1
|
Shariq OA, Waguespack SG, Hamidi S, Kensing BC, Hu MI, Skefos CM, Perrier ND. Approach to the Patient: Hereditary Medullary Thyroid Carcinoma. J Clin Endocrinol Metab 2025:dgaf089. [PMID: 40105880 DOI: 10.1210/clinem/dgaf089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Indexed: 03/20/2025]
Abstract
Medullary thyroid carcinoma is a rare neuroendocrine tumor originating from calcitonin-secreting parafollicular C cells of the thyroid gland. Approximately 25% of cases in adults are hereditary medullary thyroid carcinoma (hMTC), arising from activating, germline pathogenic variants in the REarranged during Transfection (RET) proto-oncogene and causing the syndromes multiple endocrine neoplasia (MEN) types 2A and 2B. A paradigmatic feature of MEN2 is its robust genotype-phenotype correlations, which predict the disease spectrum and age of onset of hMTC and other clinical manifestations. Advances in genetic testing and systemic therapies and an improved understanding of the natural course of MEN2 have transformed the clinical presentation of hMTC from advanced-stage disease to early detection in asymptomatic RET pathogenic variant carriers. The management of hMTC has similarly evolved from aggressive, one-size-fits-all surgical approaches to personalized strategies informed by genotype, biochemical markers, and imaging findings. Risk-reducing early thyroidectomy remains the cornerstone of metastatic hMTC prevention, with the timing of surgery tailored to the specific pathogenic variant and clinical context. Additionally, recent advances in targeted systemic therapies offer promising options for patients with recurrent and/or metastatic disease. This "Approach to the Patient" article explores the diagnostic evaluation, surgical decision-making, systemic treatment options, and follow-up of patients with hMTC, emphasizing the critical role of multidisciplinary care in optimizing outcomes for patients and their families.
Collapse
Affiliation(s)
- Omair A Shariq
- Department of Surgical Oncology, Section of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pediatrics-Patient Care, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin C Kensing
- Department of Surgical Oncology, Section of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Catherine M Skefos
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nancy D Perrier
- Department of Surgical Oncology, Section of Surgical Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Hualong M, Liu J, Yin T, Cao X, Su Z, Zhao DG, Ma YY. Discovery of a Selective and Orally Bioavailable RET Degrader with Effectiveness in Various Mutations. J Med Chem 2025; 68:2657-2679. [PMID: 39772547 DOI: 10.1021/acs.jmedchem.4c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The rearranged during transfection (RET) mutation such as the G810C mutation has significantly restricted the clinical application of selective RET inhibitors in the treatment of RET-driven cancers. This study designed and evaluated RET proteolysis targeting chimeras (PROTACs) based on selpercatinib (LOXO-292), identifying RD-23 as a potent and selective RET PROTAC. RD-23 effectively inhibited the proliferation of BaF3 cells with various RET mutations, showing IC50 values of 2.4 to 6.5 nM. It selectively induced degradation of the RETG810C mutation via the ubiquitin-proteasome system, with a DC50 (concentration causing 50% of protein degradation) value of 11.7 nM. Additionally, RD-23 exhibited oral bioavailability and superior antitumor effects compared to LOXO-292 in a Ba/F3-KIF5B-RETG810C xenograft mouse model. These results suggested that RD-23 is a promising candidate for treating RET-driven cancers.
Collapse
Affiliation(s)
- Mo Hualong
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - JieYing Liu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Ting Yin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - XuXu Cao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - ZhengXi Su
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Deng-Gao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yan-Yan Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
3
|
Prete A, Nucera C. Therapeutic treatments targeting communication between angiogenic and immune microenvironments in thyroid cancers. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 37:100544. [PMID: 39734655 PMCID: PMC11675518 DOI: 10.1016/j.coemr.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Thyroid cancer treatment has recently been revolutionized by the introduction of specific targeted therapies (e.g. BRAFV600E or highly selective RET inhibitors), anti-angiogenic agents (e.g. tyrosine kinase inhibitors (TKIs)) and immune checkpoint inhibitors, which significantly ameliorate outcomes in selected groups of thyroid cancer patients. Targeted and anti-angiogenic treatments are characterized by transient and partial efficacy, due to primary or secondary tumor resistance mechanisms, and toxicity profile. Immune therapy-based approaches are producing preliminary results. Herein, we review and prospectively discuss immune microenvironment in non-medullary and medullary thyroid cancers and its interplays with angiogenic microenvironment (endothelial cells and pericytes). In addition, we discuss how these interactions might be targeted using combined therapies. Furthermore, we will review chimeric antigen receptor (CAR) T cells treatment that potentially may ensure a more durable and effective response in advanced thyroid cancers. In sum, angiogenic and immune microenvironments show functional connectivity in TCs. Therapies with anti-angiogenic and immune checkpoint inhibitors combined with specific targeted therapy inhibitors with a tolerable toxicity profile may overcome drug resistance and provide better clinical outcomes than single agents.
Collapse
Affiliation(s)
- Alessandro Prete
- Human thyroid cancers preclinical and translational research program, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carmelo Nucera
- Human thyroid cancers preclinical and translational research program, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
4
|
da Silva DD, Araldi RP, Belizario MR, Rocha WG, Maciel RMDB, Cerutti JM. DLK1 Is Associated with Stemness Phenotype in Medullary Thyroid Carcinoma Cell Lines. Int J Mol Sci 2024; 25:11924. [PMID: 39595993 PMCID: PMC11594232 DOI: 10.3390/ijms252211924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare and aggressive tumor, often requiring systemic treatment in advanced or metastatic stages, where drug resistance presents a significant challenge. Given the role of cancer stem cells (CSCs) in cancer recurrence and drug resistance, we aimed to identify CSC subpopulations within two MTC cell lines harboring pathogenic variants in the two most common MEN2-associated codons. We analyzed 15 stemness-associated markers, along with well-established thyroid stem cell markers (CD133, CD44, and ALDH1), a novel candidate (DLK1), and multidrug resistance proteins (MRP1 and MRP3). The ability to efflux the fluorescent dye Hoechst 3342 and form spheroids, representing CSC behavior, was also assessed. MZ-CRC-1 cells (p.M918T) displayed higher expressions of canonical markers, DLK1, and MRP proteins than TT cells (p.C634W). MZ-CRC-1 cells also formed more spheroids and showed less dye accumulation (p < 0.0001). Finally, we observed that DLK1+ cells (those expressing DLK1) in both cell lines exhibited significantly higher levels of stemness markers compared to DLK1- cells (those lacking DLK1 expression). These findings underscore DLK1's role in enhancing the stemness phenotype, providing valuable insights into MTC progression and resistance and suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Danilo Dias da Silva
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rodrigo Pinheiro Araldi
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Mariana Rocha Belizario
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Welbert Gomes Rocha
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rui Monteiro de Barros Maciel
- Laboratório de Endocrinologia Molecular e Translacional, Disciplina de Endocrinologia e Metabologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil;
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| |
Collapse
|
5
|
Nguyen K, Fama K, Mercado G, Myat Y, Thein K. Histology Agnostic Drug Development: An Updated Review. Cancers (Basel) 2024; 16:3642. [PMID: 39518080 PMCID: PMC11544807 DOI: 10.3390/cancers16213642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Recent advancements in oncology have led to the development of histology-agnostic therapies, which target genetic alterations irrespective of the tumor's tissue of origin. This review aimed to provide a comprehensive update on the current state of histology-agnostic drug development, focusing on key therapies, including pembrolizumab, larotrectinib, entrectinib, dostarlimab, dabrafenib plus trametinib, selpercatinib, trastuzumab deruxtecan, and reprotrectinib. We performed a detailed analysis of each therapy's mechanism of action, clinical trial outcomes, and associated biomarkers. The review further explores challenges in drug resistance, such as adaptive signaling pathways and neoantigen variability, as well as diagnostic limitations in identifying optimal patient populations. While these therapies have demonstrated efficacy in various malignancies, significant hurdles remain, including intratumoral heterogeneity and resistance mechanisms that diminish treatment effectiveness. We propose considerations for refining trial designs and emerging biomarkers, such as tumor neoantigen burden, to enhance patient selection. These findings illustrate the transformative potential of histology-agnostic therapies in precision oncology but highlight the need for continued research to optimize their use and overcome existing barriers.
Collapse
Affiliation(s)
- Kevin Nguyen
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA; (K.N.)
| | - Karina Fama
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA; (K.N.)
| | - Guadalupe Mercado
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA; (K.N.)
| | - Yin Myat
- University College Dublin School of Medicine, Belfield, D04 V1W8 Dublin, Ireland
- One Brooklyn Health—Interfaith Medical Center Campus, 1545, Atlantic Avenue, Brooklyn, NY 11213, USA
| | - Kyaw Thein
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV 89014, USA; (K.N.)
- Comprehensive Cancer Centers of Nevada—Central Valley, 3730 S Eastern Ave, Las Vegas, NV 89169, USA
- Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas (UNLV), 4505 S. Maryland Pkwy, Las Vegas, NV 89154, USA
| |
Collapse
|
6
|
Zhang Y, Zheng WH, Zhou SH, Gu JL, Yu Q, Zhu YZ, Yan YJ, Zhu Z, Shang JB. Molecular genetics, therapeutics and RET inhibitor resistance for medullary thyroid carcinoma and future perspectives. Cell Commun Signal 2024; 22:460. [PMID: 39342195 PMCID: PMC11439284 DOI: 10.1186/s12964-024-01837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare type of thyroid malignancy that accounts for approximately 1-2% of all thyroid cancers (TCs). MTC include hereditary and sporadic cases, the former derived from a germline mutation of rearrangement during transfection (RET) proto-oncogene, whereas somatic RET mutations are frequently present in the latter. Surgery is the standard treatment for early stage MTC, and the 10-year survival rate of early MTC is over 80%. While for metastatic MTC, chemotherapy showing low response rate, and there was a lack of effective systemic therapies in the past. Due to the high risk (ca. 15-20%) of distant metastasis and limited systemic therapies, the 10-year survival rate of patients with advanced MTC was only 10-40% from the time of first metastasis. Over the past decade, targeted therapy for RET has developed rapidly, bringing hopes to patients with advanced and progressive MTC. Two multi-kinase inhibitors (MKIs) including Cabozantinib and Vandetanib have been shown to increase progression-free survival (PFS) for patients with metastatic MTC and have been approved as choices of first-line treatment. However, these MKIs have not prolonged overall survival (OS) and their utility is limited due to high rates of off-target toxicities. Recently, new generation TKIs, including Selpercatinib and Pralsetinib, have demonstrated highly selective efficacy against RET and more favorable side effect profiles, and gained approval as second-line treatment options. Despite the ongoing development of RET inhibitors, the management of advanced and progressive MTC remains challenging, drug resistance remains the main reason for treatment failure, and the mechanisms are still unclear. Besides, new promising therapeutic approaches, such as novel drug combinations and next generation RET inhibitors are under development. Herein, we overview the pathogenesis, molecular genetics and current management approaches of MTC, and focus on the recent advances of RET inhibitors, summarize the current situation and unmet needs of these RET inhibitors in MTC, and provide an overview of novel strategies for optimizing therapeutic effects.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei-Hui Zheng
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shi-Hong Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jia-Lei Gu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yi-Zhou Zhu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Jie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Jin-Biao Shang
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, Zhejiang, China.
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Hamidi S, Hu MI. RET kinase inhibitors for the treatment of RET-altered thyroid cancers: Current knowledge and future directions. ANNALES D'ENDOCRINOLOGIE 2024; 85:118-126. [PMID: 38342224 DOI: 10.1016/j.ando.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
RET gain-of-function mutations are the most common drivers in medullary thyroid carcinoma, while RET fusions are identified in 5-10% of papillary thyroid carcinomas. Thus, RET plays a major role in the tumorigenesis of thyroid neoplasia, making it a valuable therapeutic target. Over a decade ago, multikinase inhibitors (MKIs) were first shown to have variable degrees of anti-RET activity. Despite some clinical efficacy in RET-altered thyroid cancers, significant off-target activity of MKIs led to marked toxicities limiting their use. More recently, two potent, highly selective RET inhibitors, selpercatinib and pralsetinib, were shown to have notable efficacy in RET-altered cancers, associated with more tolerable side effect profiles than those of MKIs. However, these treatments are non-curative, and emerging evidence suggests that patients who progress on therapy acquire mutations conferring drug resistance. Thus, the quest for a more definitive treatment for advanced, RET-altered thyroid cancers continues. This year we celebrate the 30th anniversary of the association of germline mutations of the RET proto-oncogene with the multiple endocrine neoplasia (MEN) type 2 syndromes. In this timely review, we summarize the current state-of-the-art treatment strategies for RET-altered thyroid cancers, their limitations, as well as future therapeutic avenues.
Collapse
Affiliation(s)
- Sarah Hamidi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX, 77030, USA.
| | - Mimi I Hu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer, Houston, TX, 77030, USA
| |
Collapse
|
8
|
Wang ZX, Li QQ, Cai J, Wu JZ, Wang JJ, Zhang MY, Wang QX, Tong ZJ, Yang J, Wei TH, Zhou Y, Dai WC, Ding N, Leng XJ, Sun SL, Xue X, Yu YC, Yang Y, Li NG, Shi ZH. Unraveling the Promise of RET Inhibitors in Precision Cancer Therapy by Targeting RET Mutations. J Med Chem 2024; 67:4346-4375. [PMID: 38484122 DOI: 10.1021/acs.jmedchem.3c02319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
9
|
Prete A, Matrone A, Plebani R. State of the Art in 3D Culture Models Applied to Thyroid Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:520. [PMID: 38674166 PMCID: PMC11051914 DOI: 10.3390/medicina60040520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Thyroid cancer (TC) is the prevalent endocrine tumor with a rising incidence, particularly in higher-income countries, leading to an increased interest in its management and treatment. While overall, survival rates for TC are usually favorable, advanced cases, especially with metastasis and specific histotypes, pose challenges with poorer outcomes, advocating the need of systemic treatments. Targeted therapies have shown efficacy in both preclinical models and clinical trials but face issues of resistance, since they usually induce partial and transient response. These resistance phenomena are currently only partially addressed by traditional preclinical models. This review explores the limitations of traditional preclinical models and emphasizes the potential of three-dimensional (3D) models, such as transwell assays, spheroids, organoids, and organ-on-chip technology in providing a more comprehensive understanding of TC pathogenesis and treatment responses. We reviewed their use in the TC field, highlighting how they can produce new interesting insights. Finally, the advent of organ-on-chip technology is currently revolutionizing preclinical research, offering dynamic, multi-cellular systems that replicate the complexity of human organs and cancer-host interactions.
Collapse
Affiliation(s)
- Alessandro Prete
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, 56122 Pisa, Italy;
| | - Antonio Matrone
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, 56122 Pisa, Italy;
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti-Pescara, Italy;
| |
Collapse
|
10
|
Wang S, Cui Z, Zhu J, Zhou P, Cao X, Li X, Ma Y, He Q. Colchicine inhibits the proliferation and promotes the apoptosis of papillary thyroid carcinoma cells likely due to the inhibitory effect on HDAC1. Biochem Biophys Res Commun 2023; 679:129-138. [PMID: 37690423 DOI: 10.1016/j.bbrc.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Although the prognosis for papillary thyroid carcinoma (PTC) is generally good, a certain proportion of patients show recurrent or advanced disease, indicating the need for further development of targeted medications. The purpose of this study was to explore the interventional effects of colchicine on PTC and the potential mechanisms or targets. We obtained PTC-related targets from the database and colchicine targets by predicting them. We screened the common targets of colchicine and the PTC-related target histone deacetylase 1 (HDAC1) and verified through molecular docking that colchicine has a good affinity for HDAC1, i.e., colchicine may act on PTC by affecting HDAC1. We then used CCK-8, colony formation, mitochondrial membrane potential and apoptosis assays to confirm that colchicine could inhibit the proliferation and promote the apoptosis of PTC cells and verified by RT‒qPCR, Western blot, and cellular immunofluorescence assays that colchicine could inhibit the expression of HDAC1 in PTC cells. The cytotoxicity and inhibitory effect of colchicine on HDAC1 in PTC cells was stronger than that in normal thyroid cells. We then applied an HDAC1 inhibitor, pyroxamide, to verify that inhibition of HDAC1 inhibits proliferation and promotes apoptosis in PTC cells. Therefore, we conclude that colchicine can inhibit the proliferation and promote the apoptosis of PTC cells likely due to its inhibitory effect on HDAC1. This finding implies that colchicine may be helpful for therapeutic intervention in PTC and that HDAC1 may be a promising clinical therapeutic target.
Collapse
Affiliation(s)
- Shuai Wang
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Zhonghao Cui
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, 250000, China
| | - Jian Zhu
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Peng Zhou
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Xianjiao Cao
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Xiaolei Li
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Yunhan Ma
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China
| | - Qingqing He
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| |
Collapse
|
11
|
Zhang L, Feng Q, Wang J, Tan Z, Li Q, Ge M. Molecular basis and targeted therapy in thyroid cancer: Progress and opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188928. [PMID: 37257629 DOI: 10.1016/j.bbcan.2023.188928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. Surgery, chemotherapy, radiotherapy, and radioactive iodine (RAI) therapy are the standard TC treatment modalities. However, recurrence or tumor metastasis remains the main challenge in the management of anaplastic thyroid cancer (ATC) and radioiodine (RAI) radioactive iodine-refractory differentiated thyroid cancer (RR-DTC). Several multi-tyrosine kinase inhibitors (MKIs), or immune checkpoint inhibitors in combination with MKIs, have emerged as novel therapies for controlling the progression of DTC, medullary thyroid cancer (MTC), and ATC. Here, we discuss and summarize the molecular basis of TC, review molecularly targeted therapeutic drugs in clinical research, and explore potentially novel molecular therapeutic targets. We focused on the evaluation of current and recently emerging tyrosine kinase inhibitors approved for systemic therapy for TC, including lenvatinib, sorafenib and cabozantinib in DTC, vandetanib, cabozantinib, and RET-specific inhibitor (selpercatinib and pralsetinib) in MTC, combination dabrafenib with trametinib in ATC. In addition, we also discuss promising treatments that are in clinical trials and may be incorporated into clinical practice in the future, briefly describe the resistance mechanisms of targeted therapies, emphasizing that personalized medicine is critical to the design of second-line therapies.
Collapse
Affiliation(s)
- Lizhuo Zhang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Qingqing Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | - Jiafeng Wang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China.
| | - Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
12
|
Wu K, He R, Li Z, Qiu K, Xiao G, Peng L, Meng X, Zheng C, Zhang Z, Cai Q. Discovery of 3,5-diaryl-1H-pyrazol-based ureas as potent RET inhibitors. Eur J Med Chem 2023; 251:115237. [PMID: 36905915 DOI: 10.1016/j.ejmech.2023.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Rearranged during transfection (RET) is a promising target for antitumor drug development. Multikinase inhibitors (MKI) have been developed for RET-driven cancers but displayed limited efficacy in disease control. Two selective RET inhibitors were approved by FDA in 2020 and proved potent clinical efficacy. However, the discovery of novel RET inhibitors with high target selectivity and improved safety is still highly desirable. Herein, we reported a class of 3,5-diaryl-1H-pyrazol-based ureas as new RET inhibitors. The representative compounds 17a/b displayed high selectivity to other kinases, and potently inhibited isogenic BaF3-CCDC6-RET cells harboring wild-type, or gatekeeper mutation (V804M). They also displayed moderate potency against BaF3-CCDC6-RET-G810C with solvent-front mutation. Compound 17b showed better pharmacokinetics properties and demonstrated promising oral in vivo antitumor efficacy in a BaF3-CCDC6-RET-V804M xenograft model. It may be utilized as a new lead compound for further development.
Collapse
Affiliation(s)
- Kaifu Wu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Kongxi Qiu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Guorong Xiao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Lijie Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xiangbao Meng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Canhui Zheng
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China; Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Jung CK, Agarwal S, Hang JF, Lim DJ, Bychkov A, Mete O. Update on C-Cell Neuroendocrine Neoplasm: Prognostic and Predictive Histopathologic and Molecular Features of Medullary Thyroid Carcinoma. Endocr Pathol 2023; 34:1-22. [PMID: 36890425 DOI: 10.1007/s12022-023-09753-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 03/10/2023]
Abstract
Medullary thyroid carcinoma (MTC) is a C-cell-derived epithelial neuroendocrine neoplasm. With the exception of rare examples, most are well-differentiated epithelial neuroendocrine neoplasms (also known as neuroendocrine tumors in the taxonomy of the International Agency for Research on Cancer [IARC] of the World Health Organization [WHO]). This review provides an overview and recent evidence-based data on the molecular genetics, disease risk stratification based on clinicopathologic variables including molecular profiling and histopathologic variables, and targeted molecular therapies in patients with advanced MTC. While MTC is not the only neuroendocrine neoplasm in the thyroid gland, other neuroendocrine neoplasms in the thyroid include intrathyroidal thymic neuroendocrine neoplasms, intrathyroidal parathyroid neoplasms, and primary thyroid paragangliomas as well as metastatic neuroendocrine neoplasms. Therefore, the first responsibility of a pathologist is to distinguish MTC from other mimics using appropriate biomarkers. The second responsibility includes meticulous assessment of the status of angioinvasion (defined as tumor cells invading through a vessel wall and forming tumor-fibrin complexes, or intravascular tumor cells admixed with fibrin/thrombus), tumor necrosis, proliferative rate (mitotic count and Ki67 labeling index), and tumor grade (low- or high-grade) along with the tumor stage and the resection margins. Given the morphologic and proliferative heterogeneity in these neoplasms, an exhaustive sampling is strongly recommended. Routine molecular testing for pathogenic germline RET variants is typically performed in all patients with a diagnosis of MTC; however, multifocal C-cell hyperplasia in association with at least a single focus of MTC and/or multifocal C-cell neoplasia are morphological harbingers of germline RET alterations. It is of interest to assess the status of pathogenic molecular alterations involving genes other than RET like the MET variants in MTC families with no pathogenic germline RET variants. Furthermore, the status of somatic RET alterations should be determined in all advanced/progressive or metastatic diseases, especially when selective RET inhibitor therapy (e.g., selpercatinib or pralsetinib) is considered. While the role of routine SSTR2/5 immunohistochemistry remains to be further clarified, evidence suggests that patients with somatostatin receptor (SSTR)-avid metastatic disease may also benefit from the option of 177Lu-DOTATATE peptide radionuclide receptor therapy. Finally, the authors of this review make a call to support the nomenclature change of MTC to C-cell neuroendocrine neoplasm to align this entity with the IARC/WHO taxonomy since MTCs represent epithelial neuroendocrine neoplasms of endoderm-derived C-cells.
Collapse
Affiliation(s)
- Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dong-Jun Lim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, 296-8602, Japan
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, M5G 2C4, Canada
- Endocrine Oncology Site, Princess Margaret Cancer, Toronto, ON, M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 2C4, Canada
| |
Collapse
|
14
|
Molecular genotyping in medullary thyroid cancer. Curr Opin Oncol 2023; 35:10-14. [PMID: 36475457 DOI: 10.1097/cco.0000000000000915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There has been a significant advance in our understanding of the molecular biology of medullary thyroid cancer (MTC) alongside progress in the development of targeted therapies including multikinase and specific rearranged during transfection inhibitors. RECENT FINDINGS This review will examine the latest data investigating the impact of the genomics of MTC on the prediction of the natural history of an individual's disease and the determination, selection and timing of treatment interventions. SUMMARY Recent advances in genotyping in MTC and the development of targeted therapies have impacted on the clinical management of both sporadic and hereditary MTC.
Collapse
|
15
|
Li Y, Luo Z, Wang X, Zhang S, Hei H, Qin J. Design of new drugs for medullary thyroid carcinoma. Front Oncol 2022; 12:993725. [PMID: 36544713 PMCID: PMC9760674 DOI: 10.3389/fonc.2022.993725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is one of the common malignant endocrine tumors, which seriously affects human health. Although surgical resection offers a potentially curative therapeutic option to some MTC patients, most patients do not benefit from it due to the difficulty to access the tumors and tumor metastasis. The survival rate of MTC patients has improved with the recent advances in the research, which has improved our understanding of the molecular mechanism underlying MTC and enabled the development and approval of novel targeted drugs. In this article, we reviewed the molecular mechanisms related to MTC progression and the principle for the design of molecular targeted drugs, and proposed some future directions for prospective studies exploring targeted drugs for MTC.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China
| | - Ziyu Luo
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China
| | - Xinxing Wang
- Department of Pain and Rehabilitation and Palliative Medicine, Henan Cancer Hospital, Zhengzhou, China,*Correspondence: Songtao Zhang, ; Hu Hei, ; Jianwu Qin, ; Xinxing Wang,
| | - Songtao Zhang
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China,*Correspondence: Songtao Zhang, ; Hu Hei, ; Jianwu Qin, ; Xinxing Wang,
| | - Hu Hei
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China,*Correspondence: Songtao Zhang, ; Hu Hei, ; Jianwu Qin, ; Xinxing Wang,
| | - Jianwu Qin
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,The Medical School of Zhengzhou University, Zhengzhou, China,*Correspondence: Songtao Zhang, ; Hu Hei, ; Jianwu Qin, ; Xinxing Wang,
| |
Collapse
|
16
|
Zhang Y, Chan S, He R, Liu Y, Song X, Tu ZC, Ren X, Zhou Y, Zhang Z, Wang Z, Zhou F, Ding K. 1-Methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-1H-pyrazole-4-carboxamide derivatives as new rearranged during Transfection (RET) kinase inhibitors capable of suppressing resistant mutants in solvent-front regions. Eur J Med Chem 2022; 244:114862. [DOI: 10.1016/j.ejmech.2022.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
17
|
Chu YH, Sadow PM. Kinase Fusion-Related Thyroid Carcinomas: Towards Predictive Models for Advanced Actionable Diagnostics. Endocr Pathol 2022; 33:421-435. [PMID: 36308634 PMCID: PMC10283356 DOI: 10.1007/s12022-022-09739-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 01/11/2023]
Abstract
The past decade has brought significant advances in our understanding of the molecular mechanisms of thyroid carcinogenesis. Among thyroid carcinomas, the most successful class of targeted therapeutics appears to be selective kinase inhibitors. Actionable kinase fusions arise in around 10-15% of cases of thyroid cancer, a significant subset. A cohort of molecular testing platforms, both commercial and laboratory-derived, has been introduced into clinical practice to identify patients with targetable tumors, requiring pathologists to develop an integrative approach that utilizes traditional diagnostic cytopathology and histopathology, immunohistochemistry, and cutting-edge molecular assays for optimal diagnostic, prognostic, and therapeutic efficiency. Furthermore, there has been increasing scrutiny of the clinical behavior of kinase fusion-driven thyroid carcinoma (KFTC), still regarded as papillary thyroid carcinomas, and in characterizing molecular predictors of kinase inhibitor resistance with an aim to establish standardized, evidence-based treatment regimens. This review presents an overview of the current literature on the clinicopathologic and molecular features of KFTC as well as the latest investigational progress and encountered challenges for this unique subset of thyroid neoplasias.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Peter M Sadow
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, Pathology Service, WRN 219, 55 Fruit Street, MA, 02114, Boston, USA.
| |
Collapse
|
18
|
Kucharczyk T, Krawczyk P, Kowalski DM, Płużański A, Kubiatowski T, Kalinka E. RET Proto-Oncogene-Not Such an Obvious Starting Point in Cancer Therapy. Cancers (Basel) 2022; 14:5298. [PMID: 36358717 PMCID: PMC9657474 DOI: 10.3390/cancers14215298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2023] Open
Abstract
Mutations and fusions of RET (rearranged during transfection) gene are detected in a few common types of tumors including thyroid or non-small cells lung cancers. Multiple kinase inhibitors (MKIs) do not show spectacular effectiveness in patients with RET-altered tumors. Hence, recently, two novel RET-specific inhibitors were registered in the US and in Europe. Selpercatinib and pralsetinib showed high efficacy in clinical trials, with fewer adverse effects, in comparison to previously used MKIs. However, the effectiveness of these new drugs may be reduced by the emergence of resistance mutations in RET gene and activation of different activating signaling pathways. This review presents the function of the normal RET receptor, types of molecular disturbances of the RET gene in patients with various cancers, methods of detecting these abnormalities, and the effectiveness of modern anticancer therapies (ranging from immunotherapies, through MKIs, to RET-specific inhibitors).
Collapse
Affiliation(s)
- Tomasz Kucharczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dariusz M. Kowalski
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Adam Płużański
- Department of Lung and Thoracic Tumours, Maria Skłodowskiej-Curie National Research Institute, 02-718 Warsaw, Poland
| | - Tomasz Kubiatowski
- Oncology and Immunology Clinic, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, 10-228 Olsztyn, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital-Research Institute, 90-302 Lodz, Poland
| |
Collapse
|
19
|
Verrienti A, Grani G, Sponziello M, Pecce V, Damante G, Durante C, Russo D, Filetti S. Precision oncology for RET-related tumors. Front Oncol 2022; 12:992636. [PMID: 36091144 PMCID: PMC9449844 DOI: 10.3389/fonc.2022.992636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Aberrant activation of the RET proto-oncogene is implicated in a plethora of cancers. RET gain-of-function point mutations are driver events in multiple endocrine neoplasia 2 (MEN2) syndrome and in sporadic medullary thyroid cancer, while RET rearrangements are driver events in several non-medullary thyroid cancers. Drugs able to inhibit RET have been used to treat RET-mutated cancers. Multikinase inhibitors were initially used, though they showed modest efficacy and significant toxicity. However, new RET selective inhibitors, such as selpercatinib and pralsetinib, have recently been tested and have shown good efficacy and tolerability, even if no direct comparison is yet available between multikinase and selective inhibitors. The advent of high-throughput technology has identified cancers with rare RET alterations beyond point mutations and fusions, including RET deletions, raising questions about whether these alterations have a functional effect and can be targeted by RET inhibitors. In this mini review, we focus on tumors with RET deletions, including deletions/insertions (indels), and their response to RET inhibitors.
Collapse
Affiliation(s)
- Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Giorgio Grani,
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Diego Russo
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|