1
|
Jiang Z, Yang Y, Yue Z, Chen Y, Bai L, Wang R, Li S, Lin Y. A Noninvasive Nanoeyedrop Therapy for the Inhibition of Uveal Melanoma: Tetrahedral Framework Nucleic Acid-Based Bioswitchable MicroRNA Delivery System. ACS NANO 2025; 19:14756-14769. [PMID: 40208012 DOI: 10.1021/acsnano.4c16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignancy, exhibiting pronounced invasive characteristics and a dismal prognosis. Conventional therapeutic modalities, including radiotherapy, laser therapy, and surgery, are frequently invasive and can lead to complications, underscoring the need for the development of efficacious, safe, and noninvasive therapeutic approaches. This study investigated a tetrahedral framework nucleic acid (tFNA)-based bioswitchable microRNA (miRNA) delivery system, designated BiRDS, engineered for the inhibition of UM through the use of miRNA suppressors via noninvasive eyedrops. The BiRDS construct exhibited a tetrahedral structure, which was small in size, easily synthesizable, stable, and biosafe, and was able to efficiently carry miR-30a-5p into UM cells. Functionally, BiRDS was observed to inhibit the proliferation, migration, and invasion of UM cells while promoting apoptosis through the miR-30a-5p/E2F7 axis. It is noteworthy that BiRDS nanoeyedrops were able to penetrate the complex ocular barrier structure and reach the fundus, thereby inhibiting the growth of UM in a xenograft model. As a patient-friendly, eyedrop-based miRNA delivery system, BiRDS not only inhibited UM without enucleation of the eyeball but was also expected to improve patient compliance and quality of life while providing a safer alternative for ocular drug administration. This work substantiates BiRDS nanoeyedrops as a potential paradigm shift in the local treatment of early UM, facilitating its application in treating other ocular diseases via miRNA therapies.
Collapse
Affiliation(s)
- Zhou Jiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yichen Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ziqi Yue
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Long Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ruiqing Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, Sichuan, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Urzì O, Olofsson Bagge R, Crescitelli R. Extracellular vesicles in uveal melanoma - Biological roles and diagnostic value. Cancer Lett 2025; 615:217531. [PMID: 39914771 DOI: 10.1016/j.canlet.2025.217531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Uveal melanoma (UM), which originates from the uveal tract of the eye, is the most common and aggressive intraocular cancer in adults. The detection of genetic markers is crucial for an accurate diagnosis, but this requires tumor biopsies that can be challenging to obtain. Extracellular vesicles (EVs) have emerged as potential biomarkers for UM due to their presence in biological fluids and their ability to carry disease-related biomolecules such as proteins and nucleic acids. Increasing evidence indicates that EVs released from UM cells play crucial roles in UM development, including cancer progression, pre-metastatic niche formation, and metastasis. Moreover, many studies have demonstrated that UM-derived EVs carry proteins and microRNAs that might be used as biomarkers. This review explores the role of EVs in UM, focusing on their biological functions and their potential as diagnostic and prognostic biomarkers of UM. Additionally, current challenges to the use of UM-derived EVs in clinical translation were identified, as well as perspectives and future directions in the field.
Collapse
Affiliation(s)
- Ornella Urzì
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Aoki S, Wakatsuki M, Tsuji H, Makishima H, Ikawa H, Yamada S, Inoue Y, Goto H, Suzuki S, Kubota T, Ishikawa H, Mizota A. Long-Term Outcomes of Ocular and Visual Preservation After Carbon Ion Radiation Therapy for Choroidal Malignant Melanoma. Int J Radiat Oncol Biol Phys 2025; 121:991-999. [PMID: 39424082 DOI: 10.1016/j.ijrobp.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE This study aimed to evaluate the long-term results of carbon ion radiation therapy (CIRT) for choroidal malignant melanoma (CMM), especially regarding the preservation of the eye and visual acuity (VA). METHODS AND MATERIALS A total of 250 patients with intraocularly localized CMM treated with CIRT between January 2003 and September 2021 were included. The dose prescription included 60 to 85 Gy/4 to 5 fr, with only 68 Gy/4 fr used from 2018 onward. The rotating gantry system with scanning beams was introduced in April 2018. Adverse events (AEs) were graded according to the Common Terminology Criteria for AEs (version 5.0.). For secondary glaucoma, tumor-related visual field defects were excluded from the evaluation. For VA, 245 patients with VA ≥ light perception (LP) were followed up. Effective VA (≥20/200, Snellen equivalent), counting fingers, and LP were used as indicators. RESULTS The median age was 55 (15-86) years. The T categories 1, 2, 3, and 4 were observed in 16 (6.4%), 41 (16.4%), 189 (75.6%), and 4 (1.6%) patients, respectively. With a median follow-up of 72.5 months, the 5- and 8-year overall survival rates were 87.5% and 84.2%, respectively; the 5- and 8-year local control rates were 94.4% and 92.9%, respectively. At the last follow-up, 19 of 250 patients (7.6%) underwent enucleation, 15 caused by local recurrence and 4 caused by AEs. Secondary glaucoma grades 1, 2, and 3 to 4 were observed in 22 (8.8%), 49 (19.6%), and 5 (2.0%) of patients, respectively. At the last follow-up, ≥ effective VA, ≥ counting fingers, and ≥ LP were maintained in 80 (33%), 120 (49%), and 154 (63%) of patients, respectively. Preservation rate of ≥ LP vision at 5 and 8 years after CIRT was 65.7% and 55.3%, respectively. CONCLUSIONS CIRT for CMM is a promising treatment for both tumor control and preservation of the eye and VA.
Collapse
Affiliation(s)
- Shuri Aoki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hirokazu Makishima
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji Inoue
- Department of Ophthalmology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Shigenobu Suzuki
- Department of Ophthalmic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toshinobu Kubota
- Department of Ophthalmology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University School of Medicine, Tokyo, Japan; Nishikasai Inouye Eye Hospital, Tokyo, Japan
| |
Collapse
|
4
|
Al Sharie AH, Al-Omari SO, Aleshawi A, Al-Dwairi R, Al Deyabat O. Checkmate awaiting strategy: unlocking the potential of chimeric antigen receptor T-cell therapy in uveal melanoma. Front Oncol 2025; 15:1555842. [PMID: 40040721 PMCID: PMC11876383 DOI: 10.3389/fonc.2025.1555842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Affiliation(s)
- Ahmed H. Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Samah O. Al-Omari
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdelwahab Aleshawi
- Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rami Al-Dwairi
- Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Al Deyabat
- University of Illinois, Peoria, IL, United States
- The Hashemite University, Zarqa, Jordan
| |
Collapse
|
5
|
Weiqin L, Qi W, Lin J, Shuxia C, Chang L. Unveiling the role of ACTL6A in uveal melanoma metastasis and immune microenvironment. Int Immunopharmacol 2025; 147:113841. [PMID: 39746274 DOI: 10.1016/j.intimp.2024.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To predict and evaluate the possible mechanisms and clinical value of ACTL6A in the prognosis and development of UM. METHODS Bioinformatics analyze the relationship between ACTL6A and immunity in UM, which derived from TCGA, Gene Expression Omnibus (GEO) databases. Tumor-infltrated immune cells were demonstrated using QUANTISEQ and MCP-counter. Furthermore, scRNA-seq was used to detect ACTL6A expression, distribution, immune infiltration and revealing the gene expression profile of UM. RESULTS The expression of ACTL6A was lower in UM compared with pantumor in TCGA databases. Kaplan-Meier analysis revealed that downregulated ACTL6A was associated with poor OS, and ACTL6A was associated with cancer stem cells (CSCs) and immune infiltration. Moreover, ACTL6A might act as a chemotherapy resistance gene and closely relate- to epithelial-mesenchymal transition. Analysis in 8 GSE databases showed that IL13, TPTE, IL17B and CCL22 genes were significantly overexpressed in metastatic UM. Furthermore, the single-cell transcriptomic profling identified a new cell cluster - as a unique type of immune cell, which associating with malignant cell heterogeneity and complexity, and further revealing that the metastasis of UM is mainly associated with CD4 Tconv, B , CD8 Tex, and Plasma cells. CONCLUSIONS Downregulated ACTL6A acts as a risk factor for poor prognosis in UM, which implies as an potential prognostic marker for independent targeted immunotherapy.
Collapse
Affiliation(s)
- Liu Weiqin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Wan Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Jin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; The First Affiliated Hospital of Shandong First Medical University, jinan 250014, China
| | - Chen Shuxia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; The First Affiliated Hospital of Shandong First Medical University, jinan 250014, China; Pathology Department, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Liu Chang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
6
|
Du K, Luo W. Efficacy and safety of robotic Cyberknife radiotherapy in uveal melanoma: a systematic review and meta-analysis. Eye (Lond) 2025; 39:548-555. [PMID: 39799262 PMCID: PMC11794702 DOI: 10.1038/s41433-024-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
OBJECTIVES This systematic review is aimed to evaluate the efficacy and safety of robotic Cyberknife radiotherapy (CKRT) in the treatment of uveal melanoma (UM). METHODS Clinical studies published in English that assessed the efficacy and safety of robotic CKRT in UM were systematically searched in PubMed, Web of Science, Cochrane and Embase from inception to July 2023. Studies reporting extraocular tumours or other radiosurgery approaches were excluded. Outcomes measured were tumour size, reflectivity, local tumour control rate, eye retention rate, survival rate, complication rate, recurrence rate, and metastasis rate. RESULTS Ten eligible articles involving 2370 patients with 2372 UMs were included in evidence synthesis. Meta-analysis showed 811 of 912 patients (0.89, 95% Cl: 0.86, 0.92) maintained local control for three years, and 1448 of 1724 patients (0.84, 95% Cl: 0.81, 0.88) preserved the eye in three years. During follow-up, 91% (0.91, 95% Cl: 0.85, 0.97) patients survived and 351 of 1720 patients (0.23, 95% Cl: 0.09, 0.37) involving 1722 eyes had tumour recurrence. In addition, 1376 patients (0.79, 95% Cl: 0.77, 0.82) preserved the eyeball in five years. Following treatment, approximately 20% of patients had radiation retinopathy (95% Cl: 0.13, 0.28), 19% developed glaucoma (95% Cl: 0.11, 0.28), and 22% experienced retinal detachment (95% Cl: 0.07, 0.36). CONCLUSIONS CKRT is a viable, noninvasive RT for UM. The rate of local tumour control following treatment is comparable to that of other RT approaches, providing additional options based on the patient's condition.
Collapse
Affiliation(s)
- Kejie Du
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjuan Luo
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Godiveau M, Ginzac A, Bidet Y, Ponelle-Chachuat F, Privat M, Durando X, Cavaillé M, Lepage M. Identification of new candidate genes for the hereditary predisposition to uveal melanoma: IGCMU trial. Front Oncol 2025; 15:1538924. [PMID: 39926282 PMCID: PMC11802557 DOI: 10.3389/fonc.2025.1538924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Uveal melanoma (UM) is a rare ocular cancer. While germline mutations in genes such as BAP1 and MBD4 account for approximately 20% of familial UM cases, the hereditary factors underlying the remaining cases remain unknown. Epidemiological studies have suggested an increased risk of prostate cancer, thyroid cancer, and leukemia among patients with UM, indicating potential unidentified genetic predispositions. This study aims to identify new candidate genes associated with a hereditary predisposition to UM. Methods This single-center study, conducted at Centre Jean Perrin, will involve the exome sequencing of 50 patients with UM who do not harbor known pathogenic variants in the BAP1 or MBD4 genes. The primary objective is to identify novel candidate genes associated with hereditary cancer predisposition among UM patients. A several-step-bioinformatic analysis will be conducted to identify the genes of interest. A secondary objective is to explore genes known to be involved in predisposition to other cancers, already described in the occurrence of uveal melanoma, but where an association has not been fully established yet. The study has begun in October 2024, with patient recruitment lasting 12 months. No follow-up period is planned, but the duration of the genetic analyses is estimated at six months, with the final study report expected by October 2026. Discussion The identification of novel hereditary predisposition genes for UM could significantly enhance genetic counselling and surveillance strategies for families affected. This study could also contribute to a better understanding of the genetic landscape of UM, potentially leading to more personalized and effective options for its detection. Trial registration ClinicalTrials.gov, identifier NCT06550674, registered in August 2024. Protocol: version 1.0, January 18th, 2024.
Collapse
Affiliation(s)
- Mélanie Godiveau
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Division de Recherche Clinique, Délégation Recherche Clinique and Innovation, Center Jean Perrin, Clermont-Ferrand, France
- Centre d’Investigation Clinique (CIC), UMR501, Clermont-Ferrand, France
| | - Angeline Ginzac
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Division de Recherche Clinique, Délégation Recherche Clinique and Innovation, Center Jean Perrin, Clermont-Ferrand, France
- Centre d’Investigation Clinique (CIC), UMR501, Clermont-Ferrand, France
| | - Yannick Bidet
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| | - Flora Ponelle-Chachuat
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| | - Maud Privat
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| | - Xavier Durando
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Division de Recherche Clinique, Délégation Recherche Clinique and Innovation, Center Jean Perrin, Clermont-Ferrand, France
- Centre d’Investigation Clinique (CIC), UMR501, Clermont-Ferrand, France
- Département d’Oncologie Médicale, Center Jean Perrin, Clermont-Ferrand, France
| | - Mathias Cavaillé
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| | - Mathis Lepage
- Université Clermont Auvergne, Institut National de la santé et de la recherche en innovation (INSERM), Unité mixte de recherche (UMR) 1240 « Imagerie Moléculaire et Stratégies Théranostiques », Center Jean Perrin, Clermont-Ferrand, France
- Département d’Oncogénétique, Laboratoire d’Oncologie Moléculaire, Center Jean Perrin, Clermont-Ferrand, France
| |
Collapse
|
8
|
Sun H, Li C, Pu Z, Lu Y, Wu Z, Zhou L, Lin H, Wang Y, Zi T, Mou L, Yang MM. Single-cell RNA sequencing and AlphaFold 3 insights into cytokine signaling and its role in uveal melanoma. Front Immunol 2025; 15:1458041. [PMID: 39916959 PMCID: PMC11798937 DOI: 10.3389/fimmu.2024.1458041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025] Open
Abstract
Background Uveal melanoma (UVM) is a form of eye cancer with a poor prognosis, particularly in metastatic patients. This study aimed to elucidate the cellular heterogeneity within UVM and identify prognostic biomarkers. Methods We performed single-cell RNA sequencing (scRNA-seq) on primary and metastatic UVM samples. A UVM-specific gene signature was constructed using LASSO regression and validated via ROC curve analysis in the TCGA-UVM and GSE84976 cohorts. AlphaFold 3 was used to predict the 3D structures of key proteins. T-cell populations were analyzed using pseudotime trajectory mapping and interaction network visualization. CRISPR-Cas9 screening analysis was conducted to identify hub genes and cytokine pathways that may serve as therapeutic targets. Additionally, we constructed the Dictionary of Immune Responses to Cytokines at single-cell resolution to evaluate cytokine signatures. Results ScRNA-seq revealed five major cell types within UVMs and subdivided them into seven distinct subtypes. Cytokine signaling analysis revealed differential expression of cytokine signaling in immune-related genes (CSIRGs) across these subtypes in primary and metastatic tumors. The UVM-specific gene signature demonstrated high predictive accuracy in ROC curve analysis and was associated with overall survival in Kaplan-Meier survival analyses. Additionally, AlphaFold 3 predicted the 3D structures of key proteins with high confidence. T-cell population analysis revealed complex developmental pathways and interaction networks in UVM. Myeloid-derived suppressor cells (MDSCs) were found to be increased in metastatic UVM, correlating with the enrichment of GM-CSF. CRISPR-Cas9 screening analysis identified hub genes and cytokine pathways with low gene effect scores across cell lines, indicating their potential importance in UVM. Conclusion This study identified critical cellular subtypes and prognostic biomarkers in UVM, shedding light on targeted therapies. The insights into cytokine signaling and T-cell dynamics within the UVM microenvironment provide a foundation for developing personalized therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Cunzi Li
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Ying Lu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Zijing Wu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Lan Zhou
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China
| | - Hongzhan Lin
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yumo Wang
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Tao Zi
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lisha Mou
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Ming-ming Yang
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
9
|
Liu TYA, Chen H, Koseoglu ND, Kolchinski A, Unberath M, Correa ZM. Direct Prediction of 48 Month Survival Status in Patients with Uveal Melanoma Using Deep Learning and Digital Cytopathology Images. Cancers (Basel) 2025; 17:230. [PMID: 39858012 PMCID: PMC11763770 DOI: 10.3390/cancers17020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. The median overall survival time for patients who develop metastasis is approximately one year. In this study, we aim to leverage deep learning (DL) techniques to analyze digital cytopathology images and directly predict the 48 month survival status on a patient level. METHODS Fine-needle aspiration biopsy (FNAB) of the tumor was performed in each patient diagnosed with UM. The cell aspirate was smeared on a glass slide and stained with H&E. Each slide then underwent whole-slide scanning. Within each whole-slide image, regions of interest (ROIs) with UM cells were automatically extracted. Each ROI was converted into super pixels, and the super pixels were automatically detected, segmented and annotated as "tumor cell" or "background" using DL. Cell-level features were extracted from the segmented tumor cells. The cell-level features were aggregated into slide-level features which were learned by a fully connected layer in an artificial neural network, and the patient survival status was predicted directly from the slide-level features. The data were partitioned at the patient level (78% training and 22% testing). Our DL model was trained to perform the binary prediction of yes-versus-no survival by Month 48. The ground truth for patient survival was established via a retrospective chart review. RESULTS A total of 74 patients were included in this study (43% female; mean age at the time of diagnosis: 61.8 ± 11.6 years), and 207,260 unique ROIs were generated for model training and testing. By Month 48 after diagnosis, 18 patients (24%) died from UM metastasis. Our hold-out test set contained 16 patients, where 6 patients had passed away and 10 patients were alive at Month 48. When using a sensitivity threshold of 80% in predicting UM-specific death by Month 48, our model achieved an overall accuracy of 75%. Within the subgroup of patients who died by Month 48, our model achieved a prediction accuracy of 83%. Of note, one patient in our test set was a clinical surprise, namely death by Month 48 despite having a GEP class 1A tumor, which typically portends a good prognosis. Our model correctly predicted this clinical surprise as well. CONCLUSIONS Our DL model was able to predict the Month 48 survival status directly from digital cytopathology images obtained from FNABs of UM tumors with reasonably robust performance. This approach, if validated prospectively, could serve as an alternative survival prediction tool for patients with UM to whom GEP is not available.
Collapse
Affiliation(s)
- T. Y. Alvin Liu
- Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Haomin Chen
- School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Anna Kolchinski
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Mathias Unberath
- School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zelia M. Correa
- Ocular Oncology Service, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Kulbay M, Tuli N, Mazza M, Jaffer A, Juntipwong S, Marcotte E, Tanya SM, Nguyen AXL, Burnier MN, Demirci H. Oncolytic Viruses and Immunotherapy for the Treatment of Uveal Melanoma and Retinoblastoma: The Current Landscape and Novel Advances. Biomedicines 2025; 13:108. [PMID: 39857692 PMCID: PMC11762644 DOI: 10.3390/biomedicines13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Intraocular malignant tumors are rare; however, they can cause serious life-threatening complications. Uveal melanoma (UM) and retinoblastoma (RB) are the most common intraocular tumors in adults and children, respectively, and come with a great disease burden. For many years, several different treatment modalities for UM and RB have been proposed, with chemotherapy for RB cases and plaque radiation therapy for localized UM as first-line treatment options. Extraocular extension, recurrence, and metastasis constitute the major challenges of conventional treatments. To overcome these obstacles, immunotherapy, which encompasses different treatment options such as oncolytic viruses, antibody-mediated immune modulations, and targeted immunotherapy, has shown great potential as a novel therapeutic tool for cancer therapy. These anti-cancer treatment options provide numerous advantages such as selective cancer cell death and the promotion of an anti-tumor immune response, and they prove useful in preventing vision impairment due to macular and/or optic disc involvement. Numerous factors such as the vector choice, route of administration, dosing, and patient characteristics must be considered when engineering an oncolytic virus or other forms of immunotherapy vectors. This manuscript provides an in-depth review of the molecular design of oncolytic viruses (e.g., virus capsid proteins and encapsulation technologies, vectors for delivery, cell targeting) and immunotherapy. The most recent advances in preclinical- and clinical-phase studies are further summarized. The recent developments in virus-like drug conjugates (i.e., AU011), oncolytic viruses for metastatic UM, and targeted immunotherapies have shown great results in clinical trials for the future clinical application of these novel technologies in the treatment algorithm of certain intraocular tumors.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Massimo Mazza
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Armaan Jaffer
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 2V5, Canada
- Research Excellence Cluster in Vision, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Sarinee Juntipwong
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Emily Marcotte
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Stuti Misty Tanya
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
| | - Anne Xuan-Lan Nguyen
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Miguel N. Burnier
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3J1, Canada; (M.K.)
- McGill University Ocular Pathology and Translational Research Laboratory, McGill University, Montreal, QC H4A 3J1, Canada;
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hakan Demirci
- Kellogg Eye Center, Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
11
|
Dian Y, Liu Y, Zeng F, Sun Y, Deng G. Efficacy and safety of tebentafusp in patients with metastatic uveal melanoma: A systematic review and meta-analysis. Hum Vaccin Immunother 2024; 20:2374647. [PMID: 39004419 PMCID: PMC11249029 DOI: 10.1080/21645515.2024.2374647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Patients with metastatic uveal melanoma (mUM) have a poor prognosis, and few appropriate medications are available. Tebentafusp is approved by the Food and Drug Administration for mUM recently. However, the real efficacy and safety of tebentafusp are still unclear. We searched PubMed, Embase, and Cochrane Library from inception to March 20, 2024. The research was reported based on the preferred reporting items for systematic reviews and meta-analysis guidelines. We used random effects models to aggregate data on the response rates and adverse events of tebentafusp therapy. Six studies met the inclusion criteria with a total sample of 589 participants. The pooled objective response rate was 0.08 (95% CI: 0.05-0.12), and pooled disease control rate was 0.51 (95% CI: 0.44-0.57). The overall incidence was 0.99 (95% CI: 0.95-1.00) for any grade adverse events, 0.50 (95% CI: 0.41-0.59) for grade 3-4 adverse events, and 0.01 (95% CI: 0-0.03) for discontinuation due to adverse events. Tebentafusp exhibits promising treatment outcomes for mUM patients. Although accompanied with a common occurrence of adverse events, which can typically be managed and controlled. Future research is necessary for substantiating these findings and refining guidelines for management of mUM.
Collapse
Affiliation(s)
- Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Liu W, Cui Z, Wan Q, Liu Y, Chen M, Cheng Y, Sang X, Su Y, Gu S, Li C, Liu C, Chen S, Wang Z, Wang X. The BET inhibitor JQ1 suppresses tumor survival by ABCB5-mediated autophagy in uveal melanoma. Cell Signal 2024; 125:111483. [PMID: 39442901 DOI: 10.1016/j.cellsig.2024.111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Uveal melanoma (UM), the most common adult ocular tumor, is aggressive and resistant to treatment, posing threat to patients' lives. The novel, effective therapies and the exploration of chemosensitizer for UM are imperative. The anticancer efficacy was evaluated with and without JQ1 treatment or ABCB5 gene silencing or overexpression. RNA sequencing identified downstream effectors in JQ1-treated cells. Integrated analysis of The Cancer Genome Atlas data (TCGA) and immunohistochemistry (IHC) revealed the oncogenic role of ABCB5. Functional analyses of JQ1 and defective ABCB5 were conducted using flow cytometry, transmission electron microscopy (TEM), IHC and western blot. The effects of JQ1 were validated in a heterotopic tumor model derived from OCM-1 cells. JQ1 inhibited cell proliferation, migration and invasion, induced cell cycle arrest and promoted apoptosis. JQ1 also suppressed the survival of UM in heterotopic tumor model. RNA sequencing indicated that JQ1 down-regulated the expressions of ABCB5 and autophagy-related genes, which was confirmed in vitro and in vivo by western blot. ABCB5, a marker associated with cancer stem cells and chemo-resistance, exhibited heightened expression in UM tissues, linked to immune infiltration. Notably, disrupting ABCB5 expression impeded UM cell proliferation and interfered with autophagy. Moreover, the overexpression of ABCB5 promoted cell proliferation, migration and invasion, and rescued autophagy related gene expression. Of note, JQ1 enhanced the sensitivity of OCM-1 cells to chemotherapy. Thus JQ1 inhibits UM survival via ABCB5-mediated autophagy and enhances chemo-sensitivity, suggesting potential for BET-based approaches in UM clinical management.
Collapse
Affiliation(s)
- Weiqin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Minghao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Simin Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shuxia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Pathology Department, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
13
|
Chan AW, Lin H, Yacoub I, Chhabra AM, Choi JI, Simone CB. Proton Therapy in Uveal Melanoma. Cancers (Basel) 2024; 16:3497. [PMID: 39456591 PMCID: PMC11506608 DOI: 10.3390/cancers16203497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Uveal melanoma is the most common primary intraocular malignancy in adults. Treatment options for localized, early-stage disease include enucleation, brachytherapy, and proton beam therapy. This review aims to evaluate the role of proton therapy in the definitive management of uveal melanoma, focusing on its physics, radiobiology, treatment techniques, and associated outcomes. Methods: This narrative review synthesizes current literature on proton therapy for uveal melanoma, emphasizing case selection, treatment efficacy, and side effects. Results: Proton therapy offers significant advantages for thicker uveal melanomas (over 8 mm) due to its unique physical properties, including a rapid dose fall-off that protects critical structures like the retina and optic nerve. Proton therapy may have benefits in tumor control for ocular melanomas given its increased relative biological effectiveness relative to photon therapy for these typically more radioresistant melanomas. Proton therapy may also hold special value for uveal melanomas in close proximity to the optic nerve, as patients are at high risk of visual toxicities with brachytherapy. The review discusses the efficacy of proton therapy across small, medium, and large tumors, along with strategies for improving patient survival through combined systemic therapy. Additionally, the potential of ocular reirradiation with proton therapy is addressed. Conclusions: Proton therapy is an effective treatment for uveal melanoma. It offers advantages over brachytherapy for large tumors, tumors that are close to the optic nerve or insertion of extra-ocular muscles.
Collapse
Affiliation(s)
- Adrian Wai Chan
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, The University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | - J. Isabelle Choi
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Liu B, Yao X, Huang Q, Fan Y, Yu B, Wang J, Wu W, Dai J. STAT6/LINC01637 axis regulates tumor growth via autophagy and pharmacological targeting STAT6 as a novel strategy for uveal melanoma. Cell Death Dis 2024; 15:713. [PMID: 39353898 PMCID: PMC11445459 DOI: 10.1038/s41419-024-07115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Compelling evidence has revealed a novel function of the STAT pathway in the pathophysiology of uveal melanoma (UM); however, its regulatory mechanisms remain unclear. Here, we analyzed the clinical prognostic value of STAT family genes in UM patients using bioinformatics approaches and found that high STAT6 expression is associated with poor prognosis. Furthermore, cellular experiments and a nude mouse model demonstrated that STAT6 promotes UM progression through the autophagy pathway both in vivo and in vitro. Next, RIP-PCR revealed that STAT6 protein binds to LINC01637 mRNA, which in turn regulates STAT6 expression to promote UM growth. Finally, molecular docking indicated that STAT6 is a target of Zoledronic Acid, which can delay UM tumorigenicity by inhibiting STAT6 expression. Taken together, our results indicate that the STAT6/LINC01637 axis promotes UM progression via autophagy and may serve as a potential therapeutic target for UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinying Huang
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yichao Fan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bo Yu
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jing Wang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China.
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Huang P, Kong L, Zhang F, Chen L, Zhang Y, Shi X, Lawson T, Chou S, Liu Y, Wu W. AIBI Modified Mesoporous Copper Sulfide Nanocomposites for Efficient Non-Oxygen Dependent Free Radicals-Assisted Photothermal Therapy in Uveal Melanoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312211. [PMID: 38381004 DOI: 10.1002/smll.202312211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/14/2024] [Indexed: 02/22/2024]
Abstract
Uveal melanoma (UM) is an ocular cancer predominantly affecting adults, characterized by challenging diagnostic outcomes. This research endeavors to develop an innovative multifunctional nanocomposite system sensitive to near-infrared (NIR) radiation, serving as both a non-oxygen free-radical generator and a photothermal agent. The designed system combines azobis isobutyl imidazoline hydrochloride (AIBI) with mesoporous copper sulfide (MCuS) nanoparticles. MCuS harnesses NIR laser energy to induce photothermal therapy, converting light energy into heat to destroy cancer cells. Simultaneously, AIBI is activated by the NIR laser to produce alkyl radicals, which induce DNA damage in remaining cancer cells. This distinctive feature equips the designed system to selectively eliminate cancers in the hypoxic tumor microenvironment. MCuS is also beneficial to scavenge the overexpressed glutathione (GSH) in the tumor microenvironment. GSH generally consumes free radicals and hiders the PDT effect. To enhance control over AIBI release in cancer cells, 1-tetradecyl alcohol (TD), a phase-changing material, is introduced onto the surface of MCuS nanoparticles to create the final AMPT nanoparticle system. In vitro and in vivo experiments confirm the remarkable anti-tumor efficacy of AMPT. Notably, the study introduces an orthotopic tumor model for UM, demonstrating the feasibility of precise and effective targeted treatment within the ocular system.
Collapse
Affiliation(s)
- Pingping Huang
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Lingdan Kong
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Feiyu Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511495, China
| | - Linxin Chen
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Yue Zhang
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Xiaoqian Shi
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Tom Lawson
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shulei Chou
- Technology Innovation Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou University Town, Wenzhou, Zhejiang, 325035, China
| | - Yong Liu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Wencan Wu
- Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
16
|
Liu XL, Run-Hua Z, Pan JX, Li ZJ, Yu L, Li YL. Emerging therapeutic strategies for metastatic uveal melanoma: Targeting driver mutations. Pigment Cell Melanoma Res 2024; 37:411-425. [PMID: 38411373 DOI: 10.1111/pcmr.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults. Although primary UM can be effectively controlled, a significant proportion of cases (40% or more) eventually develop distant metastases, commonly in the liver. Metastatic UM remains a lethal disease with limited treatment options. The initiation of UM is typically attributed to activating mutations in GNAQ or GNA11. The elucidation of the downstream pathways such as PKC/MAPK, PI3K/AKT/mTOR, and Hippo-YAP have provided potential therapeutic targets. Concurrent mutations in BRCA1 associated protein 1 (BAP1) or splicing factor 3b subunit 1 (SF3B1) are considered crucial for the acquisition of malignant potential. Furthermore, in preclinical studies, actionable targets associated with BAP1 loss or oncogenic mutant SF3B1 have been identified, offering promising avenues for UM treatment. This review aims to summarize the emerging targeted and epigenetic therapeutic strategies for metastatic UM carrying specific driver mutations and the potential of combining these approaches with immunotherapy, with particular focus on those in upcoming or ongoing clinical trials.
Collapse
Affiliation(s)
- Xiao-Lian Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhou Run-Hua
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Xuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jie Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Lei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Loda A, Semeraro F, Parolini S, Ronca R, Rezzola S. Cancer stem-like cells in uveal melanoma: novel insights and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189104. [PMID: 38701937 DOI: 10.1016/j.bbcan.2024.189104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
18
|
Zhao M, Yu Y, Song Z. Identification and validation of a costimulatory molecule-related signature to predict the prognosis for uveal melanoma patients. Sci Rep 2024; 14:9146. [PMID: 38644411 PMCID: PMC11033288 DOI: 10.1038/s41598-024-59827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
Uveal melanoma (UVM) is the most common primary tumor in adult human eyes. Costimulatory molecules (CMs) are important in maintaining T cell biological functions and regulating immune responses. To investigate the role of CMs in UVM and exploit prognostic signature by bioinformatics analysis. This study aimed to identify and validate a CMs associated signature and investigate its role in the progression and prognosis of UVM. The expression profile data of training cohort and validation cohort were downloaded from The Cancer Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) dataset. 60 CM genes were identified, and 34 genes were associated with prognosis by univariate Cox regression. A prognostic signature was established with six CM genes. Further, high- and low-risk groups were divided by the median, and Kaplan-Meier (K-M) curves indicated that high-risk patients presented a poorer prognosis. We analyzed the correlation of gender, age, stage, and risk score on prognosis by univariate and multivariate regression analysis. We found that risk score was the only risk factor for prognosis. Through the integration of the tumor immune microenvironment (TIME), it was found that the high-risk group presented more immune cell infiltration and expression of immune checkpoints and obtained higher immune scores. Enrichment analysis of the biological functions of the two groups revealed that the differential parts were mainly related to cell-cell adhesion, regulation of T-cell activation, and cytokine-cytokine receptor interaction. No differences in tumor mutation burden (TMB) were found between the two groups. GNA11 and BAP1 have higher mutation frequencies in high-risk patients. Finally, based on the Genomics of Drug Sensitivity in Cancer 2 (GDSC2) dataset, drug sensitivity analysis found that high-risk patients may be potential beneficiaries of the treatment of crizotinib or temozolomide. Taken together, our CM-related prognostic signature is a reliable biomarker that may provide ideas for future treatments for the disease.
Collapse
Affiliation(s)
- Minyao Zhao
- Department of Ophthalmology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Yu
- Department of Ophthalmology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengyu Song
- Department of Ophthalmology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|