1
|
Peptide Modification Diminishes HLA Class II-restricted CD4 + T Cell Recognition of Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms232315234. [PMID: 36499557 PMCID: PMC9738740 DOI: 10.3390/ijms232315234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/08/2022] Open
Abstract
Prostate cancer poses an ongoing problem in the western world accounting for significant morbidity and mortality in the male population. Current therapy options are effective in treating most prostate cancer patients, but a significant number of patients progress beyond a manageable disease. For these patients, immunotherapy has emerged as a real option in the treatment of the late-stage metastatic disease. Unfortunately, even the most successful immunotherapy strategies have only led to a four-month increase in survival. One issue responsible for the shortcomings in cancer immunotherapy is the inability to stimulate helper CD4+ T cells via the HLA class II pathway to generate a potent antitumor response. Obstacles to proper HLA class II stimulation in prostate cancer vaccine design include the lack of detectable class II proteins in prostate tumors and the absence of defined class II specific prostate tumor antigens. Here, for the first time, we show that the insertion of a lysosomal thiol reductase (GILT) into prostate cancer cells directly enhances HLA class II antigen processing and results in increased CD4+ T cell activation by prostate cancer cells. We also show that GILT insertion does not alter the expression of prostate-specific membrane antigen (PSMA), an important target in prostate cancer vaccine strategies. Our study suggests that GILT expression enhances the presentation of the immunodominant PSMA459 epitope via the HLA class II pathway. Biochemical analysis showed that the PSMA459 peptide was cysteinylated under a normal physiologic concentration of cystine, and this cysteinylated form of PSMA459 inhibited T cell activation. Taken together, these results suggest that GILT has the potential to increase HLA class II Ag presentation and CD4+ T cell recognition of prostate cancer cells, and GILT-expressing prostate cancer cells could be used in designing cell therapy and/or vaccines against prostate cancer.
Collapse
|
2
|
Li F, Huang C, Qiu L, Li P, Shi J, Zhang G. Comprehensive Analysis of Immune-Related Metabolic Genes in Lung Adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:894754. [PMID: 35898471 PMCID: PMC9309246 DOI: 10.3389/fendo.2022.894754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The immunotherapy of lung adenocarcinoma (LUAD) has received much attention in recent years and metabolic reprogramming is linked to immune infiltration in the tumor microenvironment. Therefore, it is indispensable to dissect the role of immune-related metabolic genes in lung adenocarcinoma. METHODS In this study, we screened immune-related genes by Pearson correlation. The function of these genes was explored by gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. The differently expressed immune-related genes were analyzed by Limma. Furthermore, the LUAD patients were clustered based on immune-related genes through consensus clustering. The Unicox was used to identify survival-immune-related metabolic genes. The Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was used to optimize the gene sets. A prediction model was constructed and tested. The potential therapeutic target was selected based on two criteria, these immune-related metabolic genes that were highly expressed in tumor tissues and negatively correlated with the survival of patients in LUAD. Quantitative real-time PCR (qRT-PCR) was used for in vitro experimental validations. RESULTS We identified 346 immune-related genes, mainly involved in arachidonic acid metabolism and peroxisome proliferator-activated receptor (PPAR) signaling. Moreover, a total of 141 immune-related genes were dysregulated between tumor and normal tissues. We clustered three subtypes of LUAD based on immune-related metabolic genes and these subtypes exhibited different survival and immune status. We found Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) as a potential therapeutic target, which is positively correlated with the cyclin-dependent kinase family of genes. CONCLUSION We comprehensively analyzed the immune-related metabolic genes in LUAD. RRM2 was determined as a promising metabolic checkpoint for lung adenocarcinoma.
Collapse
|
3
|
HLA-DPA1 gene is a potential predictor with prognostic values in multiple myeloma. BMC Cancer 2020; 20:915. [PMID: 32972413 PMCID: PMC7513295 DOI: 10.1186/s12885-020-07393-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Multiple myeloma (MM) is an incurable hematological tumor, which is closely related to hypoxic bone marrow microenvironment. However, the underlying mechanisms are still far from fully understood. We took integrated bioinformatics analysis with expression profile GSE110113 downloaded from National Center for Biotechnology Information-Gene Expression Omnibus (NCBI-GEO) database, and screened out major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) as a hub gene related to hypoxia in MM. Methods Differentially expressed genes (DEGs) were filtrated with R package “limma”. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were performed using “clusterProfiler” package in R. Then, protein-protein interaction (PPI) network was established. Hub genes were screened out according to Maximal Clique Centrality (MCC). PrognoScan evaluated all the significant hub genes for survival analysis. ScanGEO was used for visualization of gene expression in different clinical studies. P and Cox p value < 0.05 was considered to be statistical significance. Results HLA-DPA1 was finally picked out as a hub gene in MM related to hypoxia. MM patients with down-regulated expression of HLA-DPA1 has statistically significantly shorter disease specific survival (DSS) (COX p = 0.005411). Based on the clinical data of GSE47552 dataset, HLA-DPA1 expression showed significantly lower in MM patients than that in healthy donors (HDs) (p = 0.017). Conclusion We identified HLA-DPA1 as a hub gene in MM related to hypoxia. HLA-DPA1 down-regulated expression was associated with MM patients’ poor outcome. Further functional and mechanistic studies are need to investigate HLA-DPA1 as potential therapeutic target.
Collapse
|
4
|
Balhorn R, Balhorn MC, Balakrishnan K, Rebhun RB. The small molecule antibody mimic SH7139 targets a family of HLA-DRs expressed by B-cell lymphomas and other solid cancers. J Drug Target 2020; 28:1124-1136. [PMID: 32588667 DOI: 10.1080/1061186x.2020.1787418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective high-affinity ligands (SHALs) belong to a novel class of small-molecule cancer therapeutics that function as targeted prodrugs. SH7139, the most advanced of the SHAL drugs designed to bind to a unique β-subunit structural epitope located on HLA-DR10, has exhibited exceptional preclinical efficacy and safety profiles. A comparison of SH7139 and SH7129, a biotin derivative of the drug developed for use as a diagnostic, showed the incorporation of a biotin tag did not alter the SHALs ability to target or kill HLA-DR10 expressing Raji cells. The use of SH7129 in an immuno-histochemical type assay to stain peripheral blood mononuclear cells (PBMCs) obtained from individuals expressing specific HLA-DRB1 alleles has also revealed that in addition to HLA-DR10, seven other more commonly expressed HLA-DRs are targeted by the drug. Computational dockings of the SHAL's recognition ligands to a number of HLA-DR structures explain, in part, why the targeting domains of SH7129 and SH7139 bind to some HLA-DRs but not others. The results also substantiate the selectivity of SH7129 and suggest it may prove useful as a companion diagnostic for pre-screening biopsy samples to identify those patients whose tumours should respond to SH7139 therapy.
Collapse
Affiliation(s)
| | | | - Karuppiah Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Robert B Rebhun
- The Comparative Cancer Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Smith HJ, McCaw TR, Londono AI, Katre AA, Meza-Perez S, Yang ES, Forero A, Buchsbaum DJ, Randall TD, Straughn JM, Norian LA, Arend RC. The antitumor effects of entinostat in ovarian cancer require adaptive immunity. Cancer 2018; 124:4657-4666. [PMID: 30423192 DOI: 10.1002/cncr.31761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/15/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ovarian cancer is poorly immunogenic; however, increased major histocompatibility complex class II (MHCII) expression correlates with improved immune response and prolonged survival in patients with ovarian cancer. The authors previously demonstrated that the histone deacetylase inhibitor entinostat increases MHCII expression on ovarian cancer cells. In the current study, they evaluated whether entinostat treatment and resultant MHCII expression would enhance beneficial immune responses and impair tumor growth in mice with ovarian cancer. METHODS C57BL/6 mice bearing intraperitoneal ID8 tumors were randomized to receive entinostat 20 mg/kg daily versus control. Changes in messenger RNA (mRNA) expression of 46 genes important for antitumor immunity were evaluated using NanoString analysis, and multicolor flow cytometry was used to measure changes in protein expression and tumor-infiltrating immune cells. RESULTS Entinostat treatment decreased the growth of both subcutaneously and omental ID8 tumors and prolonged survival in immunocompetent C57BL/6 mice. NanoString analysis revealed significant changes in mRNA expression in 21 of 46 genes, including increased expression of the MHCI pathway, the MHCII transactivator (CIITA), interferon γ, and granzyme B. C57BL/6 mice that received entinostat had increased MHCII expression on omental tumor cells and a higher frequency of tumor-infiltrating, CD8-positive T cells by flow cytometry. In immunocompromised mice, treatment with entinostat had no effect on tumor size and did not increase MHCII expression. CONCLUSIONS In the current murine ovarian cancer model, entinostat treatment enhances beneficial immune responses. Moreover, these antitumor effects of entinostat are dependent on an intact immune system. Future studies combining entinostat with checkpoint inhibitors or other immunomodulatory agents may achieve more durable antitumor responses in patients with ovarian cancer.
Collapse
Affiliation(s)
- Haller J Smith
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tyler R McCaw
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Angelina I Londono
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashwini A Katre
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andres Forero
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Michael Straughn
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rebecca C Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Epigenetic therapy for the treatment of epithelial ovarian cancer: A clinical review. Gynecol Oncol Rep 2017; 20:81-86. [PMID: 28378010 PMCID: PMC5369329 DOI: 10.1016/j.gore.2017.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/11/2017] [Indexed: 02/06/2023] Open
Abstract
Despite a good initial response to chemotherapy, the majority of patients with epithelial ovarian cancer will eventually recur and die of their disease. The introduction of targeted therapies to traditional chemotherapy regimens has done little to improve overall survival in women with ovarian cancer. It has become increasingly apparent that the cancer epigenome contributes significantly to the pathogenesis of ovarian cancer and may play an important role in cell proliferation, metastasis, chemoresistance, and immune tolerance. Epigenetic therapies such as DNA methyltransferase inhibitors and histone deacetylase inhibitors have the potential to reverse these epigenetic changes; however, more research is needed to determine how to incorporate these agents into clinical practice. In this review, we discuss the common epigenetic changes that occur in epithelial ovarian cancer, the current epigenetic therapies that may target these changes, and the clinical experience with epigenetic therapy for the treatment of epithelial ovarian cancer. Epigenetic changes are important in the pathogenesis of ovarian cancer. Histone modification and DNA methylation are the most common epigenetic changes. Targeting the epigenome in ovarian cancer may improve response to other therapies.
Collapse
|
7
|
Ovarian cancer and the immune system - The role of targeted therapies. Gynecol Oncol 2016; 142:349-56. [PMID: 27174875 DOI: 10.1016/j.ygyno.2016.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 01/21/2023]
Abstract
The majority of patients with epithelial ovarian cancer are diagnosed with advanced disease. While many of these patients will respond initially to chemotherapy, the majority will relapse and die of their disease. Targeted therapies that block or activate specific intracellular signaling pathways have been disappointing. In the past 15years, the role of the immune system in ovarian cancer has been investigated. Patients with a more robust immune response, as documented by the presence of lymphocytes infiltrating within their tumor, have increased survival and better response to chemotherapy. In addition, a strong immunosuppressive environment often accompanies ovarian cancer. Recent research has identified potential therapies that leverage the immune system to identify and destroy tumor cells that previously evaded immunosurveillance mechanisms. In this review, we discuss the role of the immune system in ovarian cancer and focus on specific pathways and molecules that show a potential for targeted therapy. We also review the ongoing clinical trials using targeted immunotherapy in ovarian cancer. The role of targeted immunotherapy in patients with ovarian cancer represents a field of growing research and clinical importance.
Collapse
|
8
|
Abstract
Major histocompatibility complex (MHC) Class II-positive, invariant chain (Ii)-suppressed tumor cells induce both T helper and cytotoxic T lymphocytes' responses. Genetically controlled immunotherapy could be utilized for prophylactic vaccination of tumor-free individuals who are at high risk of developing tumor and can be therapeutic for treating established tumors that are nonresponsive to existing therapies. In this chapter, we provide practical methods to create a potent in vivo tumor cell vaccine by inducing MHC Class II and Ii using MHC Class II transactivator (CIITA) or interferon-gamma (IFN-γ) and subsequently inhibiting Ii by antisense oligonucleotides. We also describe the development of an adenoviral vector.
Collapse
|
9
|
Leite FA, Lira RCP, Fedatto PF, Antonini SRR, Martinelli CE, de Castro M, Neder L, Ramalho LNZ, Tucci S, Mastelaro MJ, Seidinger AL, Cardinalli IA, Yunes JA, Brandalise SR, Tone LG, Scrideli CA. Low expression of HLA-DRA, HLA-DPA1, and HLA-DPB1 is associated with poor prognosis in pediatric adrenocortical tumors (ACT). Pediatr Blood Cancer 2014; 61:1940-8. [PMID: 25156210 DOI: 10.1002/pbc.25118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Low expression of HLA class II antigens has been associated with more aggressive disease in several human malignancies including adult adrenocortical tumors (ACT), but their clinical relevance in pediatric ACT needs to be investigated. PROCEDURE This study analyzed the expression profile of three class II histocompatibility genes (HLA-DRA, HLA-DPA1, and HLA-DPB1) in 58 consecutive pediatric ACT (13 adenomas and 45 carcinomas) by quantitative real time PCR and their association with clinical and biological features. HLA-DPA1 protein level was determined by immunohistochemistry. RESULTS A significant association (P < 0.01) was observed between lower expression levels of the three genes analyzed and poor prognostic factors such as age ≥ 4 years, tumor size ≥ 200 cm(3), tumor weight ≥ 100 g, and metastatic disease; the presence of an unfavorable event and death. Underexpression of the HLA-DRA, HLA-DPA1, and HLA-DPB1 genes were associated with lower 5-year event-free survival (EFS) (P = 0.017, P < 0.001, and P = 0.017, respectively). Cox multivariate analysis showed that HLA-DPA1 was an independent prognostic factor (P = 0.029) when analyzed in association with stage IV, age and tumor size. Significantly lower EFS was also observed in patients with negative/weak immunostaining for HLA-DPA1 (P = 0.002). Similar results were observed when only patients classified as having carcinomas were analyzed. CONCLUSION Our results suggest that lower expression of HLA-DRA, HLA-DPA1, and HLA-DPB1 genes may contribute to more aggressive disease in pediatric ACT. HLA-DPA1 immunostaining may represent potential aggressiveness marker in this tumor.
Collapse
Affiliation(s)
- Fabíola A Leite
- Department of Pediatrics, Ribeirão Preto Medicine School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sprung CN, Yang Y, Forrester HB, Li J, Zaitseva M, Cann L, Restall T, Anderson RL, Crosbie JC, Rogers PAW. Genome-wide transcription responses to synchrotron microbeam radiotherapy. Radiat Res 2012; 178:249-59. [PMID: 22974124 DOI: 10.1667/rr2885.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunity and Infectious Disease, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Doonan BP, Haque A. HLA Class II Antigen Presentation in Prostate Cancer Cells: A Novel Approach to Prostate Tumor Immunotherapy. ACTA ACUST UNITED AC 2010; 3:1-7. [PMID: 24163711 DOI: 10.2174/1876401001003010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostate cancer is a deadly disease that is in drastic need of new treatment strategies for late stage and metastatic prostate cancer. Immunotherapy has emerged as a viable option to fill this void. Clinical trials have been conducted that induce tumor clearance through cytotoxic T lymphocyte (CTL) activation, these studies have had mixed outcomes with the overlying problem being the lack of a complete immune response with sustained killing and the formation of tumor specific memory cells. To overcome this, we have outlined the need for activating the HLA class II pathway in inducing a sustained CD8+ T cell response and the development of effective memory. We have also discussed the ability of prostate cancer cells to express stable HLA class II molecules that can be manipulated for tumor antigen (Ag) processing and presentation. This review also sets to outline new directions that exist for the use of class II-restricted Ags/peptides in devising cancer vaccines as well as combined chemoimmunotherapy. A better understanding of these concepts will improve future cancer vaccine studies and further the field of cancer immunobiology.
Collapse
Affiliation(s)
- Bently Patrick Doonan
- Department of Microbiology and Immunology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | | |
Collapse
|
12
|
Mittendorf EA, Holmes JP, Murray JL, von Hofe E, Peoples GE. CD4+T cells in antitumor immunity: utility of an Ii-Key HER2/neu hybrid peptide vaccine (AE37). Expert Opin Biol Ther 2008; 9:71-8. [DOI: 10.1517/14712590802614538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Rickard S, Ono SJ. Invariant chain+ N2a neuroblastoma cells stably expressing the class II MHC transactivator CIITA fail to stimulate anti-tumor immunity. Exp Mol Pathol 2008; 85:147-54. [DOI: 10.1016/j.yexmp.2008.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 11/28/2022]
|
14
|
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men. Recent evidence suggests that reduced expression of target protein antigens and human leukocyte antigen (HLA) molecules is the predominant immune escape mechanism of malignant prostate tumor cells. The purpose of this study was to investigate the prospect of antigen specific immunotherapy against prostate cancer via the HLA class II pathway of immune recognition. Here, we show for the first time that prostate cancer cells express HLA class II proteins that are recognized by CD4+ T cells. Prostate tumor cells transduced with class II molecules efficiently presented tumor-associated antigens/peptides to CD4+ T cells. This data suggests that malignant prostate tumors can be targeted via the HLA class II pathway, and that class II-positive tumors could be employed for direct antigen presentation, and CD4+ T-cell mediated tumor immunotherapy.Prostate Cancer and Prostatic Diseases (2008) 11, 334-341; doi:10.1038/sj.pcan.4501021; published online 16 October 2007.
Collapse
|
15
|
Obermajer N, Doljak B, Kos J. Cysteine cathepsins: regulators of antitumour immune response. Expert Opin Biol Ther 2007; 6:1295-309. [PMID: 17223738 DOI: 10.1517/14712598.6.12.1295] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cysteine cathepsins are lysosomal cysteine proteases that are involved in a number of important biological processes, including intracellular protein turnover, propeptide and hormone processing, apoptosis, bone remodelling and reproduction. In cancer, the cathepsins have been linked to extracellular matrix remodelling and to the promotion of tumour cell motility, invasion, angiogenesis and metastasis, resulting in poor outcome of cancer patients; however, cysteine cathepsins are also involved at different levels of the innate and adaptive immune responses. Their best known role in this aspect is their contribution to major histocompatibility complex class II antigen presentation, the processing of progranzymes into proteolytically active forms, cytotoxic lymphocyte self-protection, cytokine and growth factor degradation and, finally, the induction of cytokine expression and modulation of integrin function. This review is focused on the role of cysteine cathepsins in the antitumour immune response and the evaluation of their pro- and anticancer behaviours during the regulation of these processes.
Collapse
Affiliation(s)
- Natasa Obermajer
- University of Ljubljana, Department of Pharmaceutical Biology, Faculty of Pharmacy, Askerceva 7, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
16
|
Gialitakis M, Kretsovali A, Spilianakis C, Kravariti L, Mages J, Hoffmann R, Hatzopoulos AK, Papamatheakis J. Coordinated changes of histone modifications and HDAC mobilization regulate the induction of MHC class II genes by Trichostatin A. Nucleic Acids Res 2006; 34:765-72. [PMID: 16452299 PMCID: PMC1360741 DOI: 10.1093/nar/gkj462] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The deacetylase inhibitor Trichostatin A (TSA) induces the transcription of the Major Histocompatibility Class II (MHC II) DRA gene in a way independent of the master coactivator CIITA. To analyze the molecular mechanisms by which this epigenetic regulator stimulates MHC II expression, we used chromatin immunoprecipitation (ChIP) assays to monitor the alterations in histone modifications that correlate with DRA transcription after TSA treatment. We found that a dramatic increase in promoter linked histone acetylation is followed by an increase in Histone H3 lysine 4 methylation and a decrease of lysine 9 methylation. Fluorescence recovery after photobleaching (FRAP) experiments showed that TSA increases the mobility of HDAC while decreasing the mobility of the class II enhanceosome factor RFX5. These data, in combination with ChIP experiments, indicate that the TSA-mediated induction of DRA transcription involves HDAC relocation and enhanceosome stabilization. In order to gain a genome-wide view of the genes responding to inhibition of deacetylases, we compared the transcriptome of B cells before and after TSA treatment using Affymetrix microarrays. This analysis showed that in addition to the DRA gene, the entire MHC II family and the adjacent histone cluster that are located in chromosome 6p21-22 locus are strongly induced by TSA. A complex pattern of gene reprogramming by TSA involves immune recognition, antiviral, apoptotic and inflammatory pathways and extends the rationale for using Histone Deacetylase Inhibitors (HDACi) to modulate the immune response.
Collapse
Affiliation(s)
- Manolis Gialitakis
- Institute of Molecular Biology and Biotechnology, FORTHHeraklion 71110, Greece
- Department of Biology, University of CreteHeraklion 71110, Greece
| | | | - Charalampos Spilianakis
- Section of Immunobiology, Yale University School of MedicineNew Haven, Connecticut 06520, USA
| | - Lara Kravariti
- Institute of Molecular Biology and Biotechnology, FORTHHeraklion 71110, Greece
| | - Jörg Mages
- Technical University, Institute for Medical Microbiology81675 Munich, Germany
| | - Reinhard Hoffmann
- Department of Bacteriology, Max-von-Pettenkoffer Institute80336 Munich, Germany
| | - Antonis K. Hatzopoulos
- Vanderbilt University Medical Center, Division of Cardiovascular MedicineNashville, Tennessee 37232-6300, USA
- GSF-Research Center for Environment and Health, Institute for Clinical Molecular Biology and Tumor Genetics81377 Munich, Germany
| | - Joseph Papamatheakis
- Institute of Molecular Biology and Biotechnology, FORTHHeraklion 71110, Greece
- Department of Biology, University of CreteHeraklion 71110, Greece
- To whom correspondence should be addressed. Tel: +30 2810 391165; Fax: +30 2810 391101;
| |
Collapse
|
17
|
Homma S, Komita H, Sagawa Y, Ohno T, Toda G. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12. Immunology 2005; 115:451-61. [PMID: 16011514 PMCID: PMC1782174 DOI: 10.1111/j.1365-2567.2005.02179.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-gamma. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8(+) T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-gamma produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells.
Collapse
Affiliation(s)
- Sadamu Homma
- Department of Oncology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
18
|
Wang Y, Xu M, Che M, Von Hofe E, Abbas A, Kallinteris NL, Lu X, Liss ZJ, Forman JD, Hillman GG. Curative Antitumor Immune Response Is Optimal with Tumor Irradiation Followed by Genetic Induction of Major Histocompatibility Complex Class I and Class II Molecules and Suppression of Ii Protein. Hum Gene Ther 2005; 16:187-99. [PMID: 15761259 DOI: 10.1089/hum.2005.16.187] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transfecting genes into tumors, to upregulate major histocompatibility complex (MHC) class I and class II molecules and inhibit MHC class II associated invariant chain (Ii), induces a potent anti-tumor immune response when preceded by tumor irradiation, in murine RM-9 prostate carcinoma. The transfected genes are cDNA plasmids for interferon-gamma (pIFN-gamma), MHC class II transactivator (pCIITA), an Ii reverse gene construct (pIi-RGC), and a subtherapeutic dose of adjuvant IL-2 (pIL-2). Responding mice rejected challenge with parental tumor and demonstrated tumor-specific cytotoxic T lymphocytes (CTLs). We have extended our investigation to determine the relative roles of each one of the four plasmids pIFN-gamma, pCIITA, pIi-RGC, and pIL-2 in conjunction with radiation for the induction of a curative immune response. Upregulation of MHC class I with pIFN-gamma or class II with pCIITA, separately, does not lead to a complete response even if supplemented with pIL-2 or pIi-RGC. An optimal and specific antitumor response is achieved in more than 50% of the mice when, after tumor irradiation, tumor cells are converted in situ to a MHC class I+/class II+/Ii- phenotype with pIFN-gamma, pCIITA, pIi-RGC, and pIL-2. We demonstrate further that both CD4+ helper T cells and CD8+ cytotoxic T cells are essential for induction of an antitumor response because in vivo depletion of either subset abrogates the response. The radiation contributes to the gene therapy by causing tumor debulking and increasing the permeability of tumors to infiltration of inflammatory cells.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Cell Survival/physiology
- Cell Survival/radiation effects
- Colony-Forming Units Assay
- Combined Modality Therapy
- Gene Expression
- Genetic Therapy
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Lymphocyte Depletion
- Male
- Mice
- Mice, Inbred C57BL
- Neoplasm Proteins/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/radiotherapy
- T-Lymphocytes, Cytotoxic/immunology
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transduction, Genetic
- Tumor Cells, Cultured
- X-Rays
Collapse
Affiliation(s)
- Yu Wang
- Department of Radiation Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine and Harper Hospital, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|