Changes in Ostrinia Moths Under Elevated Pupal and Adult Temperature. Mol Ecol 2025; 34:e17676. [PMID: 39936612 DOI: 10.1111/mec.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Epigenetic changes in the methylation of DNA may occur in response to environmental stressors, including warming climates. DNA methylation may also play an important role in regulating gene expression during both male and female reproduction in many insect species. However, it is currently unknown how DNA methylation shifts when individuals are reproducing under warmer temperatures. We exposed European corn borer moths (Ostrinia nubilalis) to heat during the pupal and adult life stages then investigated changes in DNA methylation across the genome using enzymatic methyl-seq (EM-seq). We compared methylation patterns in reproductive males and females exposed to heat (28°C) to those that experienced an ambient temperature (23°C). We found that heat exposure led to a small but significant increase in the percentage of methylated CpG sites throughout the genome in both sexes. However, DNA methylation rates were higher in females and differential methylation following heat exposure localised to unique regions in each sex. In males, methylation shifted within genes belonging to pathways including Hippo signalling, ubiquitin-mediated proteolysis, DNA damage repair and spermatogenesis. In females, differential methylation occurred in genes related to histone modification and oogenesis. Our results suggest that DNA methylation patterns respond to moderate heat exposure in Lepidoptera and provide insight into epigenetic responses to heatwaves, suggesting novel pathways that may be involved in responding to heat stress during metamorphosis and reproduction.
Collapse
Affiliation(s)
- Brittany A Velikaneye
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| |
Collapse
|
5
|
Velez-Irizarry D, Cheng H, Hearn C. scRNA seq of an F1 cross of Marek's disease resistant and susceptible chickens identifies allele specific expression signatures enriched in transcription modulators. Sci Rep 2025; 15:3689. [PMID: 39880866 PMCID: PMC11779831 DOI: 10.1038/s41598-025-86174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Marek's disease (MD), a T cell lymphoma disease in chickens, is caused by the Marek's disease virus (MDV) found ubiquitously in the poultry industry. Genetically resistant Line 63 (L6) and susceptible Line 72 (L7) chickens have been instrumental to research on avian immune system response to MDV infection. In this study we characterized molecular signatures unique to splenic immune cell types across different genetic backgrounds 6 days after infection. Using three populations, L6, L7, and an F1 cross between L6xL7, we evaluated the immune cell transcriptome of responding cell types using single cell RNA sequencing. Several MDV genes were found expressed mainly in cytotoxic T cells while ICP4 and MEQ MDV genes were expressed across infected cell types. Using the F1 we quantified allele specific expression (ASE) of biallelic SNPs and found biased expression of parental alleles specific to immune cell subtypes. We identified 22 SNPs with ASE in response to MDV infection mapped to gene rich regions surrounding 59 genes of critical importance for chromatin remodeling and transcriptional regulation. Histone deacetylase genes (HDAC1 and HDAC8) had increased expression of L6 alleles, while small nuclear RNA genes (SNORA68 and SNORA72) expressed higher levels of L7 alleles with infection in T cell subsets. SNPs with ASE also mapped genes important for an adequate immune response including GNLY (cytotoxic activity) and PDIA3 (component of MHC class I peptide loading complex), and genes known to promote viral replication (MCM5 and EIF3M). These results show that functional variants associated with susceptibility to MD may have a bigger impact in subsets of immune cell types, and by characterizing the transcriptomes of these subtypes we can unravel molecular signatures specific to MD genomic resistance.
Collapse
Affiliation(s)
- Deborah Velez-Irizarry
- USDA, Agricultural Research Service, US National Poultry Research Center, 934 College Station Road, Athens, GA, 30605, USA
| | - Hans Cheng
- USDA, Agricultural Research Service, US National Poultry Research Center, 934 College Station Road, Athens, GA, 30605, USA
| | - Cari Hearn
- USDA, Agricultural Research Service, US National Poultry Research Center, 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
6
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
7
|
Systematic and benchmarking studies of pipelines for mammal WGBS data in the novel NGS platform. BMC Bioinformatics 2023; 24:33. [PMID: 36721080 PMCID: PMC9890740 DOI: 10.1186/s12859-023-05163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Whole genome bisulfite sequencing (WGBS), possesses the aptitude to dissect methylation status at the nucleotide-level resolution of 5-methylcytosine (5-mC) on a genome-wide scale. It is a powerful technique for epigenome in various cell types, and tissues. As a recently established next-generation sequencing (NGS) platform, GenoLab M is a promising alternative platform. However, its comprehensive evaluation for WGBS has not been reported. We sequenced two bisulfite-converted mammal DNA in this research using our GenoLab M and NovaSeq 6000, respectively. Then, we systematically compared those data via four widely used WGBS tools (BSMAP, Bismark, BatMeth2, BS-Seeker2) and a new bisulfite-seq tool (BSBolt). We interrogated their computational time, genome depth and coverage, and evaluated their percentage of methylated Cs. RESULT Here, benchmarking a combination of pre- and post-processing methods, we found that trimming improved the performance of mapping efficiency in eight datasets. The data from two platforms uncovered ~ 80% of CpG sites genome-wide in the human cell line. Those data sequenced by GenoLab M achieved a far lower proportion of duplicates (~ 5.5%). Among pipelines, BSMAP provided an intriguing representation of 5-mC distribution at CpG sites with 5-mC levels > ~ 78% in datasets from human cell lines, especially in the GenoLab M. BSMAP performed more advantages in running time, uniquely mapped reads percentages, genomic coverage, and quantitative accuracy. Finally, compared with the previous methylation pattern of human cell line and mouse tissue, we confirmed that the data from GenoLab M performed similar consistency and accuracy in methylation levels of CpG sites with that from NovaSeq 6000. CONCLUSION Together we confirmed that GenoLab M was a qualified NGS platform for WGBS with high performance. Our results showed that BSMAP was the suitable pipeline that allowed for WGBS studies on the GenoLab M platform.
Collapse
|
8
|
Li XH, Lu MY, Niu JL, Zhu DY, Liu B. cfDNA Methylation Profiles and T-Cell Differentiation in Women with Endometrial Polyps. Cells 2022; 11:cells11243989. [PMID: 36552753 PMCID: PMC9777338 DOI: 10.3390/cells11243989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a part of the regulatory mechanisms of gene expression, including chromatin remodeling and the activity of microRNAs, which are involved in the regulation of T-cell differentiation and function. However, the role of cfDNA methylation in T-cell differentiation is entirely unknown. In patients with endometrial polyps (EPs), we have found an imbalance of T-cell differentiation and an aberrant cfDNA methylation profile, respectively. In this study, we investigated the relationship between cfDNA methylation profiles and T-cell differentiation in 14 people with EPs and 27 healthy controls. We found that several differentially methylated genes (DMGs) were associated with T-cell differentiation in people with EPs (ITGA2-Naïve CD4, r = -0.560, p = 0.037; CST9-EMRA CD4, r = -0.626, p = 0.017; and ZIM2-CM CD8, r = 0.576, p = 0.031), but not in healthy controls (all p > 0.05). When we combined the patients' characteristics, we found a significant association between ITGA2 methylation and polyp diameter (r = 0.562, p = 0.036), but this effect was lost when adjusting the level of Naïve CD4 T-cells (r = 0.038, p = 0.903). Moreover, the circulating sex hormone levels were associated with T-cell differentiation (estradiol-Naïve CD4, r = -0.589, p = 0.027), and the cfDNA methylation profile (testosterone-ZIM2, r = -0.656, p = 0.011). In conclusion, this study has established a link between cfDNA methylation profiles and T-cell differentiation among people with EPs, which may contribute to the etiology of EPs. Further functional studies are warranted.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Reproductive Health, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China
| | - Mei-Yin Lu
- Department of Biobank, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China
| | - Jia-Li Niu
- Department of Biobank, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China
| | - Dong-Yan Zhu
- Department of Biobank, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China
| | - Bin Liu
- Department of Biobank, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China
- Correspondence: ; Tel.: +86-158-1732-7996
| |
Collapse
|