1
|
Varidel M, Hickie IB, Prodan A, Skinner A, Marchant R, Cripps S, Oliveria R, Chong MK, Scott E, Scott J, Iorfino F. Dynamic learning of individual-level suicidal ideation trajectories to enhance mental health care. NPJ MENTAL HEALTH RESEARCH 2024; 3:26. [PMID: 38849429 PMCID: PMC11161660 DOI: 10.1038/s44184-024-00071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
There has recently been an increase in ongoing patient-report routine outcome monitoring for individuals within clinical care, which has corresponded to increased longitudinal information about an individual. However, many models that are aimed at clinical practice have difficulty fully incorporating this information. This is in part due to the difficulty in dealing with the irregularly time-spaced observations that are common in clinical data. Consequently, we built individual-level continuous-time trajectory models of suicidal ideation for a clinical population (N = 585) with data collected via a digital platform. We demonstrate how such models predict an individual's level and variability of future suicide ideation, with implications for the frequency that individuals may need to be observed. These individual-level predictions provide a more personalised understanding than other predictive methods and have implications for enhanced measurement-based care.
Collapse
Affiliation(s)
- Mathew Varidel
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ante Prodan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Translational Health Research Institute, Western Sydney University, Sydney, NSW, Australia
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney, NSW, Australia
| | - Adam Skinner
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Roman Marchant
- Human Technology Institute, University of Technology, Sydney, NSW, Australia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Sally Cripps
- Human Technology Institute, University of Technology, Sydney, NSW, Australia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Min K Chong
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Elizabeth Scott
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Jan Scott
- Academic Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Frank Iorfino
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Wang K, Marciani L, Amidon GL, Smith DE, Sun D. Stochastic Differential Equation-based Mixed Effects Model of the Fluid Volume in the Fasted Stomach in Healthy Adult Human. AAPS J 2023; 25:76. [PMID: 37498389 DOI: 10.1208/s12248-023-00840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/01/2023] [Indexed: 07/28/2023] Open
Abstract
The rate and extent of drug dissolution and absorption from a solid oral dosage form depend largely on the fluid volume along the gastrointestinal tract. Hence, a model built upon the gastric fluid volume profiles can help to predict drug dissolution and subsequent absorption. To capture the great inter- and intra-individual variability (IAV) of the gastric fluid volume in fasted human, a stochastic differential equation (SDE)-based mixed effects model was developed and compared with the ordinary differential equation (ODE)-based model. Twelve fasted healthy adult subjects were enrolled and had their gastric fluid volume measured before and after consumption of 240 mL of water at pre-determined intervals for up to 2 hours post ingestion. The SDE- and ODE-based mixed effects models were implemented and compared using extended Kalman filter algorithm via NONMEM. The SDE approach greatly improved the goodness of fit compared with the ODE counterpart. The proportional and additive measurement error of the final SDE model decreased from 14.4 to 4.10% and from 17.6 to 4.74 mL, respectively. The SDE-based mixed effects model successfully characterized the gastric volume profiles in the fasted healthy subjects, and provided a robust approximation of the physiological parameters in the very dynamic system. The remarkable IAV could be further separated into system dynamics terms and measurement error terms in the SDE model instead of only empirically attributing IAV to measurement errors in the traditional ODE method. The system dynamics were best captured by the random fluctuations of gastric emptying coefficient Kge.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Luca Marciani
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
3
|
Pieschner S, Hasenauer J, Fuchs C. Identifiability analysis for models of the translation kinetics after mRNA transfection. J Math Biol 2022; 84:56. [PMID: 35577967 PMCID: PMC9110294 DOI: 10.1007/s00285-022-01739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/12/2022]
Abstract
Mechanistic models are a powerful tool to gain insights into biological processes. The parameters of such models, e.g. kinetic rate constants, usually cannot be measured directly but need to be inferred from experimental data. In this article, we study dynamical models of the translation kinetics after mRNA transfection and analyze their parameter identifiability. That is, whether parameters can be uniquely determined from perfect or realistic data in theory and practice. Previous studies have considered ordinary differential equation (ODE) models of the process, and here we formulate a stochastic differential equation (SDE) model. For both model types, we consider structural identifiability based on the model equations and practical identifiability based on simulated as well as experimental data and find that the SDE model provides better parameter identifiability than the ODE model. Moreover, our analysis shows that even for those parameters of the ODE model that are considered to be identifiable, the obtained estimates are sometimes unreliable. Overall, our study clearly demonstrates the relevance of considering different modeling approaches and that stochastic models can provide more reliable and informative results.
Collapse
Affiliation(s)
- Susanne Pieschner
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Oberschleißheim, Germany
- Department of Mathematics, Technical University Munich, Garching, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Oberschleißheim, Germany
- Department of Mathematics, Technical University Munich, Garching, Germany
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | - Christiane Fuchs
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Oberschleißheim, Germany.
- Department of Mathematics, Technical University Munich, Garching, Germany.
- Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
4
|
Persson S, Welkenhuysen N, Shashkova S, Wiqvist S, Reith P, Schmidt GW, Picchini U, Cvijovic M. Scalable and flexible inference framework for stochastic dynamic single-cell models. PLoS Comput Biol 2022; 18:e1010082. [PMID: 35588132 PMCID: PMC9159578 DOI: 10.1371/journal.pcbi.1010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/01/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023] Open
Abstract
Understanding the inherited nature of how biological processes dynamically change over time and exhibit intra- and inter-individual variability, due to the different responses to environmental stimuli and when interacting with other processes, has been a major focus of systems biology. The rise of single-cell fluorescent microscopy has enabled the study of those phenomena. The analysis of single-cell data with mechanistic models offers an invaluable tool to describe dynamic cellular processes and to rationalise cell-to-cell variability within the population. However, extracting mechanistic information from single-cell data has proven difficult. This requires statistical methods to infer unknown model parameters from dynamic, multi-individual data accounting for heterogeneity caused by both intrinsic (e.g. variations in chemical reactions) and extrinsic (e.g. variability in protein concentrations) noise. Although several inference methods exist, the availability of efficient, general and accessible methods that facilitate modelling of single-cell data, remains lacking. Here we present a scalable and flexible framework for Bayesian inference in state-space mixed-effects single-cell models with stochastic dynamic. Our approach infers model parameters when intrinsic noise is modelled by either exact or approximate stochastic simulators, and when extrinsic noise is modelled by either time-varying, or time-constant parameters that vary between cells. We demonstrate the relevance of our approach by studying how cell-to-cell variation in carbon source utilisation affects heterogeneity in the budding yeast Saccharomyces cerevisiae SNF1 nutrient sensing pathway. We identify hexokinase activity as a source of extrinsic noise and deduce that sugar availability dictates cell-to-cell variability.
Collapse
Affiliation(s)
- Sebastian Persson
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Samuel Wiqvist
- Centre for Mathematical Sciences, Lund University, Lund, Sweden
| | - Patrick Reith
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Gregor W. Schmidt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Umberto Picchini
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Persson S, Shashkova S, Österberg L, Cvijovic M. Modelling of glucose repression signalling in yeast Saccharomyces cerevisiae. FEMS Yeast Res 2022; 22:foac012. [PMID: 35238938 PMCID: PMC8916112 DOI: 10.1093/femsyr/foac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Saccharomyces cerevisiae has a sophisticated signalling system that plays a crucial role in cellular adaptation to changing environments. The SNF1 pathway regulates energy homeostasis upon glucose derepression; hence, it plays an important role in various processes, such as metabolism, cell cycle and autophagy. To unravel its behaviour, SNF1 signalling has been extensively studied. However, the pathway components are strongly interconnected and inconstant; therefore, elucidating its dynamic behaviour based on experimental data only is challenging. To tackle this complexity, systems biology approaches have been successfully employed. This review summarizes the progress, advantages and disadvantages of the available mathematical modelling frameworks covering Boolean, dynamic kinetic, single-cell models, which have been used to study processes and phenomena ranging from crosstalks to sources of cell-to-cell variability in the context of SNF1 signalling. Based on the lessons from existing models, we further discuss how to develop a consensus dynamic mechanistic model of the entire SNF1 pathway that can provide novel insights into the dynamics of nutrient signalling.
Collapse
Affiliation(s)
- Sebastian Persson
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Sviatlana Shashkova
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Chalmers tvärgata 3, 412 96 Gothnburg, Sweden
| |
Collapse
|
6
|
Symmetric and Asymmetric Diffusions through Age-Varying Mixed-Species Stand Parameters. Symmetry (Basel) 2021. [DOI: 10.3390/sym13081457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
(1) Background: This paper deals with unevenly aged, whole-stand models from mixed-effect parameters diffusion processes and Voronoi diagram points of view and concentrates on the mixed-species stands in Lithuania. We focus on the Voronoi diagram of potentially available areas to tree positions as the measure of the competition effect of individual trees and the tree diameter at breast height to relate their evolution through time. (2) Methods: We consider a bivariate hybrid mixed-effect parameters stochastic differential equation for the parameterization of the diameter and available polygon area at age to ensure a proper description of the link between them during the age (time) span of a forest stand. In this study, the Voronoi diagram was used as a mathematical tool for the quantitative characterization of inter-tree competition. (3) Results: The newly derived model considers bivariate correlated observations, tree diameter, and polygon area arising from a particular stand and enables defining equations for calculating diameter, polygon-area, and stand-density predictions and forecasts. (4) Conclusions: From a statistical point of view, the newly developed models produced acceptable statistical measures of predictions and forecasts. All the results were implemented in the Maple computer algebra system.
Collapse
|