1
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
2
|
Ren C, Liu J, Hornicek FJ, Yue B, Duan Z. Advances of SS18-SSX fusion gene in synovial sarcoma: Emerging novel functions and therapeutic potentials. Biochim Biophys Acta Rev Cancer 2024; 1879:189215. [PMID: 39528099 DOI: 10.1016/j.bbcan.2024.189215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Synovial sarcoma is a rare type of soft tissue sarcoma that primarily affects adolescents and young adults, featured by aggressive behavior and a high potential for metastasis. Genetically, synovial sarcoma is defined by the fusion oncogene SS18-SSX arising from the translocation of t(X;18)(p11;q11). SS18-SSX fusion gene is the major driver of the oncogenic event in synovial sarcoma. SS18-SSX fusion protein, while not containing any DNA-binding motifs, binds to the SWI/SNF (BAF) complex, a major epigenetic regulator, leading to the disruption of gene expression which results in tumor initiation and progression. Emerging studies on the molecular mechanisms of SS18-SSX associated signaling pathway hold promise for developments in diagnosis and treatments. Advanced diagnostic methods facilitate early and precise detection of the tumor, enabling disease monitoring and prognostic improvements. Treatment of synovial sarcoma typically comprises local surgery, radiotherapy and chemotherapy, while novel managements such as immunotherapy, targeted therapies and epigenetic modifiers are explored. This review focuses on the recent studies of SS18-SSX fusion gene, epigenetic landscape, signaling pathways, diagnostic techniques, and relevant therapeutic advances, aiming to inhibit the oncogenic processes and improve outcomes for patients with synovial sarcoma.
Collapse
Affiliation(s)
- Chongmin Ren
- Department of Bone Tumor, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong 266101, China; Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, Florida 33136, USA.
| | - Jia Liu
- Department of Pediatric Nephrology, Rheumatology and Immunity, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266003, China.
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, Florida 33136, USA.
| | - Bin Yue
- Department of Bone Tumor, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong 266101, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, Florida 33136, USA.
| |
Collapse
|
3
|
Kokkali S, Boukovinas I, de Bree E, Koumarianou A, Georgoulias V, Kyriazoglou A, Tsoukalas N, Memos N, Papanastassiou J, Stergioula A, Tsapakidis K, Loga K, Duran-Moreno J, Papanastasopoulos P, Vassos N, Kontogeorgakos V, Athanasiadis I, Mahaira L, Dimitriadis E, Papachristou DJ, Agrogiannis G. The Impact of Expert Pathology Review and Molecular Diagnostics on the Management of Sarcoma Patients: A Prospective Study of the Hellenic Group of Sarcomas and Rare Cancers. Cancers (Basel) 2024; 16:2314. [PMID: 39001377 PMCID: PMC11240402 DOI: 10.3390/cancers16132314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Precise classification of sarcomas is crucial to optimal clinical management. In this prospective, multicenter, observational study within the Hellenic Group of Sarcoma and Rare Cancers (HGSRC), we assessed the effect of expert pathology review, coupled with the application of molecular diagnostics, on the diagnosis and management of sarcoma patients. Newly diagnosed sarcoma patients were addressed by their physicians to one of the two sarcoma pathologists of HGSRC for histopathological diagnostic assessment. RNA next-generation sequencing was performed on all samples using a platform targeting 86 sarcoma gene fusions. Additional molecular methods were performed in the opinion of the expert pathologist. Therefore, the expert pathologist provided a final diagnosis based on the histopathological findings and, when necessary, molecular tests. In total, 128 specimens from 122 patients were assessed. Among the 119 cases in which there was a preliminary diagnosis by a non-sarcoma pathologist, there were 37 modifications in diagnosis (31.1%) by the sarcoma pathologist, resulting in 17 (14.2%) modifications in management. Among the 110 cases in which molecular tests were performed, there were 29 modifications in diagnosis (26.4%) through the genomic results, resulting in 12 (10.9%) modifications in management. Our study confirms that expert pathology review is of utmost importance for optimal sarcoma diagnosis and management and should be assisted by molecular methods in selected cases.
Collapse
Affiliation(s)
- Stefania Kokkali
- Oncology Unit, 2nd Department of Medicine, Medical School, Hippocratio General Hospital of Athens, National and Kapodistrian University of Athens, V. Sofias 114, 11527 Athens, Greece
| | - Ioannis Boukovinas
- Oncology Department, Bioclinic of Thessaloniki, 54622 Thessaloniki, Greece;
| | - Eelco de Bree
- Department of Surgical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece;
| | - Anna Koumarianou
- Hematology Oncology Unit, Fourth Department of Internal Medicine, School of Medicine, National Kapodistrian University of Athens, 12462 Athens, Greece;
| | | | - Anastasios Kyriazoglou
- Medical Oncology Unit, Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Nikolaos Tsoukalas
- Department of Oncology, 401 General Military Hospital of Athens, 11525 Athens, Greece;
| | - Nikolaos Memos
- 2nd Department of Surgery, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - John Papanastassiou
- Department of Orthopedic Oncology, “Agioi Anargyroi” General Hospital, 14564 N.Kifisia, Greece;
| | - Anastasia Stergioula
- Department of Radiation Oncology, “Iaso” Hospital, 15123 Marousi, Greece;
- Department of Tomotherapy-Stereotactic Radiosurgery “Iatropolis”, 15231 Chalandri, Greece
| | | | - Konstantia Loga
- Department of Medical Oncology, School of Medicine, Faculty of Health Sciences, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece;
| | - Jose Duran-Moreno
- Hellenic Group of Sarcoma and Rare Cancers, G. Theologou 5, 11471 Athens, Greece;
| | | | - Nikolaos Vassos
- Division of Surgical Oncology and Thoracic Surgery, Mannheim University Medical Center, University of Heidelberg, 68167 Mannheim, Germany;
- Department of Surgical Oncology, Athens Medical Center, 15125 Athens, Greece
| | - Vasileios Kontogeorgakos
- 1st Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ilias Athanasiadis
- Oncology Department, Hygeia Athens Private Hospital, 15123 Maroussi, Greece;
| | - Luiza Mahaira
- Department of Genetics, Saint Savvas Cancer Hospital, 11522 Athens, Greece; (L.M.); (E.D.)
| | - Efthymios Dimitriadis
- Department of Genetics, Saint Savvas Cancer Hospital, 11522 Athens, Greece; (L.M.); (E.D.)
| | - Dionysios J. Papachristou
- Unit of Bone and Soft Tissue Studies, Department of Histology and Histopathology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - George Agrogiannis
- Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
4
|
Addala V, Newell F, Pearson JV, Redwood A, Robinson BW, Creaney J, Waddell N. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol 2024; 21:28-46. [PMID: 37907723 DOI: 10.1038/s41571-023-00830-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes.
Collapse
Affiliation(s)
- Venkateswar Addala
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Felicity Newell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John V Pearson
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alec Redwood
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | - Bruce W Robinson
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Nicola Waddell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Kokkali S, Georgaki E, Mandrakis G, Valverde C, Theocharis S. Genomic Profiling and Clinical Outcomes of Targeted Therapies in Adult Patients with Soft Tissue Sarcomas. Cells 2023; 12:2632. [PMID: 37998367 PMCID: PMC10670373 DOI: 10.3390/cells12222632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Genomic profiling has improved our understanding of the pathogenesis of different cancers and led to the development of several targeted therapies, especially in epithelial tumors. In this review, we focus on the clinical utility of next-generation sequencing (NGS) to inform therapeutics in soft tissue sarcoma (STS). The role of NGS is still controversial in patients with sarcoma, given the low mutational burden and the lack of recurrent targetable alterations in most of the sarcoma histotypes. The clinical impact of genomic profiling in STS has not been investigated prospectively. A limited number of retrospective, mainly single-institution, studies have addressed this issue using various NGS technologies and platforms and a variety of criteria to define a genomic alteration as actionable. Despite the detailed reports on the different gene mutations, fusions, or amplifications that were detected, data on the use and efficacy of targeted treatment are very scarce at present. With the exception of gastrointestinal stromal tumors (GISTs), these targeted therapies are administered either through off-label prescription of an approved drug or enrollment in a matched clinical trial. Based mainly on anecdotal reports, the outcome of targeted therapies in the different STS histotypes is discussed. Prospective studies are warranted to assess whether genomic profiling improves the management of STS patients.
Collapse
Affiliation(s)
- Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
- Oncology Unit, 2nd Department of Medicine, Medical School, Hippocratio General Hospital of Athens, National and Kapodistrian University of Athens, V. Sofias 114, 11527 Athens, Greece;
| | - Eleni Georgaki
- Oncology Unit, 2nd Department of Medicine, Medical School, Hippocratio General Hospital of Athens, National and Kapodistrian University of Athens, V. Sofias 114, 11527 Athens, Greece;
| | - Georgios Mandrakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| | - Claudia Valverde
- Medical Oncology Department, Vall d’Hebron University Hospital, Pg. Vall d’Hebron 119-12, 08035 Barcelona, Spain;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| |
Collapse
|
6
|
Miller TI, Mantilla JG, Wang W, Liu YJ, Tretiakova M. Novel low-grade renal spindle cell neoplasm with HEY1::NCOA2 fusion that is distinct from mesenchymal chondrosarcoma. Genes Chromosomes Cancer 2023; 62:171-175. [PMID: 36416671 DOI: 10.1002/gcc.23105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
HEY1-NCOA2 fusion is most described in mesenchymal chondrosarcoma. This is the first case report of a primary renal spindle cell neoplasm of uncertain malignant potential with a HEY1::NCOA2 fusion identified by Fusionplex RNA-sequencing that is histologically distinct from mesenchymal chondrosarcoma. The neoplasm was identified in a 33-year-old woman without significant past medical history who underwent partial nephrectomy for an incidentally discovered renal mass. The histologic features of the mass included spindle cells with variable cellularity and monotonous bland cytology forming vague fascicles and storiform architecture within a myxoedematous and collagenous stroma with areas of calcification. The morphologic and immunophenotypic features were not specific for any entity but were most similar to low-grade fibromyxoid sarcoma. To date, the patient has not had recurrence, and the malignant potential of the neoplasm is uncertain.
Collapse
Affiliation(s)
- Timothy Isaac Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jose G Mantilla
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Wenjing Wang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Maria Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Current clinical perspective of urological oncology in the adolescent and young adult generation. Int J Clin Oncol 2023; 28:28-40. [PMID: 36527578 DOI: 10.1007/s10147-022-02251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022]
Abstract
Among adolescents and young adults, hematological tumors are the most common malignancies in younger patients; however, solid tumors also increase with advancing age. The pathogenesis of some of these tumors differs from that of tumors which develop in children, or middle-aged and older adults, and special care should be taken in their treatment and management. A treatment plan that takes into consideration future fertility is necessary for testicular tumors, and an educational campaign to encourage early detection is also essential. The treatment of adolescents with advanced testicular tumors should resemble therapeutic approaches for young adults and not a pediatric regimen. Adrenal tumors often develop as part of familiar hereditary syndrome. Therefore, taking the personal and family history is very important, and genetic counseling should be also recommended. In renal tumors, the incidence of translocation renal cell carcinomas is higher. Complete resection is the only promising method for long-term prognosis because of no established treatment for translocation renal cell carcinomas with distant metastasis. Bladder tumors are often detected by symptoms of gross hematuria and are found at a relatively early stage. Along with renal tumors, oncological evaluation including cystoscopy is also considered essential for gross hematuria. Wilms tumors and rhabdomyosarcomas could be managed in accordance with pediatric protocols to improve the treatment outcomes. The dedicated cancer survivorship care for adolescents and young adults could be also indispensable to conquer cancer and maintain a better quality of life.
Collapse
|
8
|
Vasella M, Gousopoulos E, Guidi M, Storti G, Song SY, Grieb G, Pauli C, Lindenblatt N, Giovanoli P, Kim BS. Targeted therapies and checkpoint inhibitors in sarcoma. QJM 2022; 115:793-805. [PMID: 33486519 DOI: 10.1093/qjmed/hcab014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are defined as a group of mesenchymal malignancies with over 100 heterogeneous subtypes. As a rare and difficult to diagnose entity, micrometastasis is already present at the time of diagnosis in many cases. Current treatment practice of sarcomas consists mainly of surgery, (neo)adjuvant chemo- and/or radiotherapy. Although the past decade has shown that particular genetic abnormalities can promote the development of sarcomas, such as translocations, gain-of-function mutations, amplifications or tumor suppressor gene losses, these insights have not led to established alternative treatment strategies so far. Novel therapeutic concepts with immunotherapy at its forefront have experienced some remarkable success in different solid tumors while their impact in sarcoma remains limited. In this review, the most common immunotherapy strategies in sarcomas, such as immune checkpoint inhibitors, targeted therapy and cytokine therapy are concisely discussed. The programmed cell death (PD)-1/PD-1L axis and apoptosis-inducing cytokines, such as TNF-related apoptosis-inducing ligand (TRAIL), have not yielded the same success like in other solid tumors. However, in certain sarcoma subtypes, e.g. liposarcoma or undifferentiated pleomorphic sarcoma, encouraging results in some cases when employing immune checkpoint inhibitors in combination with other treatment options were found. Moreover, newer strategies such as the targeted therapy against the ancient cytokine macrophage migration inhibitory factor (MIF) may represent an interesting approach worth investigation in the future.
Collapse
Affiliation(s)
- M Vasella
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - E Gousopoulos
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - M Guidi
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - G Storti
- Department of Surgical Sciences, Plastic and Reconstructive Surgery, University of Rome-'Tor Vergata', Via Montepellier, 1, 00133 Rome, Italy
| | - S Y Song
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, Korea
| | - G Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Kladower Damm 221, 14089 Berlin, Germany
- Department of Plastic Surgery, Hand Surgery and Burn Center, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - C Pauli
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - N Lindenblatt
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - P Giovanoli
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - B-S Kim
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
9
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Safaric Tepes P, Segovia D, Jevtic S, Ramirez D, Lyons SK, Sordella R. Patient-derived xenografts and in vitro model show rationale for imatinib mesylate repurposing in HEY1-NCoA2-driven mesenchymal chondrosarcoma. J Transl Med 2022; 102:1038-1049. [PMID: 36775418 DOI: 10.1038/s41374-021-00704-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/17/2023] Open
Abstract
Mesenchymal chondrosarcoma (MCS) is a high-grade malignancy that represents 2-9% of chondrosarcomas and mostly affects children and young adults. HEY1-NCoA2 gene fusion is considered to be a driver of tumorigenesis and it has been identified in 80% of MCS tumors. The shortage of MCS samples and biological models creates a challenge for the development of effective therapeutic strategies to improve the low survival rate of MCS patients. Previous molecular studies using immunohistochemical staining of patient samples suggest that activation of PDGFR signaling could be involved in MCS tumorigenesis. This work presents the development of two independent in vitro and in vivo models of HEY1-NCoA2-driven MCS and their application in a drug repurposing strategy. The in vitro model was characterized by RNA sequencing at the single-cell level and successfully recapitulated relevant MCS features. Imatinib, as well as specific inhibitors of ABL and PDGFR, demonstrated a highly selective cytotoxic effect targeting the HEY1-NCoA2 fusion-driven cellular model. In addition, patient-derived xenograft (PDX) models of MCS harboring the HEY1-NCoA2 fusion were developed from a primary tumor and its distant metastasis. In concordance with in vitro observations, imatinib was able to significantly reduce tumor growth in MCS-PDX models. The conclusions of this study serve as preclinical results to revisit the clinical efficacy of imatinib in the treatment of HEY1-NCoA2-driven MCS.
Collapse
Affiliation(s)
- Polona Safaric Tepes
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
- Faculty of Pharmacy, University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| | - Danilo Segovia
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Sania Jevtic
- Phytoform Labs Ltd., Lawes Open Innovation Hub, West Common, Harpenden, Hertfordshire, England, UK
| | - Daniel Ramirez
- Hospital for Special Surgery, Pathology and Laboratory Medicine, 535 E 70th St, New York, NY, 10021, USA
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Raffaella Sordella
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
11
|
Karlina I, Schroeder BA, Kirgizov K, Romantsova O, Istranov AL, Nedorubov A, Timashev P, Ulasov I. Latest developments in the pathobiology of Ewing sarcoma. J Bone Oncol 2022; 35:100440. [PMID: 35855933 PMCID: PMC9287185 DOI: 10.1016/j.jbo.2022.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A. Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kirill Kirgizov
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Olga Romantsova
- Research Institute of Pediatric Oncology and Hematology at N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia Moscow, 115478, Russia
| | - Andrey L. Istranov
- Department of Oncology, radiation therapy and plastic surgery, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Andrey Nedorubov
- Center for Preclinical Research, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Peter Timashev
- World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Corresponding author at: Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
12
|
Noh JJ, Cho YJ, Ryu JY, Choi JJ, Hwang JR, Choi JY, Lee JW. Anti-cancer activity of the combination of cabozantinib and temozolomide in uterine sarcoma. Clin Cancer Res 2022; 28:3850-3861. [PMID: 35727598 DOI: 10.1158/1078-0432.ccr-22-0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the anti-cancer effects of cabozantinib, temozolomide, and their combination in uterine sarcoma cell lines and mouse xenograft models. EXPERIMENTAL DESIGN Human uterine sarcoma cell lines (SK-LMS-1, SK-UT-1, MES-SA, and SKN) were used to evaluate the anti-cancer activity of cabozantinib, temozolomide, and their combination. The optimal dose of each drug was determined by MTT assay. Cell proliferation and apoptosis were assessed 48 hours and 72 hours after the drug treatments. The tumor weights were measured in an SK-LMS-1 xenograft mouse model and a patient-derived xenograft (PDX) model of leiomyosarcoma treated with cabozantinib, temozolomide, or both. RESULTS Given individually, cabozantinib and temozolomide each significantly decreased the growth and viability of cells. This inhibitory effect was more pronounced when cabozantinib (0.50 µM) and temozolomide (0.25 mM or 0.50 mM) were co-administered (p-value < 0.05). The combination of the drugs also significantly increased apoptosis in all cells. Moreover, this effect was consistently observed in patient-derived leiomyosarcoma cells. In vivo studies with SK-LMS-1 cell xenografts and the PDX model with leiomyosarcoma demonstrated that combined treatment with cabozantinib (5 mg/kg/day, per os administration) and temozolomide (5 mg/kg/day, per os administration) synergistically decreased tumor growth (both p-values < 0.05). CONCLUSION The addition of cabozantinib to temozolomide offers synergistic anti-cancer effects in uterine sarcoma cell lines and xenograft mouse models, including PDX. These results warrant further investigation in a clinical trial.
Collapse
Affiliation(s)
- Joseph J Noh
- Samsung Medical Center, Seoul, Korea (South), Republic of
| | - Young-Jae Cho
- Samsung Medical Center, Seoul, Seoul, Korea (South), Republic of
| | - Ji-Yoon Ryu
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (South), Republic of
| | - Jung-Joo Choi
- Samsung Medical Center, Seoul, Korea (South), Republic of
| | - Jae Ryoung Hwang
- Sungkyunkwan Univeristy School of Medicine, Seoul, Korea (South), Republic of
| | - Ju-Yeon Choi
- Samsung Medical Center, Korea (South), Republic of
| | - Jeong-Won Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (South), Republic of
| |
Collapse
|
13
|
Li G, Zhou X, Tian L, Meng G, Li B, Yu H, Li Y, Huo Z, Du L, Ma X, Xu B. Identification of aberrantly methylated-differentially expressed genes and potential agents for Ewing sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1557. [PMID: 34790763 PMCID: PMC8576650 DOI: 10.21037/atm-21-4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Background Human DNA methylation is a common epigenetic regulatory mechanism, and it plays a critical role in various diseases. However, the potential role of DNA methylation in Ewing sarcoma (ES) is not clear. This study aimed to explore the regulatory roles of DNA methylation in ES. Methods The microarray data of gene expression and methylation were downloaded from the Gene Expression Omnibus (GEO) database, and analyzed via GEO2R. Venn analysis was then applied to identify aberrantly methylated-differentially expressed genes (DEGs). Subsequently, function and pathway enrichment analysis was conducted, a protein-protein interaction (PPI) network was constructed, and hub genes were determined. Besides, a connectivity map (CMap) analysis was performed to screen bioactive compounds for ES treatment. Results A total of 135 hypomethylated high expression genes and 523 hypermethylated low expression genes were identified. The hypomethylated high expression genes were enriched in signal transduction and the apoptosis process. Meanwhile, hypermethylated low expression genes were related to DNA replication and transcription regulation. The PPI network analysis indicated C3, TF, and TCEB1 might serve as diagnostic and therapeutic targets of ES. Furthermore, CMap analysis revealed 6 chemicals as potential options for ES treatment. Conclusions The introduction of DNA methylation characteristics over DEGs is helpful to understand the pathogenesis of ES. The identified hub aberrantly methylated DEGs and chemicals might provide some novel insights on ES treatment.
Collapse
Affiliation(s)
- Guowang Li
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Xuan Zhou
- Department of Pediatrics, Haikou Hospital of The Maternal and Child Health, Haikou, China
| | - Lijun Tian
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Orthopedic, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Gedong Meng
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Spine Surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Yu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yongjin Li
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Zhenxin Huo
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
14
|
Gutiérrez-Jimeno M, Alba-Pavón P, Astigarraga I, Imízcoz T, Panizo-Morgado E, García-Obregón S, Catalán-Lambán A, San-Julián M, Lamo-Espinosa JM, Echebarria-Barona A, Zalacain M, Alonso MM, Patiño-García A. Clinical Value of NGS Genomic Studies for Clinical Management of Pediatric and Young Adult Bone Sarcomas. Cancers (Basel) 2021; 13:cancers13215436. [PMID: 34771600 PMCID: PMC8582364 DOI: 10.3390/cancers13215436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Clinical management of sarcomas is complex because they are rare and heterogeneous tumors. Management requires a coordinated multidisciplinary approach, especially in children. Genomic characterization of this complex group of tumors contributes to the identification of prognostic biomarkers and to the continued expansion of therapeutic options. In this article, we present the positive experience of two Spanish hospitals in the use of genomic analysis in the overall clinical management of sarcomas in children and young adults. We describe on a case-by-case basis how genomic analysis has contributed to both diagnosis and treatment. Abstract Genomic techniques enable diagnosis and management of children and young adults with sarcomas by identifying high-risk patients and those who may benefit from targeted therapy or participation in clinical trials. Objective: to analyze the performance of an NGS gene panel for the clinical management of pediatric sarcoma patients. We studied 53 pediatric and young adult patients diagnosed with sarcoma, from two Spanish centers. Genomic data were obtained using the Oncomine Childhood Cancer Research Assay, and categorized according to their diagnostic, predictive, or prognostic value. In 44 (83%) of the 53 patients, at least one genetic alteration was identified. In 80% of these patients, the diagnosis was obtained (n = 11) or changed (n = 9), and thus genomic data affected therapy. The most frequent initial misdiagnosis was Ewing’s sarcoma, instead of myxoid liposarcoma (FUS-DDDIT3), rhabdoid soft tissue tumor (SMARCB1), or angiomatoid fibrous histiocytoma (EWSR1-CREB1). In our series, two patients had a genetic alteration with an FDA-approved targeted therapy, and 30% had at least one potentially actionable alteration. NGS-based genomic studies are useful and feasible in diagnosis and clinical management of pediatric sarcomas. Genomic characterization of these rare and heterogeneous tumors also helps in the search for prognostic biomarkers and therapeutic opportunities.
Collapse
Affiliation(s)
- Miriam Gutiérrez-Jimeno
- Department of Pediatrics, University Clinic of Navarra, 31008 Pamplona, Spain; (M.G.-J.); (E.P.-M.); (A.C.-L.); (M.Z.); (M.M.A.)
| | - Piedad Alba-Pavón
- Department of Pediatrics, Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, 48940 Barakaldo, Spain; (P.A.-P.); (I.A.); (S.G.-O.); (A.E.-B.)
| | - Itziar Astigarraga
- Department of Pediatrics, Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, 48940 Barakaldo, Spain; (P.A.-P.); (I.A.); (S.G.-O.); (A.E.-B.)
- Department of Pediatrics, Faculty of Medicine and Nursing, Campus de Leioa, University of the Basque Country, UPV/EHU, 48940 Barakaldo, Spain
| | - Teresa Imízcoz
- CIMA LAB Diagnostics, University of Navarra, 31008 Pamplona, Spain;
| | - Elena Panizo-Morgado
- Department of Pediatrics, University Clinic of Navarra, 31008 Pamplona, Spain; (M.G.-J.); (E.P.-M.); (A.C.-L.); (M.Z.); (M.M.A.)
| | - Susana García-Obregón
- Department of Pediatrics, Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, 48940 Barakaldo, Spain; (P.A.-P.); (I.A.); (S.G.-O.); (A.E.-B.)
| | - Ana Catalán-Lambán
- Department of Pediatrics, University Clinic of Navarra, 31008 Pamplona, Spain; (M.G.-J.); (E.P.-M.); (A.C.-L.); (M.Z.); (M.M.A.)
| | - Mikel San-Julián
- Department of Traumatology and Orthopedic Surgery, University Clinic of Navarra, 31008 Pamplona, Spain; (M.S.-J.); (J.M.L.-E.)
| | - José M. Lamo-Espinosa
- Department of Traumatology and Orthopedic Surgery, University Clinic of Navarra, 31008 Pamplona, Spain; (M.S.-J.); (J.M.L.-E.)
| | - Aizpea Echebarria-Barona
- Department of Pediatrics, Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, 48940 Barakaldo, Spain; (P.A.-P.); (I.A.); (S.G.-O.); (A.E.-B.)
- Department of Pediatrics, Faculty of Medicine and Nursing, Campus de Leioa, University of the Basque Country, UPV/EHU, 48940 Barakaldo, Spain
| | - Marta Zalacain
- Department of Pediatrics, University Clinic of Navarra, 31008 Pamplona, Spain; (M.G.-J.); (E.P.-M.); (A.C.-L.); (M.Z.); (M.M.A.)
- Solid Tumor Program, CIMA, Center for Applied Medical Research and IdiSNA, 31008 Pamplona, Spain
| | - Marta M. Alonso
- Department of Pediatrics, University Clinic of Navarra, 31008 Pamplona, Spain; (M.G.-J.); (E.P.-M.); (A.C.-L.); (M.Z.); (M.M.A.)
- Solid Tumor Program, CIMA, Center for Applied Medical Research and IdiSNA, 31008 Pamplona, Spain
| | - Ana Patiño-García
- Department of Pediatrics, University Clinic of Navarra, 31008 Pamplona, Spain; (M.G.-J.); (E.P.-M.); (A.C.-L.); (M.Z.); (M.M.A.)
- Solid Tumor Program, CIMA, Center for Applied Medical Research and IdiSNA, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-296-236
| |
Collapse
|
15
|
Reddy S, Hung LH, Sala-Torra O, Radich JP, Yeung CC, Yeung KY. A graphical, interactive and GPU-enabled workflow to process long-read sequencing data. BMC Genomics 2021; 22:626. [PMID: 34425749 PMCID: PMC8381503 DOI: 10.1186/s12864-021-07927-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background Long-read sequencing has great promise in enabling portable, rapid molecular-assisted cancer diagnoses. A key challenge in democratizing long-read sequencing technology in the biomedical and clinical community is the lack of graphical bioinformatics software tools which can efficiently process the raw nanopore reads, support graphical output and interactive visualizations for interpretations of results. Another obstacle is that high performance software tools for long-read sequencing data analyses often leverage graphics processing units (GPU), which is challenging and time-consuming to configure, especially on the cloud. Results We present a graphical cloud-enabled workflow for fast, interactive analysis of nanopore sequencing data using GPUs. Users customize parameters, monitor execution and visualize results through an accessible graphical interface. The workflow and its components are completely containerized to ensure reproducibility and facilitate installation of the GPU-enabled software. We also provide an Amazon Machine Image (AMI) with all software and drivers pre-installed for GPU computing on the cloud. Most importantly, we demonstrate the potential of applying our software tools to reduce the turnaround time of cancer diagnostics by generating blood cancer (NB4, K562, ME1, 238 MV4;11) cell line Nanopore data using the Flongle adapter. We observe a 29x speedup and a 93x reduction in costs for the rate-limiting basecalling step in the analysis of blood cancer cell line data. Conclusions Our interactive and efficient software tools will make analyses of Nanopore data using GPU and cloud computing accessible to biomedical and clinical scientists, thus facilitating the adoption of cost effective, fast, portable and real-time long-read sequencing. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07927-1.
Collapse
Affiliation(s)
| | - Ling-Hong Hung
- School of Engineering and Technology, University of Washington, 98402, Tacoma, WA, USA
| | - Olga Sala-Torra
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 98109, Seattle, WA, USA
| | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 98109, Seattle, WA, USA.,Clinical Research Division, Kurt Enslein Endowed Chair, Fred Hutchinson Cancer Research Center, 98109, Seattle, WA, USA.,Department of Medicine, University of Washington, 98109, Seattle, WA, USA
| | - Cecilia Cs Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 98109, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, University of Washington, 98109, Seattle, WA, USA
| | - Ka Yee Yeung
- School of Engineering and Technology, University of Washington, 98402, Tacoma, WA, USA.
| |
Collapse
|
16
|
Apostolides M, Jiang Y, Husić M, Siddaway R, Hawkins C, Turinsky AL, Brudno M, Ramani AK. MetaFusion: A high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates. Bioinformatics 2021; 37:3144-3151. [PMID: 33944895 DOI: 10.1093/bioinformatics/btab249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. RESULTS MetaFusion is a flexible meta-calling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format (CFF). Calls are annotated, merged using graph clustering, filtered, and ranked to provide a final output of high confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases, and is provided with a benchmarking toolkit to calibrate new callers. AVAILABILITY MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michael Apostolides
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| | - Yue Jiang
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| | - Mia Husić
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| | - Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| | - Michael Brudno
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,University Health Network, Toronto, ON, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| |
Collapse
|
17
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Cheng YW, Meyer A, Jakubowski MA, Keenan SO, Brock JE, Azzato EM, Weindel M, Farkas DH, Rubin BP. Gene Fusion Identification Using Anchor-Based Multiplex PCR and Next-Generation Sequencing. J Appl Lab Med 2021; 6:917-930. [PMID: 33537766 DOI: 10.1093/jalm/jfaa230] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Methods for identifying gene fusion events, such as fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and transcriptome analysis, are either single gene approaches or require bioinformatics expertise not generally available in clinical laboratories. We analytically validated a customized next-generation sequencing (NGS) panel targeting fusion events in 34 genes involving soft-tissue sarcomas. METHODS Specimens included 87 formalin-fixed paraffin-embedded (FFPE) tissues with known gene fusion status. Isolated total nucleic acid was used to identify fusion events at the RNA level. The potential fusions were targeted by gene-specific primers, followed by primer extension and nested PCR to enrich for fusion candidates with subsequent bioinformatics analysis. RESULTS The study generated results using the following quality metrics for fusion detection: (a) ≥100 ng total nucleic acid, (b) RNA average unique start sites per gene-specific primer control ≥10, (c) quantitative PCR assessing input RNA quality had a crossing point <30, (d) total RNA percentage ≥30%, and (e) total sequencing fragments ≥500 000. CONCLUSIONS The test validation study demonstrated analytical sensitivity of 98.7% and analytical specificity of 90.0%. The NGS-based panel generated highly concordant results compared to alternative testing methods.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Anders Meyer
- Department of Pathology and Laboratory Medicine, The University of Kansas, Kansas City, KS.,Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Maureen A Jakubowski
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Sean O Keenan
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH.,CellNetix Pathology & Laboratories, Seattle, WA
| | - Jay E Brock
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Elizabeth M Azzato
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Michael Weindel
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel H Farkas
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Brian P Rubin
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Sarcomas are a diverse group of rare solid tumors with limited treatment options for patients with advanced, inoperable disease. Cabozantinib is a tyrosine kinase inhibitor currently approved for advanced renal cell, hepatocellular, and medullary thyroid carcinoma. Cabozantinib has potent activity against a variety of kinases, including MET, vascular endothelial growth factor receptor, and AXL, that are associated with sarcoma growth and development. Here we review the preclinical findings and clinical development of cabozantinib in the treatment of soft tissue sarcoma, gastrointestinal stromal tumors (GIST), osteosarcoma, and Ewing sarcoma. RECENT FINDINGS In vitro, cabozantinib has shown relevant activity in inhibiting the growth and viability of soft tissue sarcoma, GIST, osteosarcoma, and Ewing sarcoma tumor cell lines. Cabozantinib also promoted the regression of GIST in various murine xenografts, including imatinib-resistant models. More than 10 prospective trials with cabozantinib that included patients with sarcomas have been completed or are currently ongoing. Clinical activity with cabozantinib has been recently reported in phase 2 clinical trials for patients with GIST and for patients with osteosarcoma or Ewing sarcoma. SUMMARY Cabozantinib has shown promising activity for the treatment of various sarcomas, supporting further evaluation in this setting.
Collapse
|
20
|
Minati R, Perreault C, Thibault P. A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Front Immunol 2020; 11:583287. [PMID: 33424836 PMCID: PMC7793940 DOI: 10.3389/fimmu.2020.583287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
The search for tumor-specific antigens (TSAs) has considerably accelerated during the past decade due to the improvement of proteogenomic detection methods. This provides new opportunities for the development of novel antitumoral immunotherapies to mount an efficient T cell response against one or multiple types of tumors. While the identification of mutated antigens originating from coding exons has provided relatively few TSA candidates, the possibility of enlarging the repertoire of targetable TSAs by looking at antigens arising from non-canonical open reading frames opens up interesting avenues for cancer immunotherapy. In this review, we outline the potential sources of TSAs and the mechanisms responsible for their expression strictly in cancer cells. In line with the heterogeneity of cancer, we propose that discrete families of TSAs may be enriched in specific cancer types.
Collapse
Affiliation(s)
- Robin Minati
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
Identification of Novel Fusion Genes in Bone and Soft Tissue Sarcoma and Their Implication in the Generation of a Mouse Model. Cancers (Basel) 2020; 12:cancers12092345. [PMID: 32825119 PMCID: PMC7565474 DOI: 10.3390/cancers12092345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Fusion genes induced by chromosomal aberrations are common mutations causally associated with bone and soft tissue sarcomas (BSTS). These fusions are usually disease type-specific, and identification of the fusion genes greatly helps in making precise diagnoses and determining therapeutic directions. However, there are limitations in detecting unknown fusion genes or rare fusion variants when using standard fusion gene detection techniques, such as reverse transcription-polymerase chain reaction (RT-PCR) and fluorescence in situ hybridization (FISH). In the present study, we have identified 19 novel fusion genes using target RNA sequencing (RNA-seq) in 55 cases of round or spindle cell sarcomas in which no fusion genes were detected by RT-PCR. Subsequent analysis using Sanger sequencing confirmed that seven out of 19 novel fusion genes would produce functional fusion proteins. Seven fusion genes detected in this study affect signal transduction and are ideal targets of small molecule inhibitors. YWHAE-NTRK3 expression in mouse embryonic mesenchymal cells (eMCs) induced spindle cell sarcoma, and the tumor was sensitive to the TRK inhibitor LOXO-101 both in vitro and in vivo. The combination of target RNA-seq and generation of an ex vivo mouse model expressing novel fusions provides important information both for sarcoma biology and the appropriate diagnosis of BSTS.
Collapse
|
22
|
McConnell L, Houghton O, Stewart P, Gazdova J, Srivastava S, Kim C, Catherwood M, Strobl A, Flanagan AM, Oniscu A, Kroeze LI, Groenen P, Taniere P, Salto-Tellez M, Gonzalez D. A novel next generation sequencing approach to improve sarcoma diagnosis. Mod Pathol 2020; 33:1350-1359. [PMID: 32047232 DOI: 10.1038/s41379-020-0488-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
Sarcoma is a rare disease affecting both bone and connective tissue and with over 100 pathologic entities, differential diagnosis can be difficult. Complementing immune-histological diagnosis with current ancillary diagnostic techniques, including FISH and RT-PCR, can lead to inconclusive results in a significant number of cases. We describe here the design and validation of a novel sequencing tool to improve sarcoma diagnosis. A NGS DNA capture panel containing probes for 87 fusion genes and 7 genes with frequent copy number changes was designed and optimized. A cohort of 113 DNA samples extracted from soft-tissue and bone sarcoma FFPE material with clinical FISH and/or RT-PCR results positive for either a translocation or gene amplification was used for validation of the NGS method. Sarcoma-specific translocations or gene amplifications were confirmed in 110 out of 113 cases using FISH and/or RT-PCR as gold-standard. MDM2/CDK4 amplification and a total of 25 distinct fusion genes were identified in this cohort of patients using the NGS approach. Overall, the sensitivity of the NGS panel is 97% with a specificity of 100 and 0% failure rate. Targeted NGS appears to be a feasible and cost-effective approach to improve sarcoma subtype diagnosis with the ability to screen for a wide range of genetic aberrations in one test.
Collapse
Affiliation(s)
| | - Oisín Houghton
- Belfast Health & Social Care Trust, Belfast, BT9 7AB, UK
| | - Peter Stewart
- CCRCB, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Jana Gazdova
- CCRCB, Queen's University Belfast, Belfast, BT9 7AE, UK
| | | | - Chang Kim
- CCRCB, Queen's University Belfast, Belfast, BT9 7AE, UK
| | | | - Anna Strobl
- Royal National Orthopedic Hospital Stanmore, Middlesex, HA7 4LP, UK
- UCL Cancer Institute, London, WC1E 6BT, UK
| | - Adrienne M Flanagan
- Royal National Orthopedic Hospital Stanmore, Middlesex, HA7 4LP, UK
- UCL Cancer Institute, London, WC1E 6BT, UK
| | - Anca Oniscu
- Pathology Department at the Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK
| | - Leonie I Kroeze
- Department of Pathology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Patricia Groenen
- Department of Pathology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Philippe Taniere
- Pathology Department at Queen's Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Manuel Salto-Tellez
- CCRCB, Queen's University Belfast, Belfast, BT9 7AE, UK
- Belfast Health & Social Care Trust, Belfast, BT9 7AB, UK
| | - David Gonzalez
- CCRCB, Queen's University Belfast, Belfast, BT9 7AE, UK.
- Belfast Health & Social Care Trust, Belfast, BT9 7AB, UK.
| |
Collapse
|
23
|
Kou F, Wu L, Ren X, Yang L. Chromosome Abnormalities: New Insights into Their Clinical Significance in Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:562-570. [PMID: 32637574 PMCID: PMC7321812 DOI: 10.1016/j.omto.2020.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromosomal abnormalities, consisting of numerical and structural chromosome abnormalities, are a common characteristic of cancer. Numerical chromosome abnormalities, mainly including aneuploidy and chromosome instability, are caused by chromosome segregation errors in mitosis, whereas structural chromosome abnormalities are a consequence of DNA damage and comprise focal/arm-level chromosome gain or loss. Recent advances have started to unveil the mechanisms by which chromosomal abnormalities can facilitate tumorigenesis and change the cellular fitness and the expression or function of RNAs and proteins. Accumulating evidence suggests that chromosome abnormalities represent a genomic signature that is linked to cancer prognosis and reaction to chemotherapy and immunotherapy. In this review, we discuss the most recent findings on the role of chromosome abnormalities in tumorigenesis and cancer progression, with a particular emphasis on how aneuploidy and chromosome instability influence cancer therapy and prognosis. We also highlight the distribution and clinical application of the structural chromosome abnormalities in various cancer types. A better understanding of the role of chromosome abnormalities will be beneficial to the development of precision oncology and suggest future directions for the field.
Collapse
Affiliation(s)
- Fan Kou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Corresponding author: Xiubao Ren, Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China.
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Corresponding author: Lili Yang, Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China.
| |
Collapse
|
24
|
Racanelli D, Brenca M, Baldazzi D, Goeman F, Casini B, De Angelis B, Guercio M, Milano GM, Tamborini E, Busico A, Dagrada G, Garofalo C, Caruso C, Brunello A, Pignochino Y, Berrino E, Grignani G, Scotlandi K, Parra A, Hattinger CM, Ibrahim T, Mercatali L, De Vita A, Carriero MV, Pallocca M, Loria R, Covello R, Sbaraglia M, Dei Tos AP, Falcioni R, Maestro R. Next-Generation Sequencing Approaches for the Identification of Pathognomonic Fusion Transcripts in Sarcomas: The Experience of the Italian ACC Sarcoma Working Group. Front Oncol 2020; 10:489. [PMID: 32351889 PMCID: PMC7175964 DOI: 10.3389/fonc.2020.00489] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/18/2020] [Indexed: 12/27/2022] Open
Abstract
This work describes the set-up of a shared platform among the laboratories of the Alleanza Contro il Cancro (ACC) Italian Research Network for the identification of fusion transcripts in sarcomas by using Next Generation Sequencing (NGS). Different NGS approaches, including anchored multiplex PCR and hybrid capture-based panels, were employed to profile a large set of sarcomas of different histotypes. The analysis confirmed the reliability of NGS RNA-based approaches in detecting sarcoma-specific rearrangements. Overall, the anchored multiplex PCR assay proved to be a fast and easy-to-analyze approach for routine diagnostics laboratories.
Collapse
Affiliation(s)
- Dominga Racanelli
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Monica Brenca
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Davide Baldazzi
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Frauke Goeman
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Casini
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Onco-Haematology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Onco-Haematology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Tamborini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Busico
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianpaolo Dagrada
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Chiara Caruso
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Antonella Brunello
- Medical Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Ymera Pignochino
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Enrico Berrino
- Unit of Pathology, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Maria Vincenza Carriero
- Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale" IRCCS, Naples, Italy
| | - Matteo Pallocca
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Loria
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Renato Covello
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Sbaraglia
- Department of Pathology, Azienda Ospedaliera Universitaria di Padova, Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Azienda Ospedaliera Universitaria di Padova, Padua, Italy.,Department of Medicine, University of Padua School of Medicine, Padua, Italy
| | - Rita Falcioni
- Department of Research, Diagnosis and Innovative Technology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
25
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
26
|
Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative tumour-specific antigens. Nat Rev Cancer 2019; 19:465-478. [PMID: 31278396 PMCID: PMC6874891 DOI: 10.1038/s41568-019-0162-4] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
The study of tumour-specific antigens (TSAs) as targets for antitumour therapies has accelerated within the past decade. The most commonly studied class of TSAs are those derived from non-synonymous single-nucleotide variants (SNVs), or SNV neoantigens. However, to increase the repertoire of available therapeutic TSA targets, 'alternative TSAs', defined here as high-specificity tumour antigens arising from non-SNV genomic sources, have recently been evaluated. Among these alternative TSAs are antigens derived from mutational frameshifts, splice variants, gene fusions, endogenous retroelements and other processes. Unlike the patient-specific nature of SNV neoantigens, some alternative TSAs may have the advantage of being widely shared by multiple tumours, allowing for universal, off-the-shelf therapies. In this Opinion article, we will outline the biology, available computational tools, preclinical and/or clinical studies and relevant cancers for each alternative TSA class, as well as discuss both current challenges preventing the therapeutic application of alternative TSAs and potential solutions to aid in their clinical translation.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Bioinformatics Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Marsico Hall, Chapel Hill, NC, USA
| | - Shengjie Chai
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jonathan S Serody
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Affiliation(s)
- Oscar M. Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute-Catalan Institute of Oncology (IDIBELL-ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain
| |
Collapse
|
28
|
Szczepińska T, Rusek AM, Plewczynski D. Intermingling of chromosome territories. Genes Chromosomes Cancer 2019; 58:500-506. [DOI: 10.1002/gcc.22736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Anna Maria Rusek
- Centre of New TechnologiesUniversity of Warsaw Warsaw Poland
- Clinical Molecular Biology DepartmentMedical University of Bialystok Bialystok Poland
| | - Dariusz Plewczynski
- Centre of New TechnologiesUniversity of Warsaw Warsaw Poland
- Faculty of Mathematics and Information ScienceWarsaw University of Technology Warsaw Poland
| |
Collapse
|
29
|
Grizzi F, Borroni EM, Qehajaj D, Stifter S, Chiriva-Internati M, Cananzi FCM. The Complex Nature of Soft Tissue Sarcomas, Including Retroperitoneal Sarcomas. Updates Surg 2019:21-32. [DOI: 10.1007/978-88-470-3980-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
30
|
Usuda D, Takeshima K, Sangen R, Nakamura K, Hayashi K, Okamura H, Kawai Y, Kasamaki Y, Iinuma Y, Saito H, Kanda T, Urashima S. Atypical lipomatous tumor in the ligamentum teres of liver: A case report and review of the literature. World J Clin Cases 2018; 6:548-553. [PMID: 30397612 PMCID: PMC6212614 DOI: 10.12998/wjcc.v6.i12.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/11/2018] [Accepted: 08/11/2018] [Indexed: 02/05/2023] Open
Abstract
A 61-year-old male was referred to our hospital with a three-month history of persistent epigastralgia and right hypochondralgia. Initial examination revealed a fist-size mass at the epigastric fossa. Ultrasonography showed a hemangioma and a mosaic echoic lesion in the ventromedian with poor blood-flow signal and linear hyperechoic part inside, and a clear border to the surroundings. Dynamic computed tomography revealed a highly enhanced effect from the portal-venous phase continuing to the equilibrium phase. T1-weighted gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced image revealed a high intensity effect at the early phase that continued to the next phase. On the other hand, it contained a low intensity area by a fat suppression of that image. In addition, a T2-weighted image did not show a high intensity effect. Laparotomy was performed on the second day of hospitalization. The tumor had arisen from the ligamentum teres of the liver, and no metastasis or invasion of other organs was noted. It consisted of a lipid component of mature adipocytes and a fibrous component of deep dyeing pleomorphic or multinuclear atypical stromal cells. Immunohistochemical study of the atypical stromal cells demonstrated that they were positive for MDM2 and CDK4. A pathological diagnosis of atypical lipomatous tumor (ALT) was made, and the patient was discharged on the eighth day following the procedure. At the 6-mo follow-up dynamic CT, the patient was free of recurrence or metastasis. We experienced a patient with ALT in the ligamentum teres of the liver. This case suggests the need for a careful and detailed examination when encountering patients presenting with a mass; when neoplastic lesion is confirmed by image inspection, we should thoroughly investigate, including further image investigations and pathologic examination. The latter is the most important.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Community Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
- Department of Infectious Diseases, Kanazawa Medical University, Uchinada-machi, Ishikawa-ken 920-0293, Japan
| | - Kento Takeshima
- Department of Community Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| | - Ryusho Sangen
- Department of Community Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| | - Kisuke Nakamura
- Department of General and Digestive Surgery, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| | - Kei Hayashi
- Department of General and Digestive Surgery, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| | - Hideyuki Okamura
- Department of Gastroenterology, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| | - Yasuhiro Kawai
- Department of Infectious Diseases, Kanazawa Medical University, Uchinada-machi, Ishikawa-ken 920-0293, Japan
| | - Yuji Kasamaki
- Department of Community Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| | - Yoshitsugu Iinuma
- Department of Infectious Diseases, Kanazawa Medical University, Uchinada-machi, Ishikawa-ken 920-0293, Japan
| | - Hitoshi Saito
- Department of General and Digestive Surgery, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| | - Tsugiyasu Kanda
- Department of Community Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| | - Sachio Urashima
- Department of Gastroenterology, Kanazawa Medical University Himi Municipal Hospital, Himi-shi, Toyama-ken 935-8531, Japan
| |
Collapse
|
31
|
Abstract
Disruptions in the antagonistic balance between the chromatin-modifying Polycomb and Trithorax group proteins drive many malignancies. In this issue of Cancer Cell, Banito et al. describe how the SS18-SSX oncogenic fusion protein in synovial sarcoma directly co-opts these complexes to drive gene dysregulation and sustain the transformed state.
Collapse
Affiliation(s)
- Joshua J Waterfall
- Institut Curie, PSL Research University, 75005 Paris, France; INSERM U830, 75005 Paris, France; Institut Curie, Translational Research Department, 75005 Paris, France
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|