1
|
Song X, Zhu J, Sun F, Wang N, Qiu X, Zhu Q, Qi J, Wang X. Target-centric analysis of hepatitis B: identifying key molecules and pathways for treatment. Sci Rep 2024; 14:26858. [PMID: 39500944 PMCID: PMC11538522 DOI: 10.1038/s41598-024-76567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatitis B virus (HBV) poses a significant global health challenge, potentially leading to severe liver conditions, with currently limited effective treatment options available. Xiao-Chai-Hu-Tang (XCHT), a well-known Traditional Chinese Medicine (TCM) prescription, shows promise in clinical trials for treating HBV. Therefore, screening the complex components of XCHT, identifying the active compounds, and closely exploring the targets associated with hepatitis B may constitute an effective strategy for the development of new therapeutic drugs for the treatment of this disease. A systematic pharmacology and GEO chip analysis identified key targets and pathways for hepatitis B treatment and effective ingredients. Molecular docking and molecular dynamics simulation techniques were used to explore the affinity and stability of active compounds with core targets, while assessing the druggability and safety of the active compounds. The therapeutic effect of the active compound protoporphyrin in XCHT on hepatitis B were mediated through key targets such as AKT1, MAPK1, and LCK, as well as key signaling pathways like PI3K-Akt signaling pathway and Ras signaling pathway. Protoporphyrin effectively bond to active pockets of core targets and demonstrated favorable druggability and a high safety threshold. The study provided valuable insights into the development of effective treatments for hepatitis B.
Collapse
Affiliation(s)
- Xinyu Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinlu Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Fengzhi Sun
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Nonghan Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao Qiu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qingjun Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jianhong Qi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Key Laboratory of TCM Classical Theory, Ministry of Education, Shandong University of TCM, Jinan, 250355, China.
- Shandong Provincial Key Laboratory of TCM for Basic Research, Shandong University of TCM, Jinan, 250355, China.
| |
Collapse
|
2
|
Chen HT, Tung CH, Yu BH, Chen YC. Sixteen prescribed Chinese herbal medicines provide time-dependent cardiorenal and survival benefits in patients with overall and advanced diabetic kidney disease: a real-world study in Taiwan. Front Pharmacol 2024; 15:1297854. [PMID: 39239654 PMCID: PMC11374620 DOI: 10.3389/fphar.2024.1297854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Background A causal connection between oxidative stress and inflammation in diabetes, along with its associated renal and cardiovascular complications, has been established. Sixteen prescribed potentially renoprotective Chinese herbal medicines for diabetic kidney disease (PRCHMDKD), which are scientific Chinese medicine (botanical drug) and categorized into five classes (clearing heat, nourishing yin, dampness dispelling, tonifying qi, and harmonizing formulas), exhibit shared antioxidative properties and target multiple oxidative stress pathways. However, the time-response, cumulative effects, and safety (hyperkalemia risk) of these sixteen PRCHMDKD on cardiorenal and survival outcomes in patients with overall and advanced DKD remain unresolved. Methods This retrospective cohort study analyzed national health insurance claims data in 2000-2017. Four statistical methods, including Cox proportional hazards models, complementary restricted mean survival time (RMST), propensity score matching, and competing risk analysis for end-stage renal disease (ESRD), were employed to investigate this relationship. The study included 43,480 PRCHMDKD users and an equal number of matched nonusers within the overall DKD patient population. For advanced DKD patients, the cohort comprised 1,422 PRCHMDKD users and an equivalent number of matched nonusers. Results PRCHMDKD use in overall and advanced, respectively, DKD patients was associated with time-dependent reductions in adjusted hazard ratios for ESRD (0.66; 95% CI, 0.61-0.70 vs. 0.81; 0.65-0.99), all-cause mortality (0.48; 0.47-0.49 vs. 0.59; 0.50-0.70), and cardiovascular mortality (0.50; 0.48-0.53 vs. 0.61; 0.45-0.82). Significant differences in RMST were observed in overall and advanced, respectively, DKD patients, favoring PRCHMDKD use: 0.31 years (95% CI, 0.24-0.38) vs. 0.61 years (0.13-1.10) for ESRD, 2.71 years (2.60-2.82) vs. 1.50 years (1.03-1.98) for all-cause mortality, and 1.18 years (1.09-1.28) vs. 0.59 years (0.22-0.95) for cardiovascular mortality. Additionally, hyperkalemia risk did not increase. These findings remained consistent despite multiple sensitivity analyses. Notably, the cumulative effects of utilizing at least four or five classes and multiple botanical drugs from the sixteen PRCHMDKD provided enhanced renoprotection for patients with both overall and advanced DKD. This suggests that there is involvement of multiple targets within the oxidative stress pathways associated with DKD. Conclusion This real-world study suggests that using these sixteen PRCHMDKD provides time-dependent cardiorenal and survival benefits while ensuring safety for DKD patients.
Collapse
Affiliation(s)
- Hsiao-Tien Chen
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Hsueh Tung
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ben-Hui Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yi-Chun Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
3
|
Yuan X, Yang L, Gao T, Gao J, Wang B, Liu C, Yuan W. YinChen WuLing powder attenuates non-alcoholic steatohepatitis through the inhibition of the SHP2/PI3K/NLRP3 pathway. Front Pharmacol 2024; 15:1423903. [PMID: 39101141 PMCID: PMC11294207 DOI: 10.3389/fphar.2024.1423903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Background YinChen WuLing Powder (YCWLP) has been recommended by consensus for the treatment of non-alcoholic steatohepatitis (NASH); nevertheless, its specific pharmacological mechanisms remain to be elucidated. This study aims to dissect the mechanisms underlying the therapeutic effects of YCWLP on NASH using a hybrid approach that encompasses network pharmacology, molecular docking, and in vitro experimental validation. Methods We compiled the chemical constituents of YCWLP from the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform (TCMSP), while potential targets were predicted using the SwissTargetPrediction database. To identify NASH-related candidate targets, comprehensive retrieval was carried out using five authoritative databases. Protein-Protein Interaction (PPI) networks of direct targets of YCWLP in NASH treatment were then constructed using the String database, and functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, were conducted through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database. Core targets were discerned using the Molecular Complex Detection (MCODE) and cytoHubba algorithms. Subsequently, molecular docking of key compounds to core targets was conducted using AutoDock software. Moreover, we established a free fatty acid-induced HepG2 cell model to simulate NASH in vitro, with YCWLP medicated serum intervention employed to corroborate the network pharmacology-derived hypotheses. Furthermore, a combination of enzyme-linked immunosorbent assay (ELISA), and Western blotting analyses was employed to investigate the lipid, hepatic enzyme, SHP2/PI3K/NLRP3 signaling pathway and associated cytokine levels. Results The network pharmacology analysis furnished a list of 54 compounds from YCWLP and 167 intersecting targets associated with NASH. Through analytic integration with multiple algorithms, PTPN11 (also known as SHP2) emerged as a core target of YCWLP in mitigating NASH. The in vitro experiments validated that 10% YCWLP medicated serum could remarkably attenuate levels of total cholesterol (TC, 1.25 vs. 3.32) and triglyceride (TG, 0.23 vs. 0.57) while ameliorating alanine aminotransferase (ALT, 7.79 vs. 14.78) and aspartate aminotransferase (AST, 4.64 vs. 8.68) leakage in NASH-afflicted cells. In addition, YCWLP significantly enhanced the phosphorylation of SHP2 (0.55 vs. 0.20) and downregulated the expression of molecules within the SHP2/PI3K/NLRP3 signaling axis, including p-PI3K (0.42 vs. 1.02), NLRP3 (0.47 vs. 0.93), along with downstream effectors-cleaved Caspase-1 (0.21 vs. 0.49), GSDMD-NT (0.24 vs. 0.71), mature interleukin-1β (IL-1β, 0.17 vs. 0.48), pro-IL-1β (0.49 vs. 0.89), mature interleukin-18 (IL-18, 0.15 vs. 0.36), and pro-IL-18 (0.48 vs. 0.95). Conclusion Our research reveals that YCWLP exerts therapeutic effects against NASH by inhibiting lipid accumulation and inflammation, which involves the attenuation of pyroptosis via the SHP2/PI3K/NLRP3 pathway.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liuxin Yang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tinting Gao
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Jiawei Gao
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bingyu Wang
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengxiang Liu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Yuan
- Department of Hepatology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Xia Q, Lei Y, Wang J, Wang Q. Probiotic management and inflammatory factors as a novel treatment in cirrhosis: A systematic review and meta-analysis. Open Life Sci 2023; 18:20220741. [PMID: 37872967 PMCID: PMC10590617 DOI: 10.1515/biol-2022-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/25/2023] Open
Abstract
The interaction between intestinal microecological dysregulation, altered inflammatory factors, and cirrhosis is unclear. The aim of this systematic review and meta-analysis was to synthesize the results of previous studies to assess the efficacy of probiotics in the treatment of cirrhosis and their effect on inflammatory factors, as well as to explore the relationship between gut microecological dysregulation and liver disease to gain a deeper understanding of this interaction. Up to December 2022, eligible studies were identified by searching the following databases: National Knowledge Infrastructure (CNKI), Wanfang Data, Web of Science, PubMed, Embase, Medline, and the Cochrane Library. Statistical analysis was performed using software RevMan Version 5.4. A total of 33 eligible randomized controlled trials were included in the study, and data on probiotic strains, duration of intervention, measures in the control group, and outcomes were extracted and evaluated. Compared to the control group, the experimental group had significant improvements in overall efficacy. The results of the meta-analysis revealed that probiotic use significantly decreased biochemical parameters for liver function, including aspartate transaminase, alanine aminotransferase, and total bilirubin. Similar result was obtained in interleukin-6, tumor necrosis factor-α, and endotoxin. However, probiotic intervention did not significantly affect interleukin-2 and interleukin-10. The current meta-analysis illustrates that probiotic supplementation reduces inflammatory markers and biochemical parameters for liver function in patients with cirrhosis, suggesting that probiotic management may be a novel treatment for cirrhosis. Furthermore, the interaction of the gut microbiota, associated metabolites, and inflammation factors with cirrhosis may provide a promising therapeutic target for the pharmacological and clinical treatment of cirrhosis.
Collapse
Affiliation(s)
- Qinglan Xia
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Jiadun Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan430065, China
- Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan430056, China
| |
Collapse
|
5
|
Wang SJ, Ye W, Li WY, Tian W, Zhang M, Sun Y, Feng YD, Liu CX, Liu SY, Cao W, Meng JR, Li XQ. Effects and mechanisms of Xiaochaihu Tang against liver fibrosis: An integration of network pharmacology, molecular docking and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116053. [PMID: 36529247 DOI: 10.1016/j.jep.2022.116053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a potentially harmful chronic liver disease caused by various etiologies. There is currently no specific drug for liver fibrosis. Xiaochaihu Tang (XCHT) is a traditional formula combined of seven herbs, which was first recorded in the Treatise on Febrile Diseases in Han Dynasty of ancient China. It is widely used in clinic to hepatic protection, analgesic, antipyretic and anti-inflammatory treatment. And it has been recommended for treating chronic hepatitis and chronic cholecystitis in the latest guidelines for the diagnosis and treatment of liver fibrosis with integrated traditional and western medicine. However, the underlying regulatory mechanisms remain elusive. AIM OF THE STUDY This study aims to explore the therapeutic effects of XCHT on liver fibrosis and its underlying molecular mechanisms from the perspective of network pharmacology and experimental research. MATERIALS AND METHODS Carbon tetrachloride (CCl4) induced and bile duct ligation (BDL) induced liver fibrosis models in mice were established to evaluate the anti-fibrosis effects of XCHT in vivo. Potential anti-fibrosis targets of XCHT were screened via network establishment. The underlying mechanisms were uncovered through GO and pathway enrichment analysis. Then, the core targets were identified from protein-protein interaction network by means of the Cytohubba plug-in of Cytoscape. Furthermore, two effective monomer components of XCHT were recognized by molecular docking. Moreover, the predicted components and pathways were verified by in vitro experiments. RESULTS When treated with XCHT, liver fibrosis was alleviated in both mice models, showing as the improvement of liver function, the protection of hepatocytes, the inhibition of HSC activation and the reduction of hepatic collagen accumulation. 540 monomer components, 300 therapeutic targets, 109 signaling pathways, 246 GO biological processes, 77 GO cellular components, 107 GO molecular functions items and core targets were identified by network analysis. Then, 6-gingerol and baicalein were identified as the core components of anti-fibrosis effects of XCHT via leptin or Nrf2 signaling pathway. Furthermore, the experiment in vitro also validated the results. CONCLUSIONS Our study suggests XCHT could alleviate liver fibrosis through multi-targets and multi-pathways; 6-gingerol and baicalein are its core components which may play an important role via leptin or Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shou-Jia Wang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wen Ye
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wan-Yi Li
- School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wen Tian
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Meng Zhang
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Chen-Xu Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Shao-Yuan Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing-Ru Meng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China.
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Qin Medicine R&D of the Shaanxi Province Administration of Traditional Chinese Medicine, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
6
|
Exploring mechanisms of Chaihu-Shugan-San against liver fibrosis by integrated multi-omics and network pharmacology approach. Biosci Rep 2022; 42:231546. [PMID: 35791909 PMCID: PMC9301292 DOI: 10.1042/bsr20221030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chaihu-Shugan-San (CHSGS), a noted traditional Chinese medicine formula, has been used as a complementary and alternative therapy for liver fibrosis. However, the antifibrotic mechanisms of CHSGS still remain unclear. Thus, we used network pharmacology approach in combination with single cell and bulk transcriptomics to elucidate the antifibrotic mechanisms of CHSGS. We first screened out 134 bioactive ingredients of CHSGS through the defined criteria. Then, 1,150 genes were predicted to be targets for CHSGS, while 625 liver fibrosis-associated genes were identified by single cell transcriptomics analysis. Next, 71 intersecting genes of CHSGS and liver fibrosis were defined as the therapeutic targets in CHSGS against liver fibrosis. Further, 21 core targets and 12 core ingredients of CHSGS against liver fibrosis were also identified. Meanwhile, enrichment analyses of core targets highlighted that the key mechanisms of CHSGS against liver fibrosis include modulation of inflammation responses, inhibition of angiogenesis, and regulation of ECM remodeling, of which the most important mechanism was the regulation of ECM remodeling. The molecular docking simulation validated strong binding affinity between the core targets and core ingredients. Furthermore, 62-gene signature may be used for determining the prognosis in cirrhotic patients based on the results of ssGSEA-Cox analysis. In conclusion, this study revealed the multiple pharmacological targets and therapeutic mechanisms of CHSGS against liver fibrosis, which may thus serve as an effective antifibrotic therapy. Meanwhile, CHSGS may improve survival of patients with liver cirrhosis by the interaction of 62-gene signature.
Collapse
|
7
|
Tan J, Tang X, He Y, Xu X, Qiu D, Chen J, Zhang Q, Zhang L. In-patient Expenditure Between 2012 and 2020 Concerning Patients With Liver Cirrhosis in Chongqing: A Hospital-Based Multicenter Retrospective Study. Front Public Health 2022; 10:780704. [PMID: 35350474 PMCID: PMC8957842 DOI: 10.3389/fpubh.2022.780704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Liver cirrhosis is a major global health and economic challenge, placing a heavy economic burden on patients, families, and society. This study aimed to investigate medical expenditure trends in patients with liver cirrhosis and assess the drivers for such medical expenditure among patients with liver cirrhosis. Methods Medical expenditure data concerning patients with liver cirrhosis was collected in six tertiary hospitals in Chongqing, China, from 2012 to 2020. Trends in medical expenses over time and trends according to subgroups were described, and medical expenditure compositions were analyzed. A multiple linear regression model was constructed to evaluate the factors influencing medical expenditure. All expenditure data were reported in Chinese Yuan (CNY), based on the 2020 value, and adjusted using the year-specific health care consumer price index for Chongqing. Results Medical expenditure for 7,095 patients was assessed. The average medical expenditure per patient was 16,177 CNY. An upward trend in medical expenditure was observed in almost all patient subgroups. Drug expenses were the largest contributor to medical expenditure in 2020. A multiple linear regression model showed that insurance type, sex, age at diagnosis, marital status, length of stay, smoking status, drinking status, number of complications, autoimmune liver disease, and the age-adjusted Charlson comorbidity index score were significantly related to medical expenditure. Conclusion Conservative estimates suggest that the medical expenditure of patients with liver cirrhosis increased significantly from 2012 to 2020. Therefore, it is necessary to formulate targeted measures to reduce the personal burden on patients with liver cirrhosis.
Collapse
Affiliation(s)
- Juntao Tan
- Medical Records and Statistics Room, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Xuewen Tang
- Department of Cardiology, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Yuxin He
- Department of Medical Administration, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Xiaomei Xu
- Department of Gastroenterology, The Fifth People's Hospital of Chengdu, Chengdu, China.,Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoping Qiu
- Medical Records and Statistics Room, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Jianfei Chen
- Department of Cardiology, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Qinghua Zhang
- Department of Science and Education, People's Hospital of Chongqing Banan District, Chongqing, China
| | - Lingqin Zhang
- Department of Biomedical Equipment, People's Hospital of Chongqing Bishan District, Chongqing, China
| |
Collapse
|
8
|
Effects and Mechanism of Oxymatrine Combined with Compound Yinchen Granules on the Apoptosis of Hepatocytes through the Akt/FoxO3a/Bim Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8644356. [PMID: 35036441 PMCID: PMC8758272 DOI: 10.1155/2022/8644356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to investigate the effects and mechanism of oxymatrine (OMT) combined with compound yinchen granules (CYG) on the apoptosis of hepatocytes through the Akt/FoxO3a/Bim pathway in rats with acute liver failure. The rat model of acute liver failure was established using lipopolysaccharide/D-galactosamine (LPS/D-GalN). The expression of proteins in rat liver tissues was detected by western blot analysis. The mRNA expression of FoxO3a, Bim, Bax, Bcl-2, and caspase-3 in rat liver tissues was detected by RT-qPCR. The apoptosis rate of rat hepatocytes was determined by flow cytometry. Western blots showed that when compared with the normal group, the expression of p-Akt and p-FoxO3a in the model group was decreased (
), while the expression of Bim was increased (
). Compared with the model group, the expression of p-Akt and p-FoxO3a in the OMT group and the OMT combined with CYG groups was increased (
or
), while the expression of Bim was decreased (
). The Bax/Bcl-2 ratio and caspase-3 protein expression in the model group were significantly higher than those in the normal group (
). The Bax/Bcl-2 ratio and the expression of caspase-3 protein in the OMT group and the OMT combined with CYG groups were significantly lower than those in the model group (
). The results of RT-qPCR were consistent with those of western blot. The results of flow cytometry showed that the apoptosis rate of hepatocytes in the OMT group and the OMT combined with CYG groups was significantly lower than that in the model group (
or
). We concluded that LPS/D-GalN can induce apoptosis of hepatocytes in rats with acute liver failure through the Akt/FoxO3a/Bim pathway. OMT combined with CYG inhibits apoptosis of hepatocytes in rats with acute liver failure via the Akt/FoxO3a/Bim pathway.
Collapse
|
9
|
Jia W, Liang S, Cheng B, Ling C. The Role of Cancer-Associated Fibroblasts in Hepatocellular Carcinoma and the Value of Traditional Chinese Medicine Treatment. Front Oncol 2021; 11:763519. [PMID: 34868982 PMCID: PMC8636329 DOI: 10.3389/fonc.2021.763519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Invasion and metastasis are the main reasons for the high mortality of liver cancer, which involve the interaction of tumor stromal cells and malignant cells. Cancer-associated fibroblasts (CAFs) are one of the major constituents of tumor stromal cells affecting tumor growth, invasion, and metastasis. The heterogeneous properties and sources of CAFs make both tumor-supporting and tumor-suppression effects possible. The mechanisms for CAFs in supporting hepatocellular carcinoma (HCC) progression can be categorized into upregulated aggressiveness and stemness, transformed metabolism toward glycolysis and glutamine reductive carboxylation, polarized tumor immunity toward immune escape of HCC cells, and increased angiogenesis. The tumor-suppressive effect of fibroblasts highlights the functional heterogenicity of CAF populations and provides new insights into tumor–stromal interplay mechanisms. In this review, we introduced several key inflammatory signaling pathways in the transformation of CAFs from normal stromal cells and the heterogeneous biofunctions of activated CAFs. In view of the pleiotropic regulation properties of traditional Chinese medicine (TCM) and heterogeneous effects of CAFs, we also introduced the application and values of TCM in the treatment of HCC through targeting CAFs.
Collapse
Affiliation(s)
- Wentao Jia
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Shufang Liang
- Department of Traditional Chinese Medicine, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Binbin Cheng
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Changquan Ling
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
Zhang Y, Zhao M, Liu Y, Liu T, Zhao C, Wang M. Investigation of the therapeutic effect of Yinchen Wuling Powder on CCl 4-induced hepatic fibrosis in rats by 1H NMR and MS-based metabolomics analysis. J Pharm Biomed Anal 2021; 200:114073. [PMID: 33873073 DOI: 10.1016/j.jpba.2021.114073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/27/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023]
Abstract
Hepatic fibrosis (HF) is a typical consequence of various chronic liver diseases, and there is still no ideal drug for its treatment. Yinchen Wuling Powder (YCWLP), a famous traditional Chinese medicine prescription, is effective for the treatment of icteric hepatitis, hepatic fibrosis, non-alcoholic fatty liver disease and other liver diseases in clinical practices, however, the underlying mechanisms of YCWLP on HF is still unclear. In this study, 1H NMR and MS-based metabolomics analysis along with body weight change, serum liver function indexes, serum liver fibrosis index and histopathological observations of liver were applied to evaluate the therapeutic effect of YCWLP on hepatic fibrosis and the mechanism associated with this. The results of the pharmacodynamics study show that YCWLP has a significant therapeutic effect on hepatic fibrosis. As for the metabolomics research, 7 metabolites in the plasma samples, 28 in the urine samples and 6 in the liver samples were significantly altered due to the protective effect of YCWLP on CCl4-induced hepatic fibrosis. These endogenous metabolites are involved in amino acid metabolism, carbohydrate metabolism, glycerophospholipid metabolism and gut bacteria metabolism. These findings suggest that YCWLP could treat hepatic fibrosis by promoting urea circulation and reducing blood ammonia accumulation, improving carbohydrate metabolism and reducing oxidative stress, improving glycerophospholipid metabolism and protecting cell membrane, and regulating intestinal flora metabolism.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Yangyang Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China.
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Hu X, Shang G, Zhang J, Chen Z, Fu L, Li J, Lu X. Clinical Yi-guan decoction for liver cirrhosis: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e24530. [PMID: 33787570 PMCID: PMC8021356 DOI: 10.1097/md.0000000000024530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND At present, Liver Cirrhosis (LC) is common in most later liver and gallbladder diseases that its morbidity and mortality seriously affect human health. The limitation and effectiveness of western medicine on LC have become a huge clinical challenge. However, a large number of clinical studies have shown that Yi-guan decoction has become a complementary treatment for LC. Therefore, this systematic review will aim to explore the safety and feasibility of Yi-guan decoction in the treatment of LC. METHODS We will conduct a comprehensive literature search in Medline, PubMed, Cochrane Database of Systematic Reviews, Embase, Chinese Biomedical Literatures Database, China National Knowledge Infrastructure, Wang Fang Database, Chinese Scientific Journal Database from inception to December 2020 without any language restriction, In addition, relevant literature will be searched manually. The main subject terms searched: "Yi-guan decoction" "cirrhosis" "LC". Data entry will be performed by 2 researchers separately. Primary outcomes will be concluded: Liver function indicators: Total bilirubin, Alanine transaminase, Aspartate aminotransferase, etc. Secondary outcome indicators: Total effective rate, Nutrition index, Survival analysis, Adverse events; All randomized controlled trials collected in this study will be evaluated and rated using the Cochrane risk-of-biasassessment tool. Meta-analysis will be performed using RevMan 5.4.0 software. The heterogeneity test will be conducted between the studies, P < .1 and I2 > 50% are the thresholds for the tests. Using solid effect model or random effect model will be based on its heterogeneity value. RESULTS This systematic review provides a theoretical basis for Yi-guan decoction to treat LC, we will report this result soon. CONCLUSION This study will explore Yi-guan decoction can will be used as one of the non drug therapies to prevent or treat LC. TRIAL REGISTRATION NUMBER INPLASY2020120114.
Collapse
Affiliation(s)
- Xingyao Hu
- Research Center for Differention and Development of TCM Basic Theory
| | - Guangbin Shang
- Research Center for Differention and Development of TCM Basic Theory
| | - Jie Zhang
- Research Center for Differention and Development of TCM Basic Theory
| | - Zhong Chen
- Research Center for Differention and Development of TCM Basic Theory
| | - Liu Fu
- Research Center for Differention and Development of TCM Basic Theory
| | - Jun Li
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| | - Xiaonan Lu
- College of Traditional Chinese Medicine of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
12
|
Feng QS. Traditional Chinese medicine treatment of liver cirrhosis: Current status and future prospects. Shijie Huaren Xiaohua Zazhi 2021; 29:159-164. [DOI: 10.11569/wcjd.v29.i4.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese medicine (TCM) has unique advantages in the treatment of liver cirrhosis based on its particular theory and the experience with prevention and treatment. In order to promote the wide application of TCM in liver cirrhosis, it is necessary to strengthen the research of TCM in liver cirrhosis. This paper reviews the present treatment of liver cirrhosis by TCM, and discusses the existing problems and prospects, aiming to provide some scientific clues for the treatment of this refractory disease.
Collapse
Affiliation(s)
- Quan-Sheng Feng
- Chengdu University of TCM, Chengdu 610075, Sichuan Province, China
| |
Collapse
|
13
|
An Integrative Analysis Reveals the Potential Mechanism between Herbal Medicine Yinchen and Immunoregulation in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2020:8886914. [PMID: 33457419 PMCID: PMC7785361 DOI: 10.1155/2020/8886914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Aims. Abundant evidences in traditional Chinese medicine (TCM) supported the therapeutic value of herbal medicine Yinchen in hepatocellular carcinoma (HCC), but the underlying mechanism remains to be investigated. Main Methods. The intersection of immune gene set, module genes, HCC-associated genes, and target genes of Yinchen was employed for further analyses. The module genes were identified by weighted gene coexpression network analysis, and the other three gene sets were obtained from public databases. Subsequently, we further explored the clinical value and immunoregulation of the hub gene of intersection. The relevant pathways related to hub gene expression were investigated by gene set enrichment analysis. Finally, the interaction of active compounds and target genes was validated by molecular docking. Key Findings. Thirteen active compounds and 90 target genes of Yinchen were included. After constructing the network among Yinchen, target genes, and HCC, BIRC5 was identified as the hub gene. Significant difference was found between the high-expressed group and the low-expressed group in survival and stage. Different immune subtypes also presented significant difference in BIRC5 expression. Moreover, NK cell and T cell (CD4+ effector memory and CD4+ memory resting) were negatively correlated with BIRC5 expression, while CTLA4 and LAG3 were positively correlated. The results of molecular docking further validated a good binding activity of quercetin-BIRC5 interaction. Significance. In summary, our research identified for the first time a novel underlying association among herbal medicine Yinchen, BIRC5, immunotherapy, and HCC. We speculated that Yinchen may target the immune checkpoints (CTLA4 and LAG3) and activate the immune cells by suppressing BIRC5.
Collapse
|