1
|
de Oliveira JB, Silva SB, Fernandes IL, Batah SS, Herrera AJR, Cetlin ADCVA, Fabro AT. Dendritic cell-based immunotherapy in non-small cell lung cancer: a comprehensive critical review. Front Immunol 2024; 15:1376704. [PMID: 39308861 PMCID: PMC11412867 DOI: 10.3389/fimmu.2024.1376704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Despite treatment advances through immunotherapies, including anti-PD-1/PD-L1 therapies, the overall prognosis of non-small cell lung cancer (NSCLC) patients remains poor, underscoring the need for novel approaches that offer long-term clinical benefit. This review examined the literature on the subject over the past 20 years to provide an update on the evolving landscape of dendritic cell-based immunotherapy to treat NSCLC, highlighting the crucial role of dendritic cells (DCs) in immune response initiation and regulation. These cells encompass heterogeneous subsets like cDC1s, cDC2s, and pDCs, capable of shaping antigen presentation and influencing T cell activation through the balance between the Th1, Th2, and Th17 profiles and the activation of regulatory T lymphocytes (Treg). The intricate interaction between DC subsets and the high density of intratumoral mature DCs shapes tumor-specific immune responses and impacts therapeutic outcomes. DC-based immunotherapy shows promise in overcoming immune resistance in NSCLC treatment. This article review provides an update on key clinical trial results, forming the basis for future studies to characterize the role of different types of DCs in situ and in combination with different therapies, including DC vaccines.
Collapse
Affiliation(s)
- Jamile Barboza de Oliveira
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Saulo Brito Silva
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Igor Lima Fernandes
- Neuropathology and Molecular Biology Division, Bacchi Laboratory, Botucatu, Brazil
| | - Sabrina Setembre Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
3
|
Hensler M, Rakova J, Kasikova L, Lanickova T, Pasulka J, Holicek P, Hraska M, Hrnciarova T, Kadlecova P, Schoenenberger A, Sochorova K, Rozkova D, Sojka L, Drozenova J, Laco J, Horvath R, Podrazil M, Hongyan G, Brtnicky T, Halaska MJ, Rob L, Ryska A, Coosemans A, Vergote I, Garg AD, Cibula D, Bartunkova J, Spisek R, Fucikova J. Peripheral gene signatures reveal distinct cancer patient immunotypes with therapeutic implications for autologous DC-based vaccines. Oncoimmunology 2022; 11:2101596. [PMID: 35898703 PMCID: PMC9311316 DOI: 10.1080/2162402x.2022.2101596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) have received considerable attention as potential targets for the development of novel cancer immunotherapies. However, the clinical efficacy of DC-based vaccines remains suboptimal, largely reflecting local and systemic immunosuppression at baseline. An autologous DC-based vaccine (DCVAC) has recently been shown to improve progression-free survival and overall survival in randomized clinical trials enrolling patients with lung cancer (SLU01, NCT02470468) or ovarian carcinoma (SOV01, NCT02107937), but not metastatic castration-resistant prostate cancer (SP005, NCT02111577), despite a good safety profile across all cohorts. We performed biomolecular and cytofluorometric analyses on peripheral blood samples collected prior to immunotherapy from 1000 patients enrolled in these trials, with the objective of identifying immunological biomarkers that may improve the clinical management of DCVAC-treated patients. Gene signatures reflecting adaptive immunity and T cell activation were associated with favorable disease outcomes and responses to DCVAC in patients with prostate and lung cancer, but not ovarian carcinoma. By contrast, the clinical benefits of DCVAC were more pronounced among patients with ovarian carcinoma exhibiting reduced expression of T cell-associated genes, especially those linked to TH2-like signature and immunosuppressive regulatory T (TREG) cells. Clinical responses to DCVAC were accompanied by signs of antitumor immunity in the peripheral blood. Our findings suggest that circulating signatures of antitumor immunity may provide a useful tool for monitoring the potency of autologous DC-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Tereza Lanickova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | - Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | | | | | | | | | - Ludek Sojka
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jana Drozenova
- Department of Pathology 3rd Faculty of Medicine, And University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Czech Republic
| | - Rudolf Horvath
- Department of Pediatric and Adult Rheumatology, University Hospital Motol, Prague, Czech Republic
| | - Michal Podrazil
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Guo Hongyan
- Department of Gynecology and Obstetrics, Peking University Third Hospital, Beijing, Hebei Province, China
| | - Tomas Brtnicky
- Department of Gynecology and Obstetrics, 1st Faculty of Medicine, Charles University, University Hospital Bulovka, Prague, Czech Republic
| | - Michal J. Halaska
- Department of Gynecology and Obstetrics, Charles University, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Charles University, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ales Ryska
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Czech Republic
| | - An Coosemans
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Belgium
| | - Ignace Vergote
- Department of Oncology, Leuven Cancer Institute, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Belgium
- Department of Oncology, Leuven Cancer Institute, Laboratory of Gynaecologic Oncology, KU Leuven, Belgium
- Department of Gynaecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jirina Bartunkova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
4
|
Jedlička M, Feglarová T, Janstová L, Hortová-Kohoutková M, Frič J. Lactate from the tumor microenvironment - A key obstacle in NK cell-based immunotherapies. Front Immunol 2022; 13:932055. [PMID: 36330529 PMCID: PMC9623302 DOI: 10.3389/fimmu.2022.932055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/30/2022] [Indexed: 05/03/2025] Open
Abstract
Recent findings about the new roles of lactate have changed our understanding of this end product of glycolysis or fermentation that was once considered only a waste product. It is now well accepted that lactate acts as a signaling molecule and fuel source for cancer cells in a glucose-restricted environment. Moreover, lactate and lactate dehydrogenase are markers of poor prognosis of many cancers and regulate many functions of immune cells. The presence of lactate in the tumor microenvironment (TME) leads to polarization of the immunosuppressive phenotypes of dendritic cells and impairs the cytotoxic abilities of T cells and NK cells, and as such lactate is a major obstacle to immune-cell effector functions and the efficacy of cell-based immunotherapies. Emerging evidence suggests that lactate in the TME might be a novel therapeutic target to enhance the immunotherapeutic potential of cell-based therapies. This review describes our current understanding of the role of lactate in tumor biology, including its detrimental effects on cell-based immunotherapy in cancer. We also highlight how the role of lactate in the TME must be considered when producing cell therapies designed for adoptive transfer and describe how targeted modulation of lactate in the TME might boost immune-cell functions and positively impact cellular immunotherapy, with a focus on NK cell.
Collapse
Affiliation(s)
- Marek Jedlička
- Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
- Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Tereza Feglarová
- Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
| | - Lucie Janstová
- Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
- Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Marcela Hortová-Kohoutková
- Cellular and Molecular Immunoregulation Group, International Clinical Research Center of St. Anne´s University Hospital Brno, Brno, Czechia
| | - Jan Frič
- Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
- Cellular and Molecular Immunoregulation Group, International Clinical Research Center of St. Anne´s University Hospital Brno, Brno, Czechia
| |
Collapse
|
5
|
Liu Q, Lou Y, Li L, Yang G, Cui H, Cheng Z, Li Y, Liu M, Deng C, Wan D, Yan Y, Jia L. A Single-Arm Phase II Study to Evaluate Efficacy and Safety of First-Line Treatment With DCVAC/LuCa, Standard of Care Chemotherapy and Shenqi Fuzheng Injection in Advanced (Stage IIIB/IV) Non-Small Cell Lung Cancer Patients. Integr Cancer Ther 2022; 21:15347354221083968. [PMID: 35313775 PMCID: PMC8943553 DOI: 10.1177/15347354221083968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To evaluate the efficacy and safety of first-line treatment with a dendritic cell vaccination for lung cancer (DCVAC/LuCa), standard of care chemotherapy and Shenqi Fuzheng injection in patients with advanced (stage IIIB/IV) non-small cell lung cancer. PATIENTS AND METHODS Patients with histologically or cytologically confirmed recurrent metastatic or advanced NSCLC (stage IIIB/IV) with wild-type epidermal growth factor receptor (EGFR) or EGFR mutation which does not confer increased tumor susceptibility to EGFR-interacting drugs were recruited. For the treatment period, the first cycle of standard of care therapy (SoC) started 2 to 14 days after the leukapheresis procedure. SoC continued 4 to 6 cycles. DCVAC/LuCa was administered from the second cycle of SoC. DCVAC/LuCa was administered in a 3-week cycle schedule (5 doses) and then in a 6-week cycle schedule. Shenqi Fuzheng injection was administered 3 days before each DCVAC/LuCa administration for a total of 14 daily doses. Patients would undergo disease evaluation by computed tomography (CT) scan every 3 months. The primary and secondary endpoint was efficacy with regard to objective response rate (ORR) and progression free survival (PFS). The safety profile was measured by: incidence, type, and severity of all adverse events (AEs), laboratory abnormalities (blood routine test, urine test, and chemical test), physical status, and vital signs. Qi insufficiency was evaluated by tongue diagnosis and questionnaire survey with "Classification and Determination of constitution in TCM." RESULTS Twenty-three patients from 3 hospitals who received combination therapy were included. ORR was 34.8% (95% CI:16.4%-57.3%). Median duration of response was 5.51 m (95% CI:2.70-8.32). Median PFS was 10.72 m (95% CI:4.52-16.93), 1-year survival was 77.8%. mOS was 21.97 m (95% CI:13.68-30.25). There was 1 severe AE related to a history of heart disease and there were no adverse events related to DCVAC/LuCa treatment. Qi insufficiency was improved significantly (P < .0001) from 41.19 ± 14.58 before treatment to 10.52 ± 16.58 after treatment. CONCLUSION DCVAC/LuCa, combined with standard of care chemotherapy and Shenqi Fuzheng injection exhibited good benefit in Chinese patients with recurrent metastatic or advanced (stage IIIB/IV) NSCLC, and also significantly improved Qi insufficiency constitution. There were no related adverse events with DCVAC/LuCa treatment.
Collapse
Affiliation(s)
- Qing Liu
- China-Japan Friendship Hospital,
Beijing, China
| | - Yanni Lou
- China-Japan Friendship Hospital,
Beijing, China
| | - Liya Li
- China-Japan Friendship Hospital,
Beijing, China
| | - Guowang Yang
- Beijing Hospital of Traditional Chinese
Medicine, Beijing, China
| | - Huijuan Cui
- China-Japan Friendship Hospital,
Beijing, China
| | | | - Yuan Li
- China-Japan Friendship Hospital,
Beijing, China
| | - Meng Liu
- China-Japan Friendship Hospital,
Beijing, China
| | - Chao Deng
- China-Japan Friendship Hospital,
Beijing, China
| | - Donggui Wan
- China-Japan Friendship Hospital,
Beijing, China
| | - Yongxia Yan
- Cixian Institute for Cancer Prevention
and Control (Cixian Cancer Hospital), Cixian, Hebei Province, China
| | - Liqun Jia
- China-Japan Friendship Hospital,
Beijing, China
| |
Collapse
|
6
|
Zhong R, Ling X, Cao S, Xu J, Zhang B, Zhang X, Wang H, Han B, Zhong H. Safety and efficacy of dendritic cell-based immunotherapy (DCVAC/LuCa) combined with carboplatin/pemetrexed for patients with advanced non-squamous non-small-cell lung cancer without oncogenic drivers. ESMO Open 2021; 7:100334. [PMID: 34959168 PMCID: PMC8718955 DOI: 10.1016/j.esmoop.2021.100334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Background Our prospective, open-label, single-arm phase II study investigated the safety and efficacy of DCVAC/LuCa (dendritic cell vaccines for lung cancer) combined with standard carboplatin/pemetrexed in advanced non-squamous (nsq) non-small-cell lung cancer (NSCLC). Patients and methods Eligible patients had stage IV nsq NSCLC without oncogenic drivers and had not received prior systemic cancer therapy. Treatment consisted of carboplatin/pemetrexed for up to 6 cycles followed by 21 cycles of pemetrexed maintenance or until progression or intolerance. Non-progression patients after two cycles of chemotherapy started to receive DCVAC/LuCa subcutaneously (s.c.) on day 15 of cycle 3, and thereafter q3w (day 15 of chemotherapy cycles) for up to 15 doses. Dosing of DCVAC/LuCa s.c. varied among patients depending on the baseline number of leucocytes but remained constant for each single patient. Safety was assessed by adverse events (AEs), treatment-related adverse events (TRAEs), serious adverse events (SAEs), and adverse events of special interest (AESIs). Efficacy was measured by overall survival (OS), progression-free survival (PFS), time to progression (TTP), and objective response rate (ORR). Results Sixty-one patients were enrolled. In the safety population (n = 60), eight patients (13.33%) had grade 3 or greater TRAEs, and six patients (10.0%) showed SAEs which were not related to leukapheresis or DC vaccination. Six grade 1 AEs were considered to be related to leukapheresis. No AESIs or DCVAC/LuCa-induced AEs were observed. The 2-year survival rate in the modified intention-to-treat population (n = 44) was 52.57%. Median OS was not reached. Median PFS was 8.0 months, median TTP was 10.2 months, and the ORR was 31.82%. Conclusion In treatment-naïve stage IV nsq NSCLC patients without oncogenic drivers, the combination of carboplatin/pemetrexed and DCVAC/LuCa was well tolerated and showed promising efficacy. Therefore, a study to prove our immunotherapeutic concept in a randomized phase III trial is planned. We investigated the safety and efficacy of DCVAC/LuCa combined with standard carboplatin/pemetrexed in nsq NSCLC. The combination therapy showed a favorable tolerability profile in a selected Chinese population. The 2-year survival rate in the modified intention-to-treat population (n = 44) was 52.57%.
Collapse
Affiliation(s)
- R Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - X Ling
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - S Cao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - B Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - X Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - H Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - B Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.
| | - H Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|