1
|
Durdik M, Markova E, Kosik P, Vigasova K, Gulati S, Jakl L, Vrobelova K, Fekete M, Zavacka I, Pobijakova M, Dolinska Z, Belyaev I. Assessment of Individual Radiosensitivity in Breast Cancer Patients Using a Combination of Biomolecular Markers. Biomedicines 2023; 11:biomedicines11041122. [PMID: 37189740 DOI: 10.3390/biomedicines11041122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
About 5% of patients undergoing radiotherapy (RT) develop RT-related side effects. To assess individual radiosensitivity, we collected peripheral blood from breast cancer patients before, during and after the RT, and γH2AX/53BP1 foci, apoptosis, chromosomal aberrations (CAs) and micronuclei (MN) were analyzed and correlated with the healthy tissue side effects assessed by the RTOG/EORTC criteria. The results showed a significantly higher level of γH2AX/53BP1 foci before the RT in radiosensitive (RS) patients in comparison to normal responding patients (NOR). Analysis of apoptosis did not reveal any correlation with side effects. CA and MN assays displayed an increase in genomic instability during and after RT and a higher frequency of MN in the lymphocytes of RS patients. We also studied time kinetics of γH2AX/53BP1 foci and apoptosis after in vitro irradiation of lymphocytes. Higher levels of primary 53BP1 and co-localizing γH2AX/53BP1 foci were detected in cells from RS patients as compared to NOR patients, while no difference in the residual foci or apoptotic response was found. The data suggested impaired DNA damage response in cells from RS patients. We suggest γH2AX/53BP1 foci and MN as potential biomarkers of individual radiosensitivity, but they need to be evaluated with a larger cohort of patients for clinics.
Collapse
Affiliation(s)
- Matus Durdik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Eva Markova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarina Vigasova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lukas Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarina Vrobelova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marta Fekete
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Ingrid Zavacka
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Margita Pobijakova
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Zuzana Dolinska
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
2
|
Khvostunov IK, Nasonova E, Krylov V, Rodichev A, Kochetova T, Shepel N, Korovchuk O, Kutsalo P, Shegai P, Kaprin A. Cytogenetic Damage Induced by Radioiodine Therapy: A Follow-Up Case Study. Int J Mol Sci 2023; 24:ijms24065128. [PMID: 36982202 PMCID: PMC10049272 DOI: 10.3390/ijms24065128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The risk of toxicity attributable to radioiodine therapy (RIT) remains a subject of ongoing research, with a whole-body dose of 2 Gy proposed as a safe limit. This article evaluates the RIT-induced cytogenetic damage in two rare differentiated thyroid cancer (DTC) cases, including the first follow-up study of a pediatric DTC patient. Chromosome damage in the patient's peripheral blood lymphocytes (PBL) was examined using conventional metaphase assay, painting of chromosomes 2, 4, and 12 (FISH), and multiplex fluorescence in situ hybridization (mFISH). Patient 1 (female, 1.6 y.o.) received four RIT courses over 1.1 years. Patient 2 (female, 49 y.o.) received 12 courses over 6.4 years, the last two of which were examined. Blood samples were collected before and 3-4 days after the treatment. Chromosome aberrations (CA) analyzed by conventional and FISH methods were converted to a whole-body dose accounting for the dose rate effect. The mFISH method showed an increase in total aberrant cell frequency following each RIT course, while cells carrying unstable aberrations predominated in the yield. The proportion of cells containing stable CA associated with long-term cytogenetic risk remained mostly unchanged during follow-up for both patients. A one-time administration of RIT was safe, as the threshold of 2 Gy for the whole-body dose was not exceeded. The risk of side effects projected from RIT-attributable cytogenetic damage was low, suggesting a good long-term prognosis. In rare cases, such as the ones reviewed in this study, individual planning based on cytogenetic biodosimetry is strongly recommended.
Collapse
Affiliation(s)
- Igor K Khvostunov
- A.F. Tsyb Medical Radiological Research Center (MRRC)-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroliova St., 249036 Obninsk, Russia
| | - Elena Nasonova
- Joint Institute for Nuclear Research (JINR), 6 Joliot-Curie St., 141980 Dubna, Russia
| | - Valeriy Krylov
- A.F. Tsyb Medical Radiological Research Center (MRRC)-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroliova St., 249036 Obninsk, Russia
| | - Andrei Rodichev
- A.F. Tsyb Medical Radiological Research Center (MRRC)-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroliova St., 249036 Obninsk, Russia
| | - Tatiana Kochetova
- A.F. Tsyb Medical Radiological Research Center (MRRC)-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroliova St., 249036 Obninsk, Russia
| | - Natalia Shepel
- A.F. Tsyb Medical Radiological Research Center (MRRC)-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroliova St., 249036 Obninsk, Russia
| | - Olga Korovchuk
- A.F. Tsyb Medical Radiological Research Center (MRRC)-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroliova St., 249036 Obninsk, Russia
| | - Polina Kutsalo
- Joint Institute for Nuclear Research (JINR), 6 Joliot-Curie St., 141980 Dubna, Russia
| | - Petr Shegai
- Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 2 Botkinskiy Proezd, 125284 Moscow, Russia
| | - Andrei Kaprin
- Federal State Budgetary Institution, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 2 Botkinskiy Proezd, 125284 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Professional Education, Department of Oncology and Radiology Named after N.P. Kharchenko, Medical Institute, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
3
|
Chromosome Aberrations in Lymphocytes of Patients Undergoing Radon Spa Therapy: An Explorative mFISH Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010757. [PMID: 34682498 PMCID: PMC8535331 DOI: 10.3390/ijerph182010757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 01/06/2023]
Abstract
In the present exploratory study, we aim to elucidate the action of radon in vivo and to assess the possible health risks. Chromosome aberrations were analyzed in lymphocytes of two patients (P1, P2) undergoing radon spa therapy in Bad Steben (Germany). Both patients, suffering from painful chronic degenerative disorders of the spine and joints, received nine baths (1.2 kBq/L at 34 °C) over a 3-week period. Chromosome aberrations were analyzed before and 6, 12 and 30 weeks after the start of therapy using the high-resolution multiplex fluorescence in situ hybridization (mFISH) technique. For comparison, the lymphocytes from two healthy donors (HD1, HD2) were examined. P1 had a higher baseline aberration frequency than P2 and both healthy donors (5.3 ± 1.3 vs. 2.0 ± 0.8, 1.4 ± 0.3 and 1.1 ± 0.1 aberrations/100 analyzed metaphases, respectively). Complex aberrations, biomarkers of densely ionizing radiation, were found in P1, P2 and HD1. Neither the aberration frequency nor the fraction of complex aberrations increased after radon spa treatment, i.e., based on biological dosimetry, no increased health risk was found. It is worth noting that a detailed breakpoint analysis revealed potentially clonal aberrations in both patients. Altogether, our data show pronounced inter-individual differences with respect to the number and types of aberrations, complicating the risk analysis of low doses such as those received during radon therapy.
Collapse
|
4
|
Imano N, Nishibuchi I, Kawabata E, Kinugasa Y, Shi L, Sakai C, Ishida M, Sakane H, Akita T, Ishida T, Kimura T, Murakami Y, Tanaka K, Horikoshi Y, Sun J, Nagata Y, Tashiro S. Evaluating Individual Radiosensitivity for the Prediction of Acute Toxicities of Chemoradiotherapy in Esophageal Cancer Patients. Radiat Res 2021; 195:244-252. [PMID: 33400798 DOI: 10.1667/rade-20-00234.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 11/03/2022]
Abstract
In this work, individual radiosensitivity was evaluated using DNA damage response and chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBLs) for the prediction of acute toxicities of chemoradiotherapy (CRT) in esophageal cancer patients. Eighteen patients with esophageal cancer were enrolled in this prospective study. Prescribed doses were 60 Gy in 11 patients and 50 Gy in seven patients. Patients received 2 Gy radiotherapy five days a week. PBLs were obtained during treatment just before and 15 min after 2 Gy radiation therapy on the days when the cumulative dose reached 2, 20, 40 Gy and 50 or 60 Gy. PBLs were also obtained four weeks and six months after radiotherapy in all and 13 patients, respectively. Dicentric and ring chromosomes in PBLs were counted to evaluate the number of CAs. Gamma-H2AX foci per cell were scored to assess DNA double-strand breaks. We analyzed the association between these factors and adverse events. The number of γ-H2AX foci before radiotherapy showed no significant increase during CRT, while their increment was significantly reduced with the accumulation of radiation dose. The mean number of CAs increased during CRT up to 1.04 per metaphase, and gradually decreased to approximately 60% six months after CRT. Five patients showed grade 3 toxicities during or after CRT (overreactors: OR), while 13 had grade 2 or less toxicities (non-overreactors: NOR). The number of CAs was significantly higher in the OR group than in the NOR group at a cumulative dose of 20 Gy (mean value: 0.63 vs. 0.34, P = 0.02), 40 Gy (mean value: 0.90 vs. 0.52, P = 0.04), and the final day of radiotherapy (mean value: 1.49 vs. 0.84, P = 0.005). These findings suggest that number of CAs could be an index for predicting acute toxicities of CRT for esophageal cancer.
Collapse
Affiliation(s)
- Nobuki Imano
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ikuno Nishibuchi
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Emi Kawabata
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuha Kinugasa
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Lin Shi
- Institute of Medical Imaging and Digital Medicine, School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Sakane
- Department of Diagnostic Radiology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tomoki Kimura
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kimio Tanaka
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Balajee AS, Hadjidekova V. Retrospective cytogenetic analysis of unstable and stable chromosome aberrations in the victims of radiation accident in Bulgaria. Mutat Res 2020; 861-862:503295. [PMID: 33551098 DOI: 10.1016/j.mrgentox.2020.503295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Five occupational workers in an industrial sterilization unit at Stamboliyski in Bulgaria were accidentally exposed to a very high specific activity of Cobalt-60 source on June 14, 2011. Initial cytogenetic analysis performed on days 2 and 7 after radiation exposure revealed the whole body absorbed radiation doses of 5.32 Gy for patient 1, 3.40 Gy for patient 2, 2.50 Gy for patient 3, 1.91 Gy for patient 4 and 1.24 Gy for patient 5 [1]. Here, a retrospective multicolor FISH analysis was performed on three patients (patients 1, 2 and 3) using the blood samples collected over a period of 4 years from 2012 through 2015. In all the three patients, cells with stable chromosome aberrations (simple and complex chromosome translocations) were 3-4 folds more than cells with unstable chromosome aberrations (dicentric, rings and excess acentric chromosome fragments). In corroboration with the results reported in the literature, we observed that the time dependent decline of dicentrics, rings and excess acentric fragments occurred much more rapidly than chromosome translocations in the blood samples of the three victims. Further, inter-individual variation in the decline of radiation induced chromosome aberrations was also noticed among the three victims. The reason for the increased persistence of balanced chromosome translocations is not entirely clear but may be attributed to certain subsets of long-lived T-lymphocytes. The retrospective cytogenetic follow up studies on radiation-exposed victims may be useful for determining the extent of genomic/chromosomal instability in the hematopoietic system.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, USA.
| | | |
Collapse
|