1
|
Pachinger C, Dobbelaere J, Rumpf-Kienzl C, Raina S, Garcia-Baucells J, Sarantseva M, Brauneis A, Dammermann A. A conserved role for centriolar satellites in translation of centrosomal and ciliary proteins. J Cell Biol 2025; 224:e202408042. [PMID: 40396915 DOI: 10.1083/jcb.202408042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/30/2025] [Accepted: 03/18/2025] [Indexed: 05/22/2025] Open
Abstract
Centriolar satellites are cytoplasmic particles found in the vicinity of centrosomes and cilia whose specific functional contribution has long been unclear. Here, we identify Combover as the Drosophila ortholog of the main scaffolding component of satellites, PCM1. Like PCM1, Combover localizes to cytoplasmic foci containing centrosomal proteins and its depletion or mutation results in centrosomal and ciliary phenotypes. Strikingly, however, the concentration of satellites near centrosomes and cilia is not a conserved feature, nor do Combover foci display directed movement. Proximity interaction analysis revealed not only centrosomal and ciliary proteins, but also RNA-binding proteins and proteins involved in quality control. Further work in Drosophila and vertebrate cells found satellites to be associated with centrosomal and ciliary mRNAs, as well as evidence for protein synthesis occurring directly at satellites. Given that PCM1 depletion does not affect overall protein levels, we propose that satellites instead promote the coordinate synthesis of centrosomal and ciliary proteins, thereby facilitating the formation of protein complexes.
Collapse
Affiliation(s)
- Claudia Pachinger
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna , Vienna, Austria
| | - Jeroen Dobbelaere
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
| | | | - Shiviya Raina
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna , Vienna, Austria
| | - Júlia Garcia-Baucells
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna , Vienna, Austria
| | - Marina Sarantseva
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
| | - Andrea Brauneis
- Max Perutz Labs, Vienna Biocenter (VBC), University of Vienna , Vienna, Austria
| | | |
Collapse
|
2
|
Ku PI, Sreeja JS, Chadha A, Williams DS, Engelke MF, Subramanian R. Collaborative role of two distinct cilium-specific cytoskeletal systems in driving Hedgehog-responsive transcription factor trafficking. SCIENCE ADVANCES 2025; 11:eadt5439. [PMID: 40073114 PMCID: PMC11900865 DOI: 10.1126/sciadv.adt5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, GLI (glioma-associated oncogene) transcription factors, depends on the primary cilium. Upon pathway initiation, generating the precise levels of the activator form of GLI depends on its concentration at the cilium tip. The mechanisms underlying this critical step in Hh signaling are unclear. We developed an assay to visualize GLI2, the primary GLI activator isoform, at single-particle resolution within the cilium. We found that GLI2 is a cargo of intraflagellar transport (IFT) machinery. Anterograde-biased IFT loading of GLI2 in a restricted time window following pathway activation results in the tip accumulation of GLI2. Unexpectedly, we found that the conserved Hh regulator KIF7, a nonmotile kinesin, is important for the temporal control of IFT-mediated GLI2 transport and retention of GLI2 at the cilium tip. Our findings underscore a design principle where a cilia-specific cytoskeletal transport system and an Hh pathway-specific cytoskeletal protein collaboratively regulate GLI2 trafficking for Hh signaling.
Collapse
Affiliation(s)
- Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jamuna S. Sreeja
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Abhishek Chadha
- Departments of Ophthalmology and Neurobiology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - David S. Williams
- Departments of Ophthalmology and Neurobiology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Martin F. Engelke
- Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Wang X, Yin G, Yang Y, Tian X. Ciliary and Non-Ciliary Roles of IFT88 in Development and Diseases. Int J Mol Sci 2025; 26:2110. [PMID: 40076734 PMCID: PMC11901018 DOI: 10.3390/ijms26052110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cilia are highly specialized cellular projections emanating from the cell surface, whose defects contribute to a spectrum of diseases collectively known as ciliopathies. Intraflagellar transport protein 88 (IFT88) is a crucial component of the intraflagellar transport-B (IFT-B) subcomplex, a protein complex integral to ciliary transport. The absence of IFT88 disrupts the formation of ciliary structures; thus, animal models with IFT88 mutations, including the oak ridge polycystic kidney (ORPK) mouse model and IFT88 conditional allelic mouse model, are frequently employed in molecular and clinical studies of ciliary functions and ciliopathies. IFT88 plays a pivotal role in a variety of cilium-related processes, including organ fibrosis and cyst formation, metabolic regulation, chondrocyte development, and neurological functions. Moreover, IFT88 also exhibits cilium-independent functions, such as spindle orientation, planar cell polarity establishment, and actin organization. A deeper understanding of the biological events and molecular mechanisms mediated by IFT88 is anticipated to advance the development of diagnostic and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
| | | | | | - Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (X.W.); (G.Y.); (Y.Y.)
| |
Collapse
|
4
|
Harima R, Hara K, Tanemura K. TCTEX1D2 is essential for sperm flagellum formation in mice. Sci Rep 2025; 15:2413. [PMID: 39827215 PMCID: PMC11743150 DOI: 10.1038/s41598-024-83424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Flagella and cilia are widely conserved motile structures, in mammalian, sperm possess flagella. Large protein complexes called dynein, including cytoplasmic dynein 2 and axonemal dynein, play a role in the formation of cilia and flagella. The function of each subunit component of dynein complexes in sperm flagellum formation remains unclear. One such subunit is TCTEX1D2. Co-immunoprecipitation studies showed that TCTEX1D2 interacted with cytoplasmic dynein 2 subunits WDR34, WDR60, and DYNLT1 in the testes. Furthermore, TCTEX1D2 also interacted with WDR63 and WDR78, subunits of inner dynein arm, which is axonemal dynein. Tctex1d2-/- mice generated in this study exhibited male infertility due to flagellar dysplasia, and the axonemal structures were disrupted inside the flagella. Further, the localization of cytoplasmic dynein 2 subunits was abnormal in in Tctex1d2-/- mice. In contrast, the motile cilia of Tctex1d2-/- mice were normal. Overall, we revealed that TCTEX1D2 is important for the assembly of cytoplasmic dynein 2 and inner dynein arm and functions in two distinct dynein complexes during mouse sperm flagellum formation. This is only in sperm flagellum formation, not in cilia formation.
Collapse
Affiliation(s)
- Ryua Harima
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.
- Laboratory of Reproductive Technology (Repro-SOLEIL), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
5
|
Fitzsimons LA, Staurengo-Ferrari L, Khomula EV, Bogen O, Araldi D, Bonet IJM, Green PG, Jordan EE, Sclafani F, Nowak CE, Moulton JK, Ganter GK, Levine JD, Tucker KL. The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. J Neurosci 2024; 44:e1265242024. [PMID: 39349056 PMCID: PMC11580782 DOI: 10.1523/jneurosci.1265-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The primary cilium, a single microtubule-based organelle protruding from the cell surface and critical for neural development, also functions in adult neurons. While some dorsal root ganglion neurons elaborate a primary cilium, whether it is expressed by and functional in nociceptors is unknown. Recent studies have shown the role of Hedgehog, whose canonical signaling is primary cilium dependent, in nociceptor sensitization. We establish the presence of primary cilia in soma of rat nociceptors, where they contribute to mechanical threshold, prostaglandin E2 (PGE2)-induced hyperalgesia, and chemotherapy-induced neuropathic pain (CIPN). Intrathecal administration of siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, resulted in attenuation of Ift88 mRNA and nociceptor primary cilia. Attenuation of primary cilia was associated with an increase in mechanical nociceptive threshold in vivo and decrease in nociceptor excitability in vitro, abrogation of hyperalgesia, and nociceptor sensitization induced by both a prototypical pronociceptive inflammatory mediator PGE2 and paclitaxel CIPN, in a sex-specific fashion. siRNA targeting Ift52, another IFT protein, and knockdown of NompB, the Drosophila Ift88 ortholog, also abrogated CIPN and reduced baseline mechanosensitivity, respectively, providing independent confirmation for primary cilia control of nociceptor function. Hedgehog-induced hyperalgesia is attenuated by Ift88 siRNA, supporting the role for primary cilia in Hedgehog-induced hyperalgesia. Attenuation of CIPN by cyclopamine (intradermal and intraganglion), which inhibits Hedgehog signaling, supports the role of Hedgehog in CIPN. Our findings support the role of the nociceptor primary cilium in control of mechanical nociceptive threshold and inflammatory and neuropathic pain, the latter Hedgehog-dependent.
Collapse
Affiliation(s)
- Lindsey A Fitzsimons
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Eugen V Khomula
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Preventative and Restorative Dental Sciences, University of California San Francisco, San Francisco 94115
| | - Ethan E Jordan
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Finn Sclafani
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Connor E Nowak
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Julie K Moulton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Geoffrey K Ganter
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Medicine, Division of Neuroscience, University of California San Francisco, San Francisco 94115
| | - Kerry L Tucker
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| |
Collapse
|
6
|
Li Y, Xu W, Cheng Y, Djenoune L, Zhuang C, Cox AL, Britto CJ, Yuan S, Wang S, Sun Z. Cotranslational molecular condensation of cochaperones and assembly factors facilitates axonemal dynein biogenesis. Proc Natl Acad Sci U S A 2024; 121:e2402818121. [PMID: 39541357 PMCID: PMC11588059 DOI: 10.1073/pnas.2402818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Axonemal dynein, the macromolecular machine that powers ciliary motility, assembles in the cytosol with the help of dynein axonemal assembly factors (DNAAFs). These DNAAFs localize in cytosolic foci thought to form via liquid-liquid phase separation. However, the functional significance of DNAAF foci formation and how the production and assembly of multiple components are so efficiently coordinated, at such enormous scale, remain unclear. Here, we unveil an axonemal dynein production and assembly hub enriched with translating heavy chains (HCs) and DNAAFs. We show that mRNAs encoding interacting HCs of outer dynein arms colocalize in cytosolic foci, along with nascent HCs. The formation of these mRNA foci and their colocalization relies on HC translation. We observe that a previously identified DNAAF assembly, containing the DNAAF Lrrc6 and cochaperones Ruvbl1 and Ruvbl2, colocalizes with these HC foci, and is also dependent on HC translation. We additionally show that Ruvbl1 is required for the recruitment of Lrrc6 into the HC foci and that both proteins function cotranslationally. We propose that these DNAAF foci are anchored by stable interactions between translating HCs, ribosomes, and encoding mRNAs, followed by cotranslational molecular condensation of cochaperones and assembly factors, providing a potential mechanism that coordinates HC translation, folding, and assembly at scale.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Wenyan Xu
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Yubao Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Lydia Djenoune
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Chuzhi Zhuang
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Andrew Lee Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Clemente J. Britto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT06520
| | - Shiaulou Yuan
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
7
|
Samudra SP, Park S, Esser EA, McDonald TP, Borges AM, Eggenschwiler J, Menke DB. A new cell culture resource for investigations of reptilian gene function. Development 2024; 151:dev204275. [PMID: 39576177 DOI: 10.1242/dev.204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/20/2024] [Indexed: 12/02/2024]
Abstract
The establishment of CRISPR/Cas9 gene editing in Anolis sagrei has positioned this species as a powerful model for studies of reptilian gene function. To enhance this model, we developed an immortalized lizard fibroblast cell line (ASEC-1) for the exploration of reptilian gene function in cellular processes. We demonstrate the use of this cell line by scrutinizing the role of primary cilia in lizard Hedgehog (Hh) signaling. Using CRISPR/Cas9 mutagenesis, we disrupted the ift88 gene, which is required for ciliogenesis in diverse organisms. We determined that loss of itf88 from lizard cells leads to an absence of primary cilia, a partial derepression of gli1 transcription, and an inability of the cells to respond to the Smoothened agonist, SAG. Through a cross-species analysis of SAG-induced transcriptional responses in cultured limb bud cells, we further determined that ∼46% of genes induced as a response to Hh pathway activation in A. sagrei are also SAG responsive in Mus musculus limb bud cells. Our results highlight conserved and diverged aspects of Hh signaling in anoles and establish a new resource for investigations of reptilian gene function.
Collapse
Affiliation(s)
- Sukhada P Samudra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth A Esser
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Arianna M Borges
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Riparbelli MG, Pratelli A, Callaini G. The cilium like region of the Drosophila bifurca spermatocyte: Elongation of a giant axoneme without intraflagellar transport. Cytoskeleton (Hoboken) 2024; 81:529-538. [PMID: 38073091 DOI: 10.1002/cm.21816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/20/2024]
Abstract
The growth of the ciliary axonemes mainly depends on the evolutionary conserved intraflagellar transport (IFT) machinery. However, insect spermatocytes are characterized by cilium-like regions (CLRs) that elongate in the absence of IFT. It is generally believed that the dynamics of these structures relies on the free diffusion of soluble tubulin from the cytoplasm. However, this passive process could allow the elongation of short ciliary axonemes, but it is unclear whether simple diffusion of tubulin molecules can ensure the correct assembly of elongated ciliary structures. To decipher this point we analyzed the assembly of the CLRs held by the primary spermatocytes of Drosophila bifurca. These ciliary structures consist of a very elongated axoneme that grows without IFT and, therefore, could represent a good model in which to evaluate the role played by the free diffusion of soluble tubulin. The observation of wavy microtubules in the axonemal lumen of fully elongated CLRs of D. bifurca may be consistent with the diffusion of tubulin within the axonemal lumen. Progressive consumption of soluble tubulin used for axoneme growth at the apical tip of the CLRs could result in a gradient sufficient to move tubulin from the cytoplasm to the apical end of the forming ciliary structure. When the axoneme reaches its full length, tubulin molecules are not drawn to the tip of the CLRs and accumulate at the base of the axoneme, where its concentration may exceed the threshold need for microtubule polymerization. The presence of γ-TuRCs at the proximal ends of the supernumerary microtubules could enhance their nucleation.
Collapse
Affiliation(s)
| | - Ambra Pratelli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
9
|
Ku PI, Sreeja JS, Chadha A, Williams DS, Engelke MF, Subramanian R. Collaborative role of two distinct cilium-specific cytoskeletal systems in driving Hedgehog-responsive transcription factor trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615198. [PMID: 39386719 PMCID: PMC11463396 DOI: 10.1101/2024.09.26.615198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Calibrated transcriptional outputs in cellular signaling require fine regulation of transcription factor activity. In vertebrate Hedgehog (Hh) signaling, the precise output of the final effectors, the GLI (Glioma-associated-oncogene) transcription factors, depends on the primary cilium. In particular, the formation of the activator form of GLI upon pathway initiation requires its concentration at the distal cilium tip. However, the mechanisms underlying this critical step in Hh signaling are unclear. We developed a real-time imaging assay to visualize GLI2, the primary GLI activator isoform, at single particle resolution within the cilium. We observed that GLI2 is a cargo of Intraflagellar Transport (IFT) machinery and is transported with anterograde bias during a restricted time window following pathway activation. Our findings position IFT as a crucial mediator of transcription factor transport within the cilium for vertebrate Hh signaling, in addition to IFT's well-established role in ciliogenesis. Surprisingly, a conserved Hh pathway regulator, the atypical non-motile kinesin KIF7, is critical for the temporal control of GLI2 transport by IFT and the spatial control of GLI2 localization at the cilium tip. This discovery underscores the collaborative role of a motile and a non-motile cilium-specific cytoskeletal system in determining the transcriptional output during Hh signaling.
Collapse
|
10
|
Werner S, Okenve-Ramos P, Hehlert P, Zitouni S, Priya P, Mendonça S, Sporbert A, Spalthoff C, Göpfert MC, Jana SC, Bettencourt-Dias M. IFT88 maintains sensory function by localising signalling proteins along Drosophila cilia. Life Sci Alliance 2024; 7:e202302289. [PMID: 38373798 PMCID: PMC10876440 DOI: 10.26508/lsa.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Ciliary defects cause several ciliopathies, some of which have late onset, suggesting cilia are actively maintained. Still, we have a poor understanding of the mechanisms underlying their maintenance. Here, we show Drosophila melanogaster IFT88 (DmIFT88/nompB) continues to move along fully formed sensory cilia. We further identify Inactive, a TRPV channel subunit involved in Drosophila hearing and negative-gravitaxis behaviour, and a yet uncharacterised Drosophila Guanylyl Cyclase 2d (DmGucy2d/CG34357) as DmIFT88 cargoes. We also show DmIFT88 binding to the cyclase´s intracellular part, which is evolutionarily conserved and mutated in several degenerative retinal diseases, is important for the ciliary localisation of DmGucy2d. Finally, acute knockdown of both DmIFT88 and DmGucy2d in ciliated neurons of adult flies caused defects in the maintenance of cilium function, impairing hearing and negative-gravitaxis behaviour, but did not significantly affect ciliary ultrastructure. We conclude that the sensory ciliary function underlying hearing in the adult fly requires an active maintenance program which involves DmIFT88 and at least two of its signalling transmembrane cargoes, DmGucy2d and Inactive.
Collapse
Affiliation(s)
| | | | - Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Sihem Zitouni
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institut de Génétique Humaine (IGH), UMR, 9002 CNRS, Montpellier, France
| | - Pranjali Priya
- National Centre for Biological Sciences- TIFR, Bangalore, India
| | - Susana Mendonça
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Centrum for Molecular Medicine Berlin in the Helmholtz Association, Berlin, Germany
| | - Christian Spalthoff
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- National Centre for Biological Sciences- TIFR, Bangalore, India
| | | |
Collapse
|
11
|
Bear RM, Caspary T. Uncovering cilia function in glial development. Ann Hum Genet 2024; 88:27-44. [PMID: 37427745 PMCID: PMC10776815 DOI: 10.1111/ahg.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Primary cilia play critical roles in regulating signaling pathways that underlie several developmental processes. In the nervous system, cilia are known to regulate signals that guide neuron development. Cilia dysregulation is implicated in neurological diseases, and the underlying mechanisms remain poorly understood. Cilia research has predominantly focused on neurons and has overlooked the diverse population of glial cells in the brain. Glial cells play essential roles during neurodevelopment, and their dysfunction contributes to neurological disease; however, the relationship between cilia function and glial development is understudied. Here we review the state of the field and highlight the glial cell types where cilia are found and the ciliary functions that are linked to glial development. This work uncovers the importance of cilia in glial development and raises outstanding questions for the field. We are poised to make progress in understanding the function of glial cilia in human development and their contribution to neurological diseases.
Collapse
Affiliation(s)
- Rachel M. Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
| |
Collapse
|
12
|
Sharma Y, Jacobs JS, Sivan-Loukianova E, Lee E, Kernan MJ, Eberl DF. The retrograde IFT dynein is required for normal function of diverse mechanosensory cilia in Drosophila. Front Mol Neurosci 2023; 16:1263411. [PMID: 37808471 PMCID: PMC10556659 DOI: 10.3389/fnmol.2023.1263411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Cilia biogenesis relies on intraflagellar transport (IFT), a conserved transport mechanism which functions bi-directionally to bring protein complexes to the growing ciliary tip and recycle signaling and transport proteins between the cilium and cell body. In Drosophila, anterograde IFT is critical for assembly of sensory cilia in the neurons of both chordotonal (ch) organs, which have relatively long ciliary axonemes, and external sensory (es) organs, which have short axonemal segments with microtubules in distal sensory segments forming non-axonemal bundles. We previously isolated the beethoven (btv) mutant in a mutagenesis screen for auditory mutants. Although many btv mutant flies are deaf, some retain a small residual auditory function as determined both by behavior and by auditory electrophysiology. Results Here we molecularly characterize the btv gene and demonstrate that it encodes the IFT-associated dynein-2 heavy chain Dync2h1. We also describe morphological changes in Johnston's organ as flies age to 30 days, and we find that morphological and electrophysiological phenotypes in this ch organ of btv mutants become more severe with age. We show that NompB protein, encoding the conserved IFT88 protein, an IFT complex B component, fails to be cleared from chordotonal cilia in btv mutants, instead accumulating in the distorted cilia. In macrochaete bristles, a class of es organ, btv mutants show a 50% reduction in mechanoreceptor potentials. Discussion Thus, the btv-encoded Dync2h1 functions as the retrograde IFT motor in the assembly of long ciliary axonemes in ch organs and is also important for normal function of the short ciliary axonemes in es organs.
Collapse
Affiliation(s)
- Yashoda Sharma
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Julie S. Jacobs
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | | | - Eugene Lee
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY, United States
| | - Maurice J. Kernan
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY, United States
| | - Daniel F. Eberl
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Dobbelaere J, Su TY, Erdi B, Schleiffer A, Dammermann A. A phylogenetic profiling approach identifies novel ciliogenesis genes in Drosophila and C. elegans. EMBO J 2023; 42:e113616. [PMID: 37317646 PMCID: PMC10425847 DOI: 10.15252/embj.2023113616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Cilia are cellular projections that perform sensory and motile functions in eukaryotic cells. A defining feature of cilia is that they are evolutionarily ancient, yet not universally conserved. In this study, we have used the resulting presence and absence pattern in the genomes of diverse eukaryotes to identify a set of 386 human genes associated with cilium assembly or motility. Comprehensive tissue-specific RNAi in Drosophila and mutant analysis in C. elegans revealed signature ciliary defects for 70-80% of novel genes, a percentage similar to that for known genes within the cluster. Further characterization identified different phenotypic classes, including a set of genes related to the cartwheel component Bld10/CEP135 and two highly conserved regulators of cilium biogenesis. We propose this dataset defines the core set of genes required for cilium assembly and motility across eukaryotes and presents a valuable resource for future studies of cilium biology and associated disorders.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Tiffany Y Su
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Balazs Erdi
- Max Perutz LabsUniversity of Vienna, Vienna Biocenter (VBC)ViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC)ViennaAustria
| | | |
Collapse
|
14
|
Gottardo M, Riparbelli MG, Callaini G, Megraw TL. Evidence for intraflagellar transport in butterfly spermatocyte cilia. Cytoskeleton (Hoboken) 2023; 80:112-122. [PMID: 37036073 PMCID: PMC10330035 DOI: 10.1002/cm.21755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
In the model organism insect Drosophila melanogaster short cilia assemble on spermatocytes that elaborate into 1.8 mm long flagella during spermatid differentiation. A unique feature of these cilia/flagella is their lack of dependence on intraflagellar transport (IFT) for their assembly. Here, we show that in the common butterfly Pieris brassicae, the spermatocyte cilia are exceptionally long: about 40 μm compared to less than 1 μm in Drosophila. By transmission electron microscopy, we show that P. brassicae spermatocytes display several features not found in melanogaster, including compelling evidence of IFT structures and features of motile cilia.
Collapse
Affiliation(s)
- Marco Gottardo
- Department of Life Sciences, University of Siena, Italy
- These Authors contributed equally to this work
| | - Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Italy
- These Authors contributed equally to this work
| | | | - Timothy L. Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL USA
| |
Collapse
|
15
|
Arora S, Rana M, Sachdev A, D’Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023. [DOI: 10.1007/s12038-023-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
17
|
Hou YN, Zhang YY, Wang YR, Wu ZM, Luan YX, Wei Q. IFT52 plays an essential role in sensory cilia formation and neuronal sensory function in Drosophila. INSECT SCIENCE 2022. [PMID: 36326027 DOI: 10.1111/1744-7917.13140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cilia are microtubule-based, hair-like organelles involved in sensory function or motility, playing critical roles in many physiological processes such as reproduction, organ development, and sensory perception. In insects, cilia are restricted to certain sensory neurons and sperms, being important for chemical and mechanical sensing, and fertility. Although great progress has been made regarding the mechanism of cilia assembly, the formation of insect cilia remains poorly understand, even in the insect model organism Drosophila. Intraflagellar transport (IFT) is a cilia-specific complex that traffics protein cargos bidirectionally along the ciliary axoneme and is essential for most cilia. Here we investigated the role of IFT52, a core component of IFT-B, in cilia/flagellar formation in Drosophila. We show that Drosophila IFT52 is distributed along the sensory neuronal cilia, and is essential for sensory cilia formation. Deletion of Ift52 results in severe defects in cilia-related sensory behaviors. It should be noted that IFT52 is not detected in spermatocyte cilia or sperm flagella of Drosophila. Accordingly, ift52 mutants can produce sperms with normal motility, supporting a dispensable role of IFT in Drosophila sperm flagella formation. Altogether, IFT52 is a conserved protein essential for sensory cilia formation and sensory neuronal function in insects.
Collapse
Affiliation(s)
- Ya-Nan Hou
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Ying-Ying Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Ya-Ru Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Zhi-Mao Wu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| | - Yun-Xia Luan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Qing Wei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen, Guangdong Province, China
| |
Collapse
|
18
|
Xiang W, Zur Lage P, Newton FG, Qiu G, Jarman AP. The dynamics of protein localisation to restricted zones within Drosophila mechanosensory cilia. Sci Rep 2022; 12:13338. [PMID: 35922464 PMCID: PMC9349282 DOI: 10.1038/s41598-022-17189-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
The Drosophila chordotonal neuron cilium is the site of mechanosensory transduction. The cilium has a 9 + 0 axoneme structure and is highly sub-compartmentalised, with proximal and distal zones harbouring different TRP channels and the proximal zone axoneme also being decorated with axonemal dynein motor complexes. The activity of the dynein complexes is essential for mechanotransduction. We investigate the localisation of TRP channels and dynein motor complexes during ciliogenesis. Differences in timing of TRP channel localisation correlate with order of construction of the two ciliary zones. Dynein motor complexes are initially not confined to their target proximal zone, but ectopic complexes beyond the proximal zone are later cleared, perhaps by retrograde transport. Differences in transient distal localisation of outer and inner dynein arm complexes (ODAs and IDAs) are consistent with previous suggestions from unicellular eukaryotes of differences in processivity during intraflagellar transport. Stable localisation depends on the targeting of their docking proteins in the proximal zone. For ODA, we characterise an ODA docking complex (ODA-DC) that is targeted directly to the proximal zone. Interestingly, the subunit composition of the ODA-DC in chordotonal neuron cilia appears to be different from the predicted ODA-DC in Drosophila sperm.
Collapse
Affiliation(s)
- Wangchu Xiang
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Guiyun Qiu
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
19
|
Guleria VS, Parit R, Quadri N, Das R, Upadhyai P. The intraflagellar transport protein IFT52 associated with short-rib thoracic dysplasia is essential for ciliary function in osteogenic differentiation in vitro and for sensory perception in Drosophila. Exp Cell Res 2022; 418:113273. [PMID: 35839863 DOI: 10.1016/j.yexcr.2022.113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/04/2022]
Abstract
Primary cilia are non-motile sensory cell-organelle that are essential for organismal development, differentiation, and postnatal homeostasis. Their biogenesis and function are mediated by the intraflagellar transport (IFT) system. Pathogenic variants in IFT52, a central component of the IFT-B complex is associated with short-rib thoracic dysplasia with or without polydactyly 16 (SRTD16), with major skeletal manifestations, in addition to other features. Here we sought to examine the role of IFT52 in osteoblast differentiation. Using lentiviral shRNA interference Ift52 was depleted in C3H10T1/2 mouse mesenchymal stem cells. This led to the disruption of the IFT-B anterograde trafficking machinery that impaired primary ciliogenesis and blocked osteogenic differentiation. In Ift52 silenced cells, Hedgehog (Hh) pathway upregulation during osteogenesis was attenuated and despite Smoothened Agonist (SAG) based Hh activation, osteogenic differentiation was incompletely restored. Further we investigated IFT52 activity in Drosophila, wherein the only ciliated somatic cells are the bipolar sensory neurons of the peripheral nervous system. Knockdown of IFT52 in Drosophila neuronal tissues reduced lifespan with the loss of embryonic chordotonal cilia, and produced severe locomotion, auditory and proprioceptive defects in larva and adults. Together these findings improve our knowledge of the role of IFT52 in various physiological contexts and its associated human disorder.
Collapse
Affiliation(s)
- Vishal Singh Guleria
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rahul Parit
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
20
|
Shibata D, Morita M, Sato Y, Shiba K, Kitanobo S, Yokoya R, Inaba K. Axonemal Growth and Alignment During Paraspermatogenesis in the Marine Gastropod Strombus luhuanus. Front Cell Dev Biol 2022; 10:905748. [PMID: 35832793 PMCID: PMC9271582 DOI: 10.3389/fcell.2022.905748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Parasperm are non-fertilizing sperm that are produced simultaneously with fertile eusperm. They occur in several animal species and show considerable morphological diversity. We investigated the dynamics of axonemes during paraspermatogenesis in the marine snail S. luhuanus. Mature parasperm were characterized by two lateral undulating membranes for motility and many globular vesicles. Axonemes were first observed as brush-like structures that extruded from the anterior region. Multiple axonemes longer than the brush then started to extend inside the cytoplasm towards the posterior region. The mass of the axonemes separated into two lateral rows and formed an undulating membrane that drives bidirectional swimming in the mature parasperm. The central pair of axonemes was aligned in the undulating membrane, resulting in cooperative bend propagation. During paraspermatogenesis, centrioles were largely diminished and localized to the anterior region. CEP290, a major component of the transition zone, showed a broad distribution in the anterior area. Axonemes in the posterior region showed a 9 + 0 structure with both outer and inner arm dyneins. These observations provide a structural basis for understanding the physiological functions of parasperm in marine reproductive strategies.
Collapse
Affiliation(s)
- Daisuke Shibata
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Yu Sato
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Seiya Kitanobo
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Ryo Yokoya
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
- *Correspondence: Kazuo Inaba,
| |
Collapse
|
21
|
Martín-Salazar JE, Valverde D. CPLANE Complex and Ciliopathies. Biomolecules 2022; 12:biom12060847. [PMID: 35740972 PMCID: PMC9221175 DOI: 10.3390/biom12060847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Primary cilia are non-motile organelles associated with the cell cycle, which can be found in most vertebrate cell types. Cilia formation occurs through a process called ciliogenesis, which involves several mechanisms including planar cell polarity (PCP) and the Hedgehog (Hh) signaling pathway. Some gene complexes, such as BBSome or CPLANE (ciliogenesis and planar polarity effector), have been linked to ciliogenesis. CPLANE complex is composed of INTU, FUZ and WDPCP, which bind to JBTS17 and RSG1 for cilia formation. Defects in these genes have been linked to a malfunction of intraflagellar transport and defects in the planar cell polarity, as well as defective activation of the Hedgehog signalling pathway. These faults lead to defective cilium formation, resulting in ciliopathies, including orofacial-digital syndrome (OFDS) and Bardet-Biedl syndrome (BBS). Considering the close relationship, between the CPLANE complex and cilium formation, it can be expected that defects in the genes that encode subunits of the CPLANE complex may be related to other ciliopathies.
Collapse
Affiliation(s)
| | - Diana Valverde
- CINBIO, Biomedical Research Centre, University of Vigo, 36310 Vigo, Spain;
- Galicia Sur Health Research Institute (IIS-GS), 36310 Vigo, Spain
- Correspondence:
| |
Collapse
|
22
|
Zur Lage P, Xi Z, Lennon J, Hunter I, Chan WK, Bolado Carrancio A, von Kriegsheim A, Jarman AP. The Drosophila orthologue of the primary ciliary dyskinesia-associated gene, DNAAF3, is required for axonemal dynein assembly. Biol Open 2021; 10:272257. [PMID: 34553759 PMCID: PMC8565470 DOI: 10.1242/bio.058812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Ciliary motility is powered by a suite of highly conserved axoneme-specific dynein motor complexes. In humans, the impairment of these motors through mutation results in the disease primary ciliary dyskinesia (PCD). Studies in Drosophila have helped to validate several PCD genes whose products are required for cytoplasmic pre-assembly of axonemal dynein motors. Here we report the characterisation of the Drosophila orthologue of the less-known assembly factor DNAAF3. This gene, CG17669 (Dnaaf3), is expressed exclusively in developing mechanosensory chordotonal (Ch) neurons and the cells that generate spermatozoa, The only two Drosophila cell types bearing cilia/flagella containing dynein motors. Mutation of Dnaaf3 results in larvae that are deaf and adults that are uncoordinated, indicating defective Ch neuron function. The mutant Ch neuron cilia of the antenna specifically lack dynein arms, while Ca imaging in larvae reveals a complete loss of Ch neuron response to vibration stimulus, confirming that mechanotransduction relies on ciliary dynein motors. Mutant males are infertile with immotile sperm whose flagella lack dynein arms and show axoneme disruption. Analysis of proteomic changes suggest a reduction in heavy chains of all axonemal dynein forms, consistent with an impairment of dynein pre-assembly.
Collapse
Affiliation(s)
- Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Zhiyan Xi
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Jennifer Lennon
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Iain Hunter
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Wai Kit Chan
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| | - Alfonso Bolado Carrancio
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK EH8 9XD, UK
| |
Collapse
|
23
|
Hodge SH, Watts A, Marley R, Baines RA, Hafen E, MacDougall LK. Twitchy, the Drosophila orthologue of the ciliary gating protein FBF1/dyf-19, is required for coordinated locomotion and male fertility. Biol Open 2021; 10:bio058531. [PMID: 34357392 PMCID: PMC8353261 DOI: 10.1242/bio.058531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are compartmentalised from the rest of the cell by a ciliary gate comprising transition fibres and a transition zone. The ciliary gate allows the selective import and export of molecules such as transmembrane receptors and transport proteins. These are required for the assembly of the cilium, its function as a sensory and signalling centre and to maintain its distinctive composition. Certain motile cilia can also form within the cytosol as exemplified by human and Drosophila sperm. The role of transition fibre proteins has not been well described in the cytoplasmic cilia. Drosophila have both compartmentalised primary cilia, in sensory neurons, and sperm flagella that form within the cytosol. Here, we describe phenotypes for twitchy the Drosophila orthologue of a transition fibre protein, mammalian FBF1/C. elegans dyf-19. Loss-of-function mutants in twitchy are adult lethal and display a severely uncoordinated phenotype. Twitchy flies are too uncoordinated to mate but RNAi-mediated loss of twitchy specifically within the male germline results in coordinated but infertile adults. Examination of sperm from twitchy RNAi-knockdown flies shows that the flagellar axoneme forms, elongates and is post-translationally modified by polyglycylation but the production of motile sperm is impaired. These results indicate that twitchy is required for the function of both sensory cilia that are compartmentalised from the rest of the cell and sperm flagella that are formed within the cytosol of the cell. Twitchy is therefore likely to function as part of a molecular gate in sensory neurons but may have a distinct function in sperm cells.
Collapse
Affiliation(s)
- Suzanne H. Hodge
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Amy Watts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Richard Marley
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Richard A. Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Ernst Hafen
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093, Zürich, Switzerland
| | - Lindsay K. MacDougall
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
24
|
Kubo-Irie M, Hirai M, Irie M, Mohri H. Postulated Process of Axoneme Organization in the Male Gametogenesis of Malaria Parasite Plasmodium berghei. Zoolog Sci 2021; 38:187-192. [PMID: 33812358 DOI: 10.2108/zs200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/13/2020] [Indexed: 11/17/2022]
Abstract
The ultrastructural features of axoneme organization within the cytoplasm and exflagellation were investigated in detail in microgametes of a malaria parasite, Plasmodium berghei, by electron and fluorescence microscopy. The kinetosomes (basal bodies) of the microgamete were characterized by an electron dense mass in which singlet microtubules (MTs) were embedded. Around the kinetosomes, several singlet and doublet MTs were recognized in transverse sections. Incomplete doublets with growing B-tubule were also observed. As precursors of the axoneme, arrays of over three doublets showed a tendency to encircle the central pair MTs. Some of the doublet MTs were already equipped with inner and outer dynein arms. In the microgamete, which lacks an intraflagellar transport (IFT) system, self-assembly of microtubular and associated components appeared to proceed stepwise from singlet MTs through arrays of one to nine doublet MTs, surrounding the central pair, to form the complete axoneme in a quite short time. At exflagellation, some extra doublets were occasionally included between the axoneme and the flagellar membrane. At high magnification, the outer dynein arm of the Plasmodium microgamete had a pistol-like shape representing a three-headed dynein molecule like that of other Alveolata.
Collapse
Affiliation(s)
- Miyoko Kubo-Irie
- Biological Laboratory, The Open University of Japan, Wakaba, Mihama-ku, Chiba 261-8506, Japan,
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaru Irie
- Department of Computer Science, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hideo Mohri
- Department of Biological Science, Graduate School of Arts and Sciences, the University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
25
|
Acetylation/deacetylation and microtubule associated proteins influence flagellar axonemal stability and sperm motility. Biosci Rep 2021; 40:226984. [PMID: 33200789 PMCID: PMC7711059 DOI: 10.1042/bsr20202442] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
PTMs and microtubule-associated proteins (MAPs) are known to regulate microtubule dynamicity in somatic cells. Reported literature on modulation of α-tubulin acetyl transferase (αTAT1) and histone deacetylase 6 (HDAC6) in animal models and cell lines illustrate disparity in correlating tubulin acetylation status with stability of MT. Our earlier studies showed reduced acetyl tubulin in sperm of asthenozoospermic individuals. Our studies on rat sperm showed that on inhibition of HDAC6 activity, although tubulin acetylation increased, sperm motility was reduced. Studies were therefore undertaken to investigate the influence of tubulin acetylation/deacetylation on MT dynamicity in sperm flagella using rat and human sperm. Our data on rat sperm revealed that HDAC6 specific inhibitor Tubastatin A (T) inhibited sperm motility and neutralized the depolymerizing and motility debilitating effect of Nocodazole. The effect on polymerization was further confirmed in vitro using pure MT and recHDAC6. Also polymerized axoneme was less in sperm of asthenozoosperm compared to normozoosperm. Deacetylase activity was reduced in sperm lysates and axonemes exposed to T and N+T but not in axonemes of sperm treated similarly suggesting that HDAC6 is associated with sperm axonemes or MT. Deacetylase activity was less in asthenozoosperm. Intriguingly, the expression of MDP3 physiologically known to bind to HDAC6 and inhibit its deacetylase activity remained unchanged. However, expression of acetyl α-tubulin, HDAC6 and microtubule stabilizing protein SAXO1 was less in asthenozoosperm. These observations suggest that MAPs and threshold levels of MT acetylation/deacetylation are important for MT dynamicity in sperm and may play a role in regulating sperm motility.
Collapse
|
26
|
Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17:e1009306. [PMID: 33635866 PMCID: PMC7909641 DOI: 10.1371/journal.pgen.1009306] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families. Impaired male fertility is a major issue and affects several men worldwide. Patients may present with reduced number or complete absence of sperm in the ejaculate, as well as functional and/or morphological sperm defects compromising sperm motility. Despite several diagnostic efforts, the underlying causes of these defects often remain unknown („idiopathic“). The beating of sperm flagella as well as motile cilia, such as those of the respiratory tract, is driven by dynein-based motor protein complexes, namely outer and inner dynein arms. In motile cilia these protein complexes are known to be first assembled in the cytoplasm and then delivered into the cilium. In sperm, this process is still poorly understood. Here we analyze sperm cells of male individuals with mutations in distinct genes encoding factors involved in the preassembly of these motor protein complexes. Consistent with defects in their respiratory ciliated cells, these individuals also demonstrate defects in sperm flagella that cause male infertility due to immotile sperm, with a reduction of flagellar length. Our results strengthen the assumption that the preassembly process of outer and inner dynein arms is clinically relevant also in sperm and provide knowledge that should guide genetic and andrological counselling for a subgroup of men with idiopathic infertility.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Luisa Biebach
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Muenster, Muenster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Claudia Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Sabine Kliesch
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
27
|
Role of DZIP1-CBY-FAM92 transition zone complex in the basal body to membrane attachment and ciliary budding. Biochem Soc Trans 2021; 48:1067-1075. [PMID: 32491167 DOI: 10.1042/bst20191007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Cilia play important signaling or motile functions in various organisms. In Human, cilia dysfunctions are responsible for a wide range of diseases, called ciliopathies. Cilia assembly is a tightly controlled process, which starts with the conversion of the centriole into a basal body, leading to the formation of the ciliary bud that protrudes inside a ciliary vesicle and/or ultimately at the cell surface. Ciliary bud formation is associated with the assembly of the transition zone (TZ), a complex architecture of proteins of the ciliary base which plays critical functions in gating proteins in and out of the ciliary compartment. Many proteins are involved in the assembly of the TZ, which shows structural and functional variations in different cell types or organisms. In this review, we discuss how a particular complex, composed of members of the DZIP1, CBY and FAM92 families of proteins, is required for the initial stages of cilia assembly leading to ciliary bud formation and how their functional hierarchy contributes to TZ assembly. Moreover, we summarize how evidences in Drosophila reveal functional differences of the DZIP1-CBY-FAM92 complex in the different ciliated tissues of this organism. Whereas it is essential for proper TZ assembly in the two types of ciliated tissues, it is involved in stable anchoring of basal bodies to the plasma membrane in male germ cells. Overall, the DZIP1-CBY-FAM92 complex reveals a molecular assembly pathway required for the initial stages of ciliary bud formation and that is conserved from Drosophila to Human.
Collapse
|
28
|
Fingerhut JM, Yamashita YM. mRNA localization mediates maturation of cytoplasmic cilia in Drosophila spermatogenesis. J Cell Biol 2020; 219:e202003084. [PMID: 32706373 PMCID: PMC7480094 DOI: 10.1083/jcb.202003084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cytoplasmic cilia, a specialized type of cilia in which the axoneme resides within the cytoplasm rather than within the ciliary compartment, are proposed to allow for the efficient assembly of very long cilia. Despite being found diversely in male gametes (e.g., Plasmodium falciparum microgametocytes and human and Drosophila melanogaster sperm), very little is known about cytoplasmic cilia assembly. Here, we show that a novel RNP granule containing the mRNAs for axonemal dynein motor proteins becomes highly polarized to the distal end of the cilia during cytoplasmic ciliogenesis in Drosophila sperm. This allows for the incorporation of these axonemal dyneins into the axoneme directly from the cytoplasm, possibly by localizing translation. We found that this RNP granule contains the proteins Reptin and Pontin, loss of which perturbs granule formation and prevents incorporation of the axonemal dyneins, leading to sterility. We propose that cytoplasmic cilia assembly requires the precise localization of mRNAs encoding key axonemal constituents, allowing these proteins to incorporate efficiently into the axoneme.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M. Yamashita
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Bauerly E, Yi K, Gibson MC. Wampa is a dynein subunit required for axonemal assembly and male fertility in Drosophila. Dev Biol 2020; 463:158-168. [PMID: 32387369 PMCID: PMC8451153 DOI: 10.1016/j.ydbio.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
In cilia and flagella, dyneins form complexes which give rise to the inner and outer axonemal arms. Defects in the dynein arms are the leading cause of primary ciliary dyskinesia (PCD), which is characterized by chronic respiratory infections, situs inversus, and sterility. While the pathological features associated with PCD are increasingly well characterized, many of the causative genetic lesions remain elusive. Using Drosophila, here we analyze genetic requirements for wampa (wam), a previously uncharacterized component of the outer dynein arm. While homozygous mutant animals are viable and display no morphological defects, loss of wam results in complete male sterility. Ultrastructural analysis further reveals that wam mutant spermatids lack the axonemal outer dynein arms, which leads to a complete loss of flagellar motility. In addition to a role in outer dynein arm formation, we also uncover other novel microtubule-associated requirements for wam during spermatogenesis, including the regulation of mitochondrial localization and the shaping of the nuclear head. Due to the conserved nature of dyneins, this study advances our understanding of the pathology of PCD and the functional role of dyneins in axoneme formation and other aspects of spermatogenesis.
Collapse
Affiliation(s)
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
30
|
Shi L, Chi Y, Shen X, Lu G, Shen Y. Intraflagellar Transport 80 Is Required for Cilia Construction and Maintenance in Paramecium tetraurelia. J Eukaryot Microbiol 2020; 67:521-531. [PMID: 32369644 DOI: 10.1111/jeu.12799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 01/21/2023]
Abstract
Intraflagellar transport (IFT) represents a bidirectional dynamic process that carries cargo essential for cilia building and the maintenance of ciliary function, which is important for the locomotion of single cells, intracellular and intercellular signalling transduction. Accumulated evidence has revealed that defects in IFT cause several clinical disorders. Here, we determined the role of IFT80, an IFT-B protein that is mutated in Jeune asphyxiating thoracic dystrophy. Using the RNAi method in the ciliate Paramecium as model, we found that loss of IFT80 prevents cilia biogenesis and causes strong cell lethality. A specific antibody against IFT80 was also prepared in our study, which labelled IFT80 in cilia of Paramecium. GFP fusion experiments were performed to illustrate the dynamic movement of IFT-A and IFT-B proteins in cilia of Paramecium; then, we found that the depletion of IFT80 in cells prevents IFT-A and IFT-B proteins from entering the cilia. Our results showed the distribution change of other IFT proteins in cells that were depleted of IFT80, and we discuss the possible roles of IFT80 in Paramecium.
Collapse
Affiliation(s)
- Lei Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuhao Chi
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiangyu Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guoliang Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuan Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.,Xinxiang Key Laboratory of Clinical Psychopharmacology, Xinxiang, 453003, China
| |
Collapse
|
31
|
Hou Y, Wu Z, Zhang Y, Chen H, Hu J, Guo Y, Peng Y, Wei Q. Functional Analysis of Hydrolethalus Syndrome Protein HYLS1 in Ciliogenesis and Spermatogenesis in Drosophila. Front Cell Dev Biol 2020; 8:301. [PMID: 32509774 PMCID: PMC7253586 DOI: 10.3389/fcell.2020.00301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/02/2022] Open
Abstract
Cilia and flagella are conserved subcellular organelles, which arise from centrioles and play critical roles in development and reproduction of eukaryotes. Dysfunction of cilia leads to life-threatening ciliopathies. HYLS1 is an evolutionarily conserved centriole protein, which is critical for ciliogenesis, and its mutation causes ciliopathy–hydrolethalus syndrome. However, the molecular function of HYLS1 remains elusive. Here, we investigated the function of HYLS1 in cilia formation using the Drosophila model. We demonstrated that Drosophila HYLS1 is a conserved centriole and basal body protein. Deletion of HYLS1 led to sensory cilia dysfunction and spermatogenesis abnormality. Importantly, we found that Drosophila HYLS1 is essential for giant centriole/basal body elongation in spermatocytes and is required for spermatocyte centriole to efficiently recruit pericentriolar material and for spermatids to assemble the proximal centriole-like structure (the precursor of the second centriole for zygote division). Hence, by taking advantage of the giant centriole/basal body of Drosophila spermatocyte, we uncover previously uncharacterized roles of HYLS1 in centriole elongation and assembly.
Collapse
Affiliation(s)
- Yanan Hou
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Zhimao Wu
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Zhang
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huicheng Chen
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.,Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Yi Guo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Institute of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qing Wei
- Laboratory for Reproductive Health, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
32
|
Riparbelli MG, Persico V, Dallai R, Callaini G. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells 2020; 9:E744. [PMID: 32197383 PMCID: PMC7140630 DOI: 10.3390/cells9030744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Centrioles are-widely conserved barrel-shaped organelles present in most organisms. They are indirectly involved in the organization of the cytoplasmic microtubules both in interphase and during the cell division by recruiting the molecules needed for microtubule nucleation. Moreover, the centrioles are required to assemble cilia and flagella by the direct elongation of their microtubule wall. Due to the importance of the cytoplasmic microtubules in several aspects of the cell life, any defect in centriole structure can lead to cell abnormalities that in humans may result in significant diseases. Many aspects of the centriole dynamics and function have been clarified in the last years, but little attention has been paid to the exceptions in centriole structure that occasionally appeared within the animal kingdom. Here, we focused our attention on non-canonical aspects of centriole architecture within the Hexapoda. The Hexapoda is one of the major animal groups and represents a good laboratory in which to examine the evolution and the organization of the centrioles. Although these findings represent obvious exceptions to the established rules of centriole organization, they may contribute to advance our understanding of the formation and the function of these organelles.
Collapse
Affiliation(s)
- Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Veronica Persico
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
- Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
33
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
34
|
Morohoshi A, Miyata H, Shimada K, Nozawa K, Matsumura T, Yanase R, Shiba K, Inaba K, Ikawa M. Nexin-Dynein regulatory complex component DRC7 but not FBXL13 is required for sperm flagellum formation and male fertility in mice. PLoS Genet 2020; 16:e1008585. [PMID: 31961863 PMCID: PMC6994161 DOI: 10.1371/journal.pgen.1008585] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/31/2020] [Accepted: 12/29/2019] [Indexed: 01/28/2023] Open
Abstract
Flagella and cilia are evolutionarily conserved cellular organelles. Abnormal formation or motility of these organelles in humans causes several syndromic diseases termed ciliopathies. The central component of flagella and cilia is the axoneme that is composed of the ‘9+2’ microtubule arrangement, dynein arms, radial spokes, and the Nexin-Dynein Regulatory Complex (N-DRC). The N-DRC is localized between doublet microtubules and has been extensively studied in the unicellular flagellate Chlamydomonas. Recently, it has been reported that TCTE1 (DRC5), a component of the N-DRC, is essential for proper sperm motility and male fertility in mice. Further, TCTE1 has been shown to interact with FBXL13 (DRC6) and DRC7; however, functional roles of FBXL13 and DRC7 in mammals have not been elucidated. Here we show that Fbxl13 and Drc7 expression are testes-enriched in mice. Although Fbxl13 knockout (KO) mice did not show any obvious phenotypes, Drc7 KO male mice were infertile due to their short immotile spermatozoa. In Drc7 KO spermatids, the axoneme is disorganized and the ‘9+2’ microtubule arrangement was difficult to detect. Further, other N-DRC components fail to incorporate into the flagellum without DRC7. These results indicate that Drc7, but not Fbxl13, is essential for the correct assembly of the N-DRC and flagella. In recent years, almost one in six couples face infertility, and nearly 50% of cases are attributed to male factors. It has been shown that approximately 15% of male infertility is caused by genetic factors. The conditions of male infertility mainly include spermatozoa with abnormal morphology (teratozoospermia), reduced sperm motility (asthenozoospermia), and no or low sperm count (azoospermia). Multiple morphological abnormalities of the sperm flagella (MMAF) are characterized as asthenoteratozoospermia, which is a condition with abnormal sperm tail morphology, including absent, coiled, bent, or short tails. Sperm tails are formed during spermiogenesis; however, the mechanism that govern tail formation remains unclear. Here we mutated Fbxl13 and Drc7, two genes with strong expression in mouse testis and which have been shown to be important for flagellum formation and regulation in other systems. Deletion of Drc7 leads to aberrant tail formation in mouse spermatozoa that phenocopies patients with MMAF, while deletion of Fbxl13 has no observable effect on sperm function. Our results identified DRC7 as an important factor for sperm flagellum formation.
Collapse
Affiliation(s)
- Akane Morohoshi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Nozawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ryuji Yanase
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Persico V, Callaini G, Riparbelli MG. The Microtubule-Depolymerizing Kinesin-13 Klp10A Is Enriched in the Transition Zone of the Ciliary Structures of Drosophila melanogaster. Front Cell Dev Biol 2019; 7:173. [PMID: 31497602 PMCID: PMC6713071 DOI: 10.3389/fcell.2019.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
The precursor of the flagellar axoneme is already present in the primary spermatocytes of Drosophila melanogaster. During spermatogenesis each primary spermatocyte shows a centriole pair that moves to the cell membrane and organizes an axoneme-based structure, the cilium-like region (CLR). The CLRs persist through the meiotic divisions and are inherited by young spermatids. During spermatid differentiation the ciliary caps elongate giving rise to the sperm axoneme. Mutations in Klp10A, a kinesin-13 of Drosophila, results in defects of centriole/CLR organization in spermatocytes and of ciliary cap assembly in elongating spermatids. Reduced Klp10A expression also results in strong structural defects of sensory type I neurons. We show, here, that this protein displays a peculiar localization during male gametogenesis. The Klp10A signal is first detected at the distal ends of the centrioles when they dock to the plasma membrane of young primary spermatocytes. At the onset of the first meiotic prometaphase, when the CLRs reach their full size, Klp10A is enriched in a distinct narrow area at the distal end of the centrioles and persists in elongating spermatids at the base of the ciliary cap. We conclude that Klp10A could be a core component of the ciliary transition zone in Drosophila.
Collapse
Affiliation(s)
| | - Giuliano Callaini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | |
Collapse
|
36
|
Honey bee predisposition of resistance to ubiquitous mite infestations. Sci Rep 2019; 9:7794. [PMID: 31127129 PMCID: PMC6534585 DOI: 10.1038/s41598-019-44254-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Host-parasite co-evolution history is lacking when parasites switch to novel hosts. This was the case for Western honey bees (Apis mellifera) when the ectoparasitic mite, Varroa destructor, switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe biological threat to A. mellifera worldwide. However, some A. mellifera populations are known to survive infestations, largely by suppressing mite population growth. One known mechanism is suppressed mite reproduction (SMR), but the underlying genetics are poorly understood. Here, we take advantage of haploid drones, originating from one queen from the Netherlands that developed Varroa-resistance, whole exome sequencing and elastic-net regression to identify genetic variants associated with SMR in resistant honeybees. An eight variants model predicted 88% of the phenotypes correctly and identified six risk and two protective variants. Reproducing and non-reproducing mites could not be distinguished using DNA microsatellites, which is in agreement with the hypothesis that it is not the parasite but the host that adapted itself. Our results suggest that the brood pheromone-dependent mite oogenesis is disrupted in resistant hosts. The identified genetic markers have a considerable potential to contribute to a sustainable global apiculture.
Collapse
|
37
|
Elworthy S, Savage AM, Wilkinson RN, Malicki JJ, Chico TJA. The role of endothelial cilia in postembryonic vascular development. Dev Dyn 2019; 248:410-425. [PMID: 30980582 DOI: 10.1002/dvdy.40] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cilia are essential for morphogenesis and maintenance of many tissues. Loss-of-function of cilia in early Zebrafish development causes a range of vascular defects, including cerebral hemorrhage and reduced arterial vascular mural cell coverage. In contrast, loss of endothelial cilia in mice has little effect on vascular development. We therefore used a conditional rescue approach to induce endothelial cilia ablation after early embryonic development and examined the effect on vascular development and mural cell development in postembryonic, juvenile, and adult Zebrafish. RESULTS ift54(elipsa)-mutant Zebrafish are unable to form cilia. We rescued cilia formation and ameliorated the phenotype of ift54 mutants using a novel Tg(ubi:loxP-ift54-loxP-myr-mcherry,myl7:EGFP)sh488 transgene expressing wild-type ift54 flanked by recombinase sites, then used a Tg(kdrl:cre)s898 transgene to induce endothelial-specific inactivation of ift54 at postembryonic ages. Fish without endothelial ift54 function could survive to adulthood and exhibited no vascular defects. Endothelial inactivation of ift54 did not affect development of tagln-positive vascular mural cells around either the aorta or the caudal fin vessels, or formation of vessels after tail fin resection in adult animals. CONCLUSIONS Endothelial cilia are not essential for development and remodeling of the vasculature in juvenile and adult Zebrafish when inactivated after embryogenesis.
Collapse
Affiliation(s)
- Stone Elworthy
- The Bateson Centre & Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Aaron M Savage
- The Bateson Centre & Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Robert N Wilkinson
- The Bateson Centre & Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Jarema J Malicki
- The Bateson Centre & Department of Biomedical Science, University of Sheffield Medical School, Sheffield, UK
| | - Timothy J A Chico
- The Bateson Centre & Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
38
|
Zur Lage P, Newton FG, Jarman AP. Survey of the Ciliary Motility Machinery of Drosophila Sperm and Ciliated Mechanosensory Neurons Reveals Unexpected Cell-Type Specific Variations: A Model for Motile Ciliopathies. Front Genet 2019; 10:24. [PMID: 30774648 PMCID: PMC6367277 DOI: 10.3389/fgene.2019.00024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
The motile cilium/flagellum is an ancient eukaryotic organelle. The molecular machinery of ciliary motility comprises a variety of cilium-specific dynein motor complexes along with other complexes that regulate their activity. Assembling the motors requires the function of dedicated “assembly factors” and transport processes. In humans, mutation of any one of at least 40 different genes encoding components of the motility apparatus causes Primary Ciliary Dyskinesia (PCD), a disease of defective ciliary motility. Recently, Drosophila has emerged as a model for motile cilia biology and motile ciliopathies. This is somewhat surprising as most Drosophila cells lack cilia, and motile cilia are confined to just two specialized cell types: the sperm flagellum with a 9+2 axoneme and the ciliated dendrite of auditory/proprioceptive (chordotonal, Ch) neurons with a 9+0 axoneme. To determine the utility of Drosophila as a model for motile cilia, we survey the Drosophila genome for ciliary motility gene homologs, and assess their expression and function. We find that the molecules of cilium motility are well conserved in Drosophila. Most are readily characterized by their restricted cell-type specific expression patterns and phenotypes. There are also striking differences between the two motile ciliated cell types. Notably, sperm and Ch neuron cilia express and require entirely different outer dynein arm variants—the first time this has been clearly established in any organism. These differences might reflect the specialized functions for motility in the two cilium types. Moreover, the Ch neuron cilia lack the critical two-headed inner arm dynein (I1/f) but surprisingly retain key regulatory proteins previously associated with it. This may have implications for other motile 9+0 cilia, including vertebrate embryonic nodal cilia required for left-right axis asymmetry. We discuss the possibility that cell-type specificity in ciliary motility machinery might occur in humans, and therefore underlie some of the phenotypic variation observed in PCD caused by different gene mutations. Our work lays the foundation for the increasing use of Drosophila as an excellent model for new motile ciliary gene discovery and validation, for understanding motile cilium function and assembly, as well as understanding the nature of genetic defects underlying human motile ciliopathies.
Collapse
Affiliation(s)
- Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
40
|
The "transition zone" of the cilium-like regions in the Drosophila spermatocytes and the role of the C-tubule in axoneme assembly. Exp Cell Res 2018; 371:262-268. [PMID: 30130520 DOI: 10.1016/j.yexcr.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/24/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023]
Abstract
The fruit-fly Drosophila melanogaster harbours different types of ciliary structures: ciliary projections associated with neurons of type I and cilium-like regions (CLRs) found during male gametogenesis. The latter deserve particular attention since they are morphologically similar to vertebrate primary cilia and transform into the sperm axonemes during spermiogenesis. Although, all the centrioles are able to organize the CLRs, we found that the mother centriole docks first to the plasma membrane suggesting a new intrinsic functional asymmetry between the parent centrioles. We also show that the CLRs lack the Y-links that connect the axoneme doublets with the plasma membrane in conventional primary cilia. Moreover, the C-tubules, that are lacking in the axoneme of the primary cilia, persisted along the CLRs albeit modified into longitudinal blades. Remarkably, mutant flies in which the CLRs are devoid of the C-tubules or their number is reduced lack sperm axonemes or have incomplete axonemes. Therefore, the C-tubules are dispensable for the assembly of the CLRs but are essential for sperm axoneme elongation and maintenance in Drosophila.
Collapse
|
41
|
Zur Lage P, Stefanopoulou P, Styczynska-Soczka K, Quinn N, Mali G, von Kriegsheim A, Mill P, Jarman AP. Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 2018; 217:2583-2598. [PMID: 29743191 PMCID: PMC6028525 DOI: 10.1083/jcb.201709026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/21/2018] [Accepted: 04/06/2018] [Indexed: 01/12/2023] Open
Abstract
Wdr92 is associated with the multifunctional cochaperone, R2TP, but its function is unknown. In this study, the authors show that Drosophila Wdr92 is exclusively required for preassembly of ciliary dynein motor complexes, which are confined to sensory neuron ciliary dendrites and sperm flagella. Wdr92 is proposed to direct R2TP/HSP90 to dynein chain clients to chaperone cytoplasmic preassembly. The massive dynein motor complexes that drive ciliary and flagellar motility require cytoplasmic preassembly, a process requiring dedicated dynein assembly factors (DNAAFs). How DNAAFs interact with molecular chaperones to control dynein assembly is not clear. By analogy with the well-known multifunctional HSP90-associated cochaperone, R2TP, several DNAAFs have been suggested to perform novel R2TP-like functions. However, the involvement of R2TP itself (canonical R2TP) in dynein assembly remains unclear. Here we show that in Drosophila melanogaster, the R2TP-associated factor, Wdr92, is required exclusively for axonemal dynein assembly, likely in association with canonical R2TP. Proteomic analyses suggest that in addition to being a regulator of R2TP chaperoning activity, Wdr92 works with the DNAAF Spag1 at a distinct stage in dynein preassembly. Wdr92/R2TP function is likely distinct from that of the DNAAFs proposed to form dynein-specific R2TP-like complexes. Our findings thus establish a connection between dynein assembly and a core multifunctional cochaperone.
Collapse
Affiliation(s)
- Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| | - Panagiota Stefanopoulou
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| | - Katarzyna Styczynska-Soczka
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| | - Niall Quinn
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Girish Mali
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Pleasantine Mill
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
42
|
Muthaiyan Shanmugam M, Bhan P, Huang HY, Hsieh J, Hua TE, Wu GH, Punjabi H, Lee Aplícano VD, Chen CW, Wagner OI. Cilium Length and Intraflagellar Transport Regulation by Kinases PKG-1 and GCK-2 in Caenorhabditis elegans Sensory Neurons. Mol Cell Biol 2018; 38:e00612-17. [PMID: 29378827 PMCID: PMC5854826 DOI: 10.1128/mcb.00612-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/31/2022] Open
Abstract
To understand how ciliopathies such as polycystic kidney disease or Bardet-Biedl syndrome develop, we need to understand the basic molecular mechanisms underlying cilium development. Cilium growth depends on the presence of functional intraflagellar transport (IFT) machinery, and we hypothesized that various kinases and phosphatases might be involved in this regulatory process. A candidate screen revealed two kinases, PKG-1 (a cGMP-dependent protein kinase) and GCK-2 (a mitogen-activated protein kinase kinase kinase kinase 3 [MAP4K3] kinase involved in mTOR signaling), significantly affecting dye filling, chemotaxis, cilium morphology, and IFT component distribution. PKG-1 and GCK-2 show similar expression patterns in Caenorhabditis elegans cilia and colocalize with investigated IFT machinery components. In pkg-1 mutants, a high level of accumulation of kinesin-2 OSM-3 in distal segments was observed in conjunction with an overall reduction of anterograde and retrograde IFT particle A transport, likely as a function of reduced tubulin acetylation. In contrast, in gck-2 mutants, both kinesin-2 motility and IFT particle A motility were significantly elevated in the middle segments, in conjunction with increased tubulin acetylation, possibly the cause of longer cilium growth. Observed effects in mutants can be also seen in manipulating upstream and downstream effectors of the respective cGMP and mTOR pathways. Importantly, transmission electron microscopy (TEM) analysis revealed no structural changes in cilia of pkg-1 and gck-2 mutants.
Collapse
Affiliation(s)
- Muniesh Muthaiyan Shanmugam
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Hsin-Yi Huang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Jung Hsieh
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Tzu-En Hua
- Electron Microscopy Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Gong-Her Wu
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Helly Punjabi
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Víctor Daniel Lee Aplícano
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Chih-Wei Chen
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| | - Oliver Ingvar Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
43
|
Youn YH, Han YG. Primary Cilia in Brain Development and Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:11-22. [PMID: 29030052 PMCID: PMC5745523 DOI: 10.1016/j.ajpath.2017.08.031] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 01/20/2023]
Abstract
The primary cilium, a sensory appendage that is present in most mammalian cells, plays critical roles in signaling pathways and cell cycle progression. Mutations that affect the structure or function of primary cilia result in ciliopathies, a group of developmental and degenerative diseases that affect almost all organs and tissues. Our understanding of the constituents, development, and function of primary cilia has advanced considerably in recent years, revealing pathogenic mechanisms that potentially underlie ciliopathies. In the brain, the primary cilia are crucial for early patterning, neurogenesis, neuronal maturation and survival, and tumorigenesis, mostly through regulating cell cycle progression, Hedgehog signaling, and WNT signaling. We review these advances in our knowledge of primary cilia, focusing on brain development, and discuss the mechanisms that may underlie brain abnormalities in ciliopathies.
Collapse
Affiliation(s)
- Yong Ha Youn
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Young-Goo Han
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
44
|
Vincensini L, Blisnick T, Bertiaux E, Hutchinson S, Georgikou C, Ooi CP, Bastin P. Flagellar incorporation of proteins follows at least two different routes in trypanosomes. Biol Cell 2017; 110:33-47. [DOI: 10.1111/boc.201700052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Laetitia Vincensini
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Christina Georgikou
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Cher-Pheng Ooi
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit; Institut Pasteur & INSERM U1201; Paris 75015 France
| |
Collapse
|
45
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
46
|
He M, Agbu S, Anderson KV. Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 2017; 27:110-125. [PMID: 27765513 PMCID: PMC5258846 DOI: 10.1016/j.tcb.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023]
Abstract
The mammalian Hedgehog (Hh) signaling pathway is required for development and for maintenance of adult stem cells, and overactivation of the pathway can cause tumorigenesis. All responses to Hh family ligands in mammals require the primary cilium, an ancient microtubule-based organelle that extends from the cell surface. Genetic studies in mice and humans have defined specific functions for cilium-associated microtubule motor proteins: they act in the construction and disassembly of the primary cilium, they control ciliary length and stability, and some have direct roles in mammalian Hh signal transduction. These studies highlight how integrated genetic and cell biological studies can define the molecular mechanisms that underlie cilium-associated health and disease.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology and Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Biochemistry, Cell, and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
47
|
Park J, Lee N, Kavoussi A, Seo JT, Kim CH, Moon SJ. Ciliary Phosphoinositide Regulates Ciliary Protein Trafficking in Drosophila. Cell Rep 2016; 13:2808-16. [PMID: 26723017 DOI: 10.1016/j.celrep.2015.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022] Open
Abstract
Cilia are highly specialized antennae-like cellular organelles. Inositol polyphosphate 5-phosphatase E (INPP5E) converts PI(4,5)P2 into PI4P and is required for proper ciliary function. Although Inpp5e mutations are associated with ciliopathies in humans and mice, the precise molecular role INPP5E plays in cilia remains unclear. Here, we report that Drosophila INPP5E (dINPP5E) regulates ciliary protein trafficking by controlling the phosphoinositide composition of ciliary membranes. Mutations in dInpp5e lead to hearing deficits due to the mislocalization of dTULP and mechanotransduction channels, Inactive and NOMPC, in chordotonal cilia. Both loss of dINPP5E and ectopic expression of the phosphatidylinositol-4-phosphate 5-kinase Skittles increase PI(4,5)P2 levels in the ciliary base. The fact that Skittles expression phenocopies the dInpp5e mutants confirms a central role for PI(4,5)P2 in the regulation of dTULP, Inactive, and NOMPC localization. These data suggest that the spatial localization and levels of PI(4,5)P2 in ciliary membranes are important regulators of ciliary trafficking and function.
Collapse
Affiliation(s)
- Jina Park
- Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Nayoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Adriana Kavoussi
- Department of Pharmacology, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
48
|
Zhang Z, Li W, Zhang Y, Zhang L, Teves ME, Liu H, Strauss JF, Pazour GJ, Foster JA, Hess RA, Zhang Z. Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice. Mol Biol Cell 2016; 27:mbc.E16-05-0318. [PMID: 27682589 PMCID: PMC5170554 DOI: 10.1091/mbc.e16-05-0318] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) is a conserved mechanism thought to be essential for the assembly and maintenance of cilia and flagella. However, little is known about its role in mammalian sperm flagella formation. To fill this gap, we disrupted the Ift20 gene in male germ cells. Homozygous mutant mice were infertile with significantly reduced sperm counts and motility. In addition, abnormally shaped elongating spermatid heads and bulbous round spermatids were found in the lumen of the seminiferous tubules. Electron microscopy revealed increased cytoplasmic vesicles, fiber-like structures, abnormal accumulation of mitochondria and a decrease in mature lysosomes. The few developed sperm had disrupted axonemes and some retained cytoplasmic lobe components on the flagella. ODF2 and SPAG16L, two sperm flagella proteins failed to be incorporated into sperm tails of the mutant mice, and in the germ cells, both were assembled into complexes with lighter density in the absence of IFT20. Disrupting IFT20 did not significantly change expression levels of IFT88, a component of IFT-B complex, and IFT140, a component of IFT-A complex. Even though the expression level of an autophagy core protein that associates with IFT20, ATG16, was reduced in the testis of the Ift20 mutant mice, expression levels of other major autophagy markers, including LC3 and ubiquitin were not changed. Our studies suggest that IFT20 is essential for male fertility and spermiogenesis in mice, and its major function is to transport cargo proteins for sperm flagella formation. It also appears to be involved in removing excess cytoplasmic components.
Collapse
Affiliation(s)
- Zhengang Zhang
- Department of Gastroenterology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430030 Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Wei Li
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Yong Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China, 430030
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Hong Liu
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298 School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - James A Foster
- Department of Biology, Randolph-Macon College, Ashland, VA 23005
| | - Rex A Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001 S. Lincoln, Urbana, IL 61802-6199
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, 23298
| |
Collapse
|
49
|
Vieillard J, Paschaki M, Duteyrat JL, Augière C, Cortier E, Lapart JA, Thomas J, Durand B. Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J Cell Biol 2016; 214:875-89. [PMID: 27646273 PMCID: PMC5037411 DOI: 10.1083/jcb.201603086] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/26/2016] [Indexed: 01/04/2023] Open
Abstract
Ciliary transition zone (TZ) assembly is complex and incompletely understood. Vieillard et al. show that Drosophila Cby and Dila cooperate to assemble the TZ and membrane cap, which, together with microtubule remodeling by kinesin-13, is required for axoneme formation in male germ cells. The ciliary transition zone (TZ) is a complex structure found at the cilia base. Defects in TZ assembly are associated with human ciliopathies. In most eukaryotes, three protein complexes (CEP290, NPHP, and MKS) cooperate to build the TZ. We show that in Drosophila melanogaster, mild TZ defects are observed in the absence of MKS components. In contrast, Cby and Azi1 cooperate to build the TZ by acting upstream of Cep290 and MKS components. Without Cby and Azi1, centrioles fail to form the TZ, precluding sensory cilia assembly, and no ciliary membrane cap associated with sperm ciliogenesis is made. This ciliary cap is critical to recruit the tubulin-depolymerizing kinesin Klp59D, required for regulation of axonemal growth. Our results show that Drosophila TZ assembly in sensory neurons and male germ cells involves cooperative actions of Cby and Dila. They further reveal that temporal control of membrane cap assembly by TZ components and microtubule elongation by kinesin-13 is required for axoneme formation in male germ cells.
Collapse
Affiliation(s)
- Jennifer Vieillard
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Marie Paschaki
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Jean-Luc Duteyrat
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Céline Augière
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Elisabeth Cortier
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Jean-André Lapart
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Joëlle Thomas
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| | - Bénédicte Durand
- Université Claude Bernard Lyon 1, Institut National de la Santé et de la Recherche Médicale U1217, Institut NeuroMyoGène, Centre National de la Recherche Scientifique UMR 5310, F-69100 Lyon, France
| |
Collapse
|
50
|
Abstract
Most motile and all non-motile (also known as primary) eukaryotic cilia possess microtubule-based axonemes that are assembled at the cell surface to form hair-like or more elaborate compartments endowed with motility and/or signaling functions. Such compartmentalized ciliogenesis depends on the core intraflagellar transport (IFT) machinery and the associated Bardet-Biedl syndrome complex (BBSome) for dynamic delivery of ciliary components. The transition zone (TZ), an ultrastructurally complex barrier or 'gate' at the base of cilia, also contributes to the formation of compartmentalized cilia. Yet, some ciliated protists do not have IFT components and, like some metazoan spermatozoa, use IFT-independent mechanisms to build axonemes exposed to the cytosol. Moreover, various ciliated protists lack TZ components, whereas Drosophila sperm surprisingly requires the activity of dynamically localized TZ proteins for cytosolic ciliogenesis. Here, we discuss the various ways eukaryotes use IFT and/or TZ proteins to generate the wide assortment of compartmentalized and cytosolic cilia observed in nature. Consideration of the different ciliogenesis pathways allows us to propose how three types of cytosol-exposed cilia (primary, secondary and tertiary), including cilia found in the human sperm proximal segment, are likely generated by evolutionary derivations of compartmentalized ciliogenesis.
Collapse
|