1
|
Luna-Arias JP, Castro-Muñozledo F. Participation of the TBP-associated factors (TAFs) in cell differentiation. J Cell Physiol 2024; 239:e31167. [PMID: 38126142 DOI: 10.1002/jcp.31167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The understanding of the mechanisms that regulate gene expression to establish differentiation programs and determine cell lineages, is one of the major challenges in Developmental Biology. Besides the participation of tissue-specific transcription factors and epigenetic processes, the role of general transcription factors has been ignored. Only in recent years, there have been scarce studies that address this issue. Here, we review the studies on the biological activity of some TATA-box binding protein (TBP)-associated factors (TAFs) during the proliferation of stem/progenitor cells and their involvement in cell differentiation. Particularly, the accumulated evidence suggests that TAF4, TAF4b, TAF7L, TAF8, TAF9, and TAF10, among others, participate in nervous system development, adipogenesis, myogenesis, and epidermal differentiation; while TAF1, TAF7, TAF15 may be involved in the regulation of stem cell proliferative abilities and cell cycle progression. On the other hand, evidence suggests that TBP variants such as TBPL1 and TBPL2 might be regulating some developmental processes such as germ cell maturation and differentiation, myogenesis, or ventral specification during development. Our analysis shows that it is necessary to study in greater depth the biological function of these factors and its participation in the assembly of specific transcription complexes that contribute to the differential gene expression that gives rise to the great diversity of cell types existing in an organism. The understanding of TAFs' regulation might lead to the development of new therapies for patients which suffer from mutations, alterations, and dysregulation of these essential elements of the transcriptional machinery.
Collapse
Affiliation(s)
- Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| |
Collapse
|
2
|
Du T, Li M, Chen L, Shao Y, Wang Y, Wang H, Ma J, Yao B. Compound heterozygous mutations in TBPL2 were identified in an infertile woman with impaired ovarian folliculogenesis. J Assist Reprod Genet 2023; 40:2945-2950. [PMID: 37804378 PMCID: PMC10656374 DOI: 10.1007/s10815-023-02961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVE A 32-year-old female was diagnosed with unexplained primary infertility for 10 years. She had roughly normal basal hormone levels, but her basal follicle-stimulating hormone (FSH) levels were elevated. In addition, the level of anti-Mullerian hormone was within the normal range, and she had undergone two failed oocyte collection attempts. We aimed to investigate the genetic cause of female infertility in patients with impaired ovarian folliculogenesis. METHODS Genomic DNA was extracted from the peripheral blood of the patient and her family members. Whole-exome sequencing was performed on the patient, and TBPL2 mutations were identified and confirmed by Sanger sequencing. The Exome Aggregation Consortium (ExAC) Browser and Genome Aggregation Database (gnomAD) Browser Beta were used to search the allele frequencies of the variants in the general population. The harmfulness of the mutations was analyzed by SIFT, Mutation Taster, and CADD software. RESULT One novel mutation, c.802C > T (p. Arg268Ter), and one known variant, c.788 + 3A > G (p. Arg233Ter), in TBPL2 were identified in the infertile family. Compound heterozygous mutations in TBPL2 may be the cause of impaired ovarian folliculogenesis, failure of superovulation, and infertility. CONCLUSIONS We identified compound heterozygous mutations in TBPL2 that caused impaired ovarian folliculogenesis, failure of superovulation, and infertility in patients. These findings suggest an important role for compound heterozygous mutations in TBPL2 and expand the mutational spectrum of TBPL2, which might provide a new precise diagnostic marker for female infertility.
Collapse
Affiliation(s)
- Tian Du
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
| | - Meiling Li
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Li Chen
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Yong Shao
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hui Wang
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China.
| |
Collapse
|
3
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
4
|
Hadzhiev Y, Wheatley L, Cooper L, Ansaloni F, Whalley C, Chen Z, Finaurini S, Gustincich S, Sanges R, Burgess S, Beggs A, Müller F. The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation. Dev Cell 2023; 58:155-170.e8. [PMID: 36693321 PMCID: PMC9904021 DOI: 10.1016/j.devcel.2022.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/10/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.
Collapse
Affiliation(s)
- Yavor Hadzhiev
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lucy Wheatley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ledean Cooper
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Federico Ansaloni
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Celina Whalley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Zhelin Chen
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Sara Finaurini
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Remo Sanges
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy; Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy
| | - Shawn Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Andrew Beggs
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Role of the TATA-box binding protein (TBP) and associated family members in transcription regulation. Gene X 2022; 833:146581. [PMID: 35597524 DOI: 10.1016/j.gene.2022.146581] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.
Collapse
|
6
|
What defines the maternal transcriptome? Biochem Soc Trans 2021; 49:2051-2062. [PMID: 34415300 PMCID: PMC8589422 DOI: 10.1042/bst20201125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
In somatic cells, RNA polymerase II (Pol II) transcription initiation starts by the binding of the general transcription factor TFIID, containing the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs), to core promoters. However, in growing oocytes active Pol II transcription is TFIID/TBP-independent, as during oocyte growth TBP is replaced by its vertebrate-specific paralog TBPL2. TBPL2 does not interact with TAFs, but stably associates with TFIIA. The maternal transcriptome is the population of mRNAs produced and stored in the cytoplasm of growing oocytes. After fertilization, maternal mRNAs are inherited by the zygote from the oocyte. As transcription becomes silent after oocyte growth, these mRNAs are the sole source for active protein translation. They will participate to complete the protein pool required for oocyte terminal differentiation, fertilization and initiation of early development, until reactivation of transcription in the embryo, called zygotic genome activation (ZGA). All these events are controlled by an important reshaping of the maternal transcriptome. This procedure combines cytoplasmic readenylation of stored transcripts, allowing their translation, and different waves of mRNA degradation by deadenylation coupled to decapping, to eliminate transcripts coding for proteins that are no longer required. The reshaping ends after ZGA with an almost total clearance of the maternal transcripts. In the past, the murine maternal transcriptome has received little attention but recent progresses have brought new insights into the regulation of maternal mRNA dynamics in the mouse. This review will address past and recent data on the mechanisms associated with maternal transcriptome dynamic in the mouse.
Collapse
|
7
|
Yang P, Chen T, Wu K, Hou Z, Zou Y, Li M, Zhang X, Xu J, Zhao H. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum Reprod 2021; 36:2011-2019. [PMID: 33893736 DOI: 10.1093/humrep/deab094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION What are the genetic causes of oocyte maturation defects? SUMMARY ANSWER A homozygous splicing variant (c.788 + 3A>G) in TATA-box binding protein like 2 (TBPL2) was identified as a contributory genetic factor in oocyte maturation defects. WHAT IS KNOWN ALREADY TBPL2, a vertebrate oocyte-specific general transcription factor, is essential for oocyte development. TBPL2 variants have not been studied in human oocyte maturation defects. STUDY DESIGN, SIZE, DURATION Two infertile families characterized by oocyte maturation defects were recruited for whole-exome sequencing (WES). PARTICIPANTS/MATERIALS, SETTING, METHODS Genomic DNA was extracted from peripheral blood for WES analysis. Sanger sequencing was performed for data validation. Pathogenicity of variants was predicted by in silico analysis. Minigene assay and single-oocyte RNA sequencing were performed to investigate the effects of the variant on mRNA integrity and oocyte transcriptome, respectively. MAIN RESULTS AND THE ROLE OF CHANCE A homozygous splicing variant (c.788 + 3A>G) in TBPL2 was identified in two unrelated families characterized by oocyte maturation defects. Haplotype analysis indicated that the disease allele of Families 1 and 2 was independent. The variant disrupted the integrity of TBPL2 mRNA. Transcriptome sequencing of affected oocytes showed that vital genes for oocyte maturation and fertilization were widely and markedly downregulated, suggesting that a mutation in the transcriptional factor, TBPL2, led to global gene alterations in oocytes. LIMITATIONS, REASONS FOR CAUTION Limitations include the lack of direct functional evidence. Owing to the scarcity of human oocyte samples, only two immature MI oocytes were obtained from the patients, and we could only investigate the effect of the mutation at the transcriptional level by high-throughput sequencing technology. No extra oocytes were obtained to assess the transcriptional activity of the mutant oocytes by immunofluorescence, or investigate the effects on the binding of TBPL2 caused by the mutation. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight a critical role of TBPL2 in female reproduction and identify a homozygous splicing mutation in TBPL2 that might be related to defects in human oocyte maturation. This information will facilitate the genetic diagnosis of infertile individuals with repeated failures of IVF, providing a basis for genetic counseling. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2018YFC1004000, 2017YFC1001504 and 2017YFC1001600), the National Natural Science Foundation of China (81871168, 31900409 and 31871509), the Foundation for Distinguished Young Scholars of Shandong Province (JQ201816), the Innovative Research Team of High-Level Local Universities in Shanghai (SSMU-ZLCX20180401) and the Fundamental Research Funds of Shandong University. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ping Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Tailai Chen
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Zhenzhen Hou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yang Zou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Mei Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - XinZe Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Junting Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| |
Collapse
|
8
|
Quelle-Regaldie A, Sobrido-Cameán D, Barreiro-Iglesias A, Sobrido MJ, Sánchez L. Zebrafish Models of Autosomal Dominant Ataxias. Cells 2021; 10:421. [PMID: 33671313 PMCID: PMC7922657 DOI: 10.3390/cells10020421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Hereditary dominant ataxias are a heterogeneous group of neurodegenerative conditions causing cerebellar dysfunction and characterized by progressive motor incoordination. Despite many efforts put into the study of these diseases, there are no effective treatments yet. Zebrafish models are widely used to characterize neuronal disorders due to its conserved vertebrate genetics that easily support genetic edition and their optic transparency that allows observing the intact CNS and its connections. In addition, its small size and external fertilization help to develop high throughput assays of candidate drugs. Here, we discuss the contributions of zebrafish models to the study of dominant ataxias defining phenotypes, genetic function, behavior and possible treatments. In addition, we review the zebrafish models created for X-linked repeat expansion diseases X-fragile/fragile-X tremor ataxia. Most of the models reviewed here presented neuronal damage and locomotor deficits. However, there is a generalized lack of zebrafish adult heterozygous models and there are no knock-in zebrafish models available for these diseases. The models created for dominant ataxias helped to elucidate gene function and mechanisms that cause neuronal damage. In the future, the application of new genetic edition techniques would help to develop more accurate zebrafish models of dominant ataxias.
Collapse
Affiliation(s)
- Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade of Santiago de Compostela, 27002 Lugo, Spain; (A.Q.-R.); (L.S.)
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - María Jesús Sobrido
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servicio Galego de Saúde, 15006 Coruña, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, Universidade of Santiago de Compostela, 27002 Lugo, Spain; (A.Q.-R.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Yu C, Cvetesic N, Hisler V, Gupta K, Ye T, Gazdag E, Negroni L, Hajkova P, Berger I, Lenhard B, Müller F, Vincent SD, Tora L. TBPL2/TFIIA complex establishes the maternal transcriptome through oocyte-specific promoter usage. Nat Commun 2020; 11:6439. [PMID: 33353944 PMCID: PMC7755920 DOI: 10.1038/s41467-020-20239-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/20/2020] [Indexed: 01/28/2023] Open
Abstract
During oocyte growth, transcription is required to create RNA and protein reserves to achieve maternal competence. During this period, the general transcription factor TATA binding protein (TBP) is replaced by its paralogue, TBPL2 (TBP2 or TRF3), which is essential for RNA polymerase II transcription. We show that in oocytes TBPL2 does not assemble into a canonical TFIID complex. Our transcript analyses demonstrate that TBPL2 mediates transcription of oocyte-expressed genes, including mRNA survey genes, as well as specific endogenous retroviral elements. Transcription start site (TSS) mapping indicates that TBPL2 has a strong preference for TATA-like motif in core promoters driving sharp TSS selection, in contrast with canonical TBP/TFIID-driven TATA-less promoters that have broader TSS architecture. Thus, we show a role for the TBPL2/TFIIA complex in the establishment of the oocyte transcriptome by using a specific TSS recognition code.
Collapse
Affiliation(s)
- Changwei Yu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Nevena Cvetesic
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Vincent Hisler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Kapil Gupta
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Emese Gazdag
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Petra Hajkova
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Imre Berger
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Boris Lenhard
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France.
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| |
Collapse
|
10
|
Parra-Marín O, López-Pacheco K, Hernández R, López-Villaseñor I. The highly diverse TATA box-binding proteins among protists: A review. Mol Biochem Parasitol 2020; 239:111312. [PMID: 32771681 DOI: 10.1016/j.molbiopara.2020.111312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Transcription is the first step of gene expression regulation and is a fundamental mechanism for establishing the viability and development of a cell. The TATA box-binding protein (TBP) interaction with a TATA box in a promoter is one of the best studied mechanisms in transcription initiation. TBP is a transcription factor that is highly conserved from archaea to humans and is essential for the transcription initiated by each of the three RNA polymerases. In addition, the discovery of TBP-related factor 1 (TRF1) and other factors related to TBP shed light on the variability among transcription initiation complexes, thus demonstrating that the compositions of these complexes are, in fact, more complicated than originally believed. Despite these facts, the majority of studies on transcription have been performed on animal, plant and fungal cells, which serve as canonical models, and information regarding protist cells is relatively scarce. The aim of this work is to review the diversity of the TBPs that have been documented in protists and describe some of the specific features that differentiate them from their counterparts in higher eukaryotes.
Collapse
Affiliation(s)
- Olivia Parra-Marín
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Karla López-Pacheco
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
11
|
TATA box-binding protein-related factor 3 drives the mesendoderm specification of human embryonic stem cells by globally interacting with the TATA box of key mesendodermal genes. Stem Cell Res Ther 2020; 11:196. [PMID: 32448362 PMCID: PMC7245780 DOI: 10.1186/s13287-020-01711-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. METHODS We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. RESULTS The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3-/-) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3-/- hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. CONCLUSIONS These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.
Collapse
|
12
|
Kurshakova MM, Nabirochkina EN, Georgieva SG, Kopytova DV. TRF4, the novel TBP-related protein of Drosophila melanogaster, is concentrated at the endoplasmic reticulum and copurifies with proteins participating in the processes associated with endoplasmic reticulum. J Cell Biochem 2019; 120:7927-7939. [PMID: 30426565 DOI: 10.1002/jcb.28070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Understanding the functions of TBP-related factors is essential for studying chromatin assembly and transcription regulation in higher eukaryotes. The novel TBP-related protein-coding gene, trf4, was described in Drosophila melanogaster. trf4 is found only in Drosophila and has likely originated in Drosophila common ancestor. TRF4 protein has a distant homology with TBP and TRF2 in the region of TBP-like domain and is evolutionarily conserved among distinct Drosophila species, which indicates its functional significance. TRF4 is widely expressed in D. melanogaster with high levels of its expression being observed in testes. Interestingly enough, TRF4 has become a cytoplasmic protein having lost nuclear localization signal sequence. TRF4 is concentrated at the endoplasmic reticulum (ER) and copurifies with the proteins participating in the ER-associated processes. We suggest that trf4 gene is an example of homolog neofunctionalization by protein subcellular relocalization pathway, where the subcellular relocalization of gene product of duplicated gene leads to the new functions in ER-associated processes.
Collapse
Affiliation(s)
- Maria M Kurshakova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Nabirochkina
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G Georgieva
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V Kopytova
- Department of transcription factors of eukaryotes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
A cell cycle-coordinated Polymerase II transcription compartment encompasses gene expression before global genome activation. Nat Commun 2019; 10:691. [PMID: 30741925 PMCID: PMC6370886 DOI: 10.1038/s41467-019-08487-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Most metazoan embryos commence development with rapid, transcriptionally silent cell divisions, with genome activation delayed until the mid-blastula transition (MBT). However, a set of genes escapes global repression and gets activated before MBT. Here we describe the formation and the spatio-temporal dynamics of a pair of distinct transcription compartments, which encompasses the earliest gene expression in zebrafish. 4D imaging of pri-miR430 and zinc-finger-gene activities by a novel, native transcription imaging approach reveals transcriptional sharing of nuclear compartments, which are regulated by homologous chromosome organisation. These compartments carry the majority of nascent-RNAs and active Polymerase II, are chromatin-depleted and represent the main sites of detectable transcription before MBT. Transcription occurs during the S-phase of increasingly permissive cleavage cycles. It is proposed, that the transcription compartment is part of the regulatory architecture of embryonic nuclei and offers a transcriptionally competent environment to facilitate early escape from repression before global genome activation. Transcription is globally repressed in early stage of embryo development, but a set of genes including pri-miR-430 and zinc finger genes is known to escape the repression. Here the authors image the very first transcriptional activities in the living zebra fish embryo, demonstrating a cell cycle-coordinated polymerase II transcription compartment.
Collapse
|
14
|
Reisser M, Palmer A, Popp AP, Jahn C, Weidinger G, Gebhardt JCM. Single-molecule imaging correlates decreasing nuclear volume with increasing TF-chromatin associations during zebrafish development. Nat Commun 2018; 9:5218. [PMID: 30523256 PMCID: PMC6283880 DOI: 10.1038/s41467-018-07731-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/21/2018] [Indexed: 11/08/2022] Open
Abstract
Zygotic genome activation (ZGA), the onset of transcription after initial quiescence, is a major developmental step in many species, which occurs after ten cell divisions in zebrafish embryos. How transcription factor (TF)-chromatin interactions evolve during early development to support ZGA is largely unknown. We establish single molecule tracking in live developing zebrafish embryos using reflected light-sheet microscopy to visualize two fluorescently labeled TF species, mEos2-TBP and mEos2-Sox19b. We further develop a data acquisition and analysis scheme to extract quantitative information on binding kinetics and bound fractions during fast cell cycles. The chromatin-bound fraction of both TFs increases during early development, as expected from a physical model of TF-chromatin interactions including a decreasing nuclear volume and increasing DNA accessibility. For Sox19b, data suggests the increase is mainly due to the shrinking nucleus. Our single molecule approach provides quantitative insight into changes of TF-chromatin associations during the developmental period embracing ZGA.
Collapse
Affiliation(s)
- Matthias Reisser
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Anja Palmer
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Achim P Popp
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christopher Jahn
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
15
|
Liu C, Ma Y, Shang Y, Huo R, Li W. Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci 2018; 75:1707-1722. [PMID: 29427077 PMCID: PMC11105290 DOI: 10.1007/s00018-018-2750-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified during the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are essential for the timely transition of early embryonic development. In this review, we summarize recent progress regarding the molecular mechanisms underlying post-translational regulation of maternal component degradation and ZGA during the MZT and discuss some important issues in the field.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Animal Science and Technology, Northeast Agricultural University, Haerbin, 150030, People's Republic of China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
16
|
Abstract
This review by Vo ngoc et al. expands the view of the RNA polymerase II core promoter, which is comprised of classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter.
Collapse
Affiliation(s)
- Long Vo Ngoc
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuan-Liang Wang
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
17
|
Wang C, Cao J, Xing Y, Pu D, Liu J, Wu J. TBP2 gene may not be associated with primary ovarian insufficiency. Climacteric 2016; 19:565-567. [PMID: 27642674 DOI: 10.1080/13697137.2016.1231175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- C. Wang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - J. Cao
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Y. Xing
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - D. Pu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - J. Liu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - J. Wu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression. Sci Rep 2016; 6:32069. [PMID: 27576952 PMCID: PMC5006001 DOI: 10.1038/srep32069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/28/2016] [Indexed: 11/08/2022] Open
Abstract
Mammalian genomes encode two genes related to the TATA-box binding protein (TBP), TBP-related factors 2 and 3 (TRF2 and TRF3). Male Trf2−/− mice are sterile and characterized by arrested spermatogenesis at the transition from late haploid spermatids to early elongating spermatids. Despite this characterization, the molecular function of murine Trf2 remains poorly characterized and no direct evidence exists to show that it acts as a bona fide chromatin-bound transcription factor. We show here that Trf2 forms a stable complex with TFIIA or the testis expressed paralogue ALF chaperoned in the cytoplasm by heat shock proteins. We demonstrate for the first time that Trf2 is recruited to active haploid cell promoters together with Tbp, Taf7l and RNA polymerase II. RNA-seq analysis identifies a set of genes activated in haploid spermatids during the first wave of spermatogenesis whose expression is down-regulated by Trf2 inactivation. We therefore propose that Trf2 is recruited to the preinitiation complex as a testis-specific subunit of TFIIA/ALF that cooperates with Tbp and Taf7l to promote haploid cell gene expression.
Collapse
|
19
|
Wragg J, Müller F. Transcriptional Regulation During Zygotic Genome Activation in Zebrafish and Other Anamniote Embryos. ADVANCES IN GENETICS 2016; 95:161-94. [PMID: 27503357 DOI: 10.1016/bs.adgen.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryo development commences with the fusion of two terminally differentiated haploid gametes into the totipotent fertilized egg, which through a series of major cellular and molecular transitions generate a pluripotent cell mass. The activation of the zygotic genome occurs during the so-called maternal to zygotic transition and prepares the embryo for zygotic takeover from maternal factors, in the control of the development of cellular lineages during differentiation. Recent advances in next generation sequencing technologies have allowed the dissection of the genomic and epigenomic processes mediating this transition. These processes include reorganization of the chromatin structure to a transcriptionally permissive state, changes in composition and function of structural and regulatory DNA-binding proteins, and changeover of the transcriptome as it is overhauled from that deposited by the mother in the oocyte to a zygotically transcribed complement. Zygotic genome activation in zebrafish occurs 10 cell cycles after fertilization and provides an ideal experimental platform for elucidating the temporal sequence and dynamics of establishment of a transcriptionally active chromatin state and helps in identifying the determinants of transcription activation at polymerase II transcribed gene promoters. The relatively large number of pluripotent cells generated by the fast cell divisions before zygotic transcription provides sufficient biomass for next generation sequencing technology approaches to establish the temporal dynamics of events and suggest causative relationship between them. However, genomic and genetic technologies need to be improved further to capture the earliest events in development, where cell number is a limiting factor. These technologies need to be complemented with precise, inducible genetic interference studies using the latest genome editing tools to reveal the function of candidate determinants and to confirm the predictions made by classic embryological tools and genome-wide assays. In this review we summarize recent advances in the characterization of epigenetic regulation, transcription control, and gene promoter function during zygotic genome activation and how they fit with old models for the mechanisms of the maternal to zygotic transition. This review will focus on the zebrafish embryo but draw comparisons with other vertebrate model systems and refer to invertebrate models where informative.
Collapse
Affiliation(s)
- J Wragg
- University of Birmingham, Birmingham, United Kingdom
| | - F Müller
- University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Gazdag E, Jacobi UG, van Kruijsbergen I, Weeks DL, Veenstra GJC. Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors. Development 2016; 143:1340-50. [PMID: 26952988 PMCID: PMC4852510 DOI: 10.1242/dev.127936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Embryonic development relies on activating and repressing regulatory influences that are faithfully integrated at the core promoter of individual genes. In vertebrates, the basal machinery recognizing the core promoter includes TATA-binding protein (TBP) and two TBP-related factors. In Xenopus embryos, the three TBP family factors are all essential for development and are required for expression of distinct subsets of genes. Here, we report on a non-canonical TBP family-insensitive (TFI) mechanism of transcription initiation that involves mesoderm and organizer gene expression. Using TBP family single- and triple-knockdown experiments, α-amanitin treatment, transcriptome profiling and chromatin immunoprecipitation, we found that TFI gene expression cannot be explained by functional redundancy, is supported by active transcription and shows normal recruitment of the initiating form of RNA polymerase II to the promoter. Strikingly, recruitment of Gcn5 (also known as Kat2a), a co-activator that has been implicated in transcription initiation, to TFI gene promoters is increased upon depletion of TBP family factors. TFI genes are part of a densely connected TBP family-insensitive T-box-Otx2-Gsc interaction network. The results indicate that this network of genes bound by Vegt, Eomes, Otx2 and Gsc utilizes a novel, flexible and non-canonical mechanism of transcription that does not require TBP or TBP-related factors. Highlighted article: A network of embryonic genes, many of which are expressed in the mesoderm and the organiser, can initiate transcription through a non-canonical mechanism.
Collapse
Affiliation(s)
- Emese Gazdag
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ulrike G Jacobi
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
21
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
22
|
Abstract
Transcriptional regulation is pivotal for development and differentiation of organisms. Transcription of eukaryotic protein-coding genes by RNA polymerase II (Pol II) initiates at the core promoter. Core promoters, which encompass the transcription start site, may contain functional core promoter elements, such as the TATA box, initiator, TCT and downstream core promoter element. TRF2 (TATA-box-binding protein-related factor 2) does not bind TATA box-containing promoters. Rather, it is recruited to core promoters via sequences other than the TATA box. We review the recent findings implicating TRF2 as a basal transcription factor in the regulation of diverse biological processes and specialized transcriptional programs.
Collapse
Key Words
- BREd, downstream TFIIB recognition element
- BREu, upstream TFIIB recognition element
- ChIP, Chromatin immunoprecipitation
- DPE
- DPE, downstream core promoter element
- Inr, initiator
- MTE, motif ten element
- PIC, preinitiation complex
- Pol II, RNA polymerase II
- RNA Pol II transcription
- TAF, TBP-associated factor
- TBP, TATA-box binding protein
- TBP-related factors
- TCT
- TFIIA (transcription factor, RNA polymerase II A)
- TFIIB (transcription factor, RNA polymerase II B)
- TFIID (transcription factor, RNA polymerase II D)
- TRF, TATA-box-binding protein-related factor
- TRF2
- TSS, transcription start site
- core promoter elements/motifs
- embryonic development
- histone gene cluster
- ribosomal protein genes
- spermiogenesis
Collapse
Affiliation(s)
- Yonathan Zehavi
- a The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University , Ramat Gan , 5290002 , Israel
| | | | | | | |
Collapse
|
23
|
Lee MT, Bonneau AR, Giraldez AJ. Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 2014; 30:581-613. [PMID: 25150012 DOI: 10.1146/annurev-cellbio-100913-013027] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Embryogenesis depends on a highly coordinated cascade of genetically encoded events. In animals, maternal factors contributed by the egg cytoplasm initially control development, whereas the zygotic nuclear genome is quiescent. Subsequently, the genome is activated, embryonic gene products are mobilized, and maternal factors are cleared. This transfer of developmental control is called the maternal-to-zygotic transition (MZT). In this review, we discuss recent advances toward understanding the scope, timing, and mechanisms that underlie zygotic genome activation at the MZT in animals. We describe high-throughput techniques to measure the embryonic transcriptome and explore how regulation of the cell cycle, chromatin, and transcription factors together elicits specific patterns of embryonic gene expression. Finally, we illustrate the interplay between zygotic transcription and maternal clearance and show how these two activities combine to reprogram two terminally differentiated gametes into a totipotent embryo.
Collapse
Affiliation(s)
- Miler T Lee
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520; ,
| | | | | |
Collapse
|
24
|
Xie G, Yu Z, Jia D, Jiao R, Deng WM. E(y)1/TAF9 mediates the transcriptional output of Notch signaling in Drosophila. J Cell Sci 2014; 127:3830-9. [PMID: 25015288 DOI: 10.1242/jcs.154583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional activation of Notch signaling targets requires the formation of a ternary complex that involves the intracellular domain of the Notch receptor (NICD), DNA-binding protein Suppressor of Hairless [Su(H), RPBJ in mammals] and coactivator Mastermind (Mam). Here, we report that E(y)1/TAF9, a component of the transcription factor TFIID complex, interacts specifically with the NICD-Su(H)-Mam complex to facilitate the transcriptional output of Notch signaling. We identified E(y)1/TAF9 in a large-scale in vivo RNA interference (RNAi) screen for genes that are involved in a Notch-dependent mitotic-to-endocycle transition in Drosophila follicle cells. Knockdown of e(y)1/TAF9 displayed Notch-mutant-like phenotypes and defects in target gene and activity reporter expression in both the follicle cells and wing imaginal discs. Epistatic analyses in these two tissues indicated that E(y)1/TAF9 functions downstream of Notch cleavage. Biochemical studies in S2 cells demonstrated that E(y)1/TAF9 physically interacts with the transcriptional effectors of Notch signaling Su(H) and NICD. Taken together, our data suggest that the association of the NICD-Su(H)-Mastermind complex with E(y)1/TAF9 in response to Notch activation recruits the transcription initiation complex to induce Notch target genes, coupling Notch signaling with the transcription machinery.
Collapse
Affiliation(s)
- Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | - Dongyu Jia
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Renjie Jiao
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA
| |
Collapse
|
25
|
Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, Gehrig J, Dong X, Akalin A, Suzuki AM, van IJcken WFJ, Armant O, Ferg M, Strähle U, Carninci P, Müller F, Lenhard B. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 2014; 507:381-385. [PMID: 24531765 PMCID: PMC4820030 DOI: 10.1038/nature12974] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 12/23/2013] [Indexed: 12/17/2022]
Abstract
A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs1 and recruits general transcription factors to initiate transcription2. The nature and causative relationship of DNA sequence and chromatin signals that govern the selection of most TSS by RNA polymerase II remain unresolved. Maternal to zygotic transition (MZT) represents the most dramatic change of the transcriptome repertoire in vertebrate life cycle3-6. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the 10th cell cycle, marking the midblastula transition (MBT)7. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression (CAGE)8 and determined the positions of H3K4me3-marked promoter-associated nucleosomes9. We show that the transition from maternal to zygotic transcriptome is characterised by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveals their DNA sequence-associated positioning at promoters prior to zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of zygotic TSS. The two TSS-defining grammars coexist often in physical overlap in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.
Collapse
Affiliation(s)
- Vanja Haberle
- Department of Biology, University of Bergen, Thormøhlensgate 53A, N-5008 Bergen, Norway.,Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Nan Li
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yavor Hadzhiev
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Charles Plessy
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Christopher Previti
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Chirag Nepal
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Jochen Gehrig
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Xianjun Dong
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Altuna Akalin
- Computational Biology Unit, Uni Computing, Uni Research AS, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Ana Maria Suzuki
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Wilfred F J van IJcken
- Erasmus Medical Center, Center for Biomics, Room Ee679b, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Piero Carninci
- RIKEN Omics Science Center, Yokohama, Kanagawa, 230-0045 Japan (ceased to exist on 01 April 2013 due to RIKEN reorganisation).,RIKEN Center for Life Science Technologies, Division of Genomic Technologies, RIKEN Yokohama Campus, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ferenc Müller
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Boris Lenhard
- Institute of Clinical Sciences and MRC Clinical Sciences Center, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.,Department of Informatics, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| |
Collapse
|
26
|
Oyama T, Sasagawa S, Takeda S, Hess RA, Lieberman PM, Cheng EH, Hsieh JJ. Cleavage of TFIIA by Taspase1 activates TRF2-specified mammalian male germ cell programs. Dev Cell 2014; 27:188-200. [PMID: 24176642 DOI: 10.1016/j.devcel.2013.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 08/12/2013] [Accepted: 09/26/2013] [Indexed: 01/25/2023]
Abstract
The evolution of tissue-specific general transcription factors (GTFs), such as testis-specific TBP-related factor 2 (TRF2), enables the spatiotemporal expression of highly specialized genetic programs. Taspase1 is a protease that cleaves nuclear factors MLL1, MLL2, TFIIAα-β, and ALFα-β (TFIIAτ). Here, we demonstrate that Taspase1-mediated processing of TFIIAα-β drives mammalian spermatogenesis. Both Taspase1(-/-) and noncleavable TFIIAα-βnc/nc testes release immature germ cells with impaired transcription of Transition proteins (Tnp) and Protamines (Prm), exhibiting chromatin compaction defects and recapitulating those observed with TRF2(-/-) testes. Although the unprocessed TFIIA still complexes with TRF2, this complex is impaired in targeting and thus activating Tnp1 and Prm1 promoters. The current study presents a paradigm in which a protease (Taspase1) cleaves a ubiquitously expressed GTF (TFIIA) to enable tissue-specific (testis) transcription, meeting the demand for sophisticated regulation of distinct subsets of genes in higher organisms.
Collapse
Affiliation(s)
- Toshinao Oyama
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Satoru Sasagawa
- Department of Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | - Shugaku Takeda
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rex A Hess
- Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - James J Hsieh
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
27
|
Geiger BM, Gras-Miralles B, Ziogas DC, Karagiannis AKA, Zhen A, Fraenkel P, Kokkotou E. Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish. PLoS One 2013; 8:e83194. [PMID: 24376661 PMCID: PMC3869761 DOI: 10.1371/journal.pone.0083194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background Melanin-concentrating hormone (MCH), an evolutionarily conserved appetite-regulating neuropeptide, has been recently implicated in the pathogenesis of inflammatory bowel disease (IBD). Expression of MCH is upregulated in inflamed intestinal mucosa in humans with colitis and MCH-deficient mice treated with trinitrobenzene-sulfonic acid (TNBS) develop an attenuated form of colitis compared to wild type animals. Zebrafish have emerged as a new animal model of IBD, although the majority of the reported studies concern zebrafish larvae. Regulation MCH expression in the adult zebrafish intestine remains unknown. Methods In the present study we induced enterocolitis in adult zebrafish by intrarectal administration of TNBS. Follow-up included survival analysis, histological assessment of changes in intestinal architecture, and assessment of intestinal infiltration by myeloperoxidase positive cells and cytokine transcript levels. Results Treatment with TNBS dose-dependently reduced fish survival. This response required the presence of an intact microbiome, since fish pre-treated with vancomycin developed less severe enterocolitis. At 6 hours post-challenge, we detected a significant influx of myeloperoxidase positive cells in the intestine and upregulation of both proinflammatory and anti-inflammatory cytokines. Most importantly, and in analogy to human IBD and TNBS-induced mouse experimental colitis, we found increased intestinal expression of MCH and its receptor in TNBS-treated zebrafish. Conclusions Taken together these findings not only establish a model of chemically-induced experimental enterocolitis in adult zebrafish, but point to effects of MCH in intestinal inflammation that are conserved across species.
Collapse
Affiliation(s)
- Brenda M Geiger
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Gras-Miralles
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dimitrios C Ziogas
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apostolos K A Karagiannis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aileen Zhen
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula Fraenkel
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Decker KB, Hinton DM. Transcription Regulation at the Core: Similarities Among Bacterial, Archaeal, and Eukaryotic RNA Polymerases. Annu Rev Microbiol 2013; 67:113-39. [DOI: 10.1146/annurev-micro-092412-155756] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly B. Decker
- Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
29
|
Sun SC, Wang XG, Ma XS, Huang XJ, Li J, Liu HL. TBP dynamics during mouse oocyte meiotic maturation and early embryo development. PLoS One 2013; 8:e55425. [PMID: 23383188 PMCID: PMC3561223 DOI: 10.1371/journal.pone.0055425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/22/2012] [Indexed: 11/18/2022] Open
Abstract
To maintain cell lineage, cells develop a mechanism which can transmit the gene activity information to the daughter cells. In mitosis, TBP (TATA-binding protein), a transcription factor which belongs to TFIID was associated with M phase chromosomes and was proved to be a bookmark for cellular memory. Although previous work showed that TBP was dispensable for mouse oocyte maturation and early embryo development, exogenous TBP protein was detected in the nuclear of oocytes and early embryos. It is still unknown whether exogenous TBP can associate with condensed chromosomes during meiosis and mouse early embryo development. In present study by the injection of GFP-tagged TBP mRNA we for the first time investigated TBP dynamics in mouse early embryos and confirmed its localization pattern in oocytes. The exogenous TBP enriched at germinal vesicle at GV stage but disappeared from the chromosomes after GVBD. Moreover, exogenous TBP was still dispersed from the chromosomes of somatic donor nuclear in oocytes by nuclear transfer (NT), further proving that oocyte has some mechanism to remove TBP. During mouse embryo development, the exogenous TBP was removed from the chromosomes of M phase zygotes, but was found to express weakly at the M phase of 2-cell. Moreover, in the blastocyst TBP was also detected at the M phase chromosomes. Overexpression of TBP caused the failure of oocyte maturation and embryo development. Our results supported the idea that TBP might be a marker for transmitting cellular memory to daughter cells.
Collapse
Affiliation(s)
- Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xu-Guang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xue-Shan Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xian-Ju Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
30
|
Kleppe L, Edvardsen RB, Kuhl H, Malde K, Furmanek T, Drivenes Ø, Reinhardt R, Taranger GL, Wargelius A. Maternal 3'UTRs: from egg to onset of zygotic transcription in Atlantic cod. BMC Genomics 2012; 13:443. [PMID: 22937762 PMCID: PMC3462720 DOI: 10.1186/1471-2164-13-443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Zygotic transcription in fish embryos initiates around the time of gastrulation, and all prior development is initiated and controlled by maternally derived messenger RNAs. Atlantic cod egg and embryo viability is variable, and it is hypothesized that the early development depends upon the feature of these maternal RNAs. Both the length and the presence of specific motifs in the 3'UTR of maternal RNAs are believed to regulate expression and stability of the maternal transcripts. Therefore, the aim of this study was to characterize the overall composition and 3'UTR structure of the most common maternal RNAs found in cod eggs and pre-zygotic embryos. RESULTS 22229 Sanger-sequences were obtained from 3'-end sequenced cDNA libraries prepared from oocyte, 1-2 cell, blastula and gastrula stages. Quantitative PCR revealed that EST copy number below 9 did not reflect the gene expression profile. Consequently genes represented by less than 9 ESTs were excluded from downstream analyses, in addition to sequences with low-quality gene hits. This provided 12764 EST sequences, encoding 257 unique genes, for further analysis. Mitochondrial transcripts accounted for 45.9-50.6% of the transcripts isolated from the maternal stages, but only 12.2% of those present at the onset of zygotic transcription. 3'UTR length was predicted in nuclear sequences with poly-A tail, which identified 191 3'UTRs. Their characteristics indicated a more complex regulation of transcripts that are abundant prior to the onset of zygotic transcription. Maternal and stable transcripts had longer 3'UTR (mean 187.1 and 208.8 bp) and more 3'UTR isoforms (45.7 and 34.6%) compared to zygotic transcripts, where 15.4% had 3'UTR isoforms and the mean 3'UTR length was 76 bp. Also, diversity and the amount of putative polyadenylation motifs were higher in both maternal and stable transcripts. CONCLUSIONS We report on the most pronounced processes in the maternally transferred cod transcriptome. Maternal stages are characterized by a rich abundance of mitochondrial transcripts. Maternal and stable transcripts display longer 3'UTRs with more variation of both polyadenylation motifs and 3'UTR isoforms. These data suggest that cod eggs possess a complex array of maternal RNAs which likely act to tightly regulate early developmental processes in the newly fertilized egg.
Collapse
Affiliation(s)
- Lene Kleppe
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Heiner Kuhl
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195, Berlin-Dahlem, Germany
| | - Ketil Malde
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Øyvind Drivenes
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Richard Reinhardt
- Max-Planck Genome centre, MPI fuer Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-80829, Koeln, Germany
| | - Geir L Taranger
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| | - Anna Wargelius
- Institute of Marine Research, P. O. Box 1870, Nordnesgaten 50, 5817, Bergen, Norway
| |
Collapse
|
31
|
White-Cooper H, Davidson I. Unique aspects of transcription regulation in male germ cells. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a002626. [PMID: 21555408 DOI: 10.1101/cshperspect.a002626] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spermatogenesis is a complex and ordered differentiation process in which the spermatogonial stem cell population gives rise to primary spermatocytes that undergo two successive meiotic divisions followed by a major biochemical and structural reorganization of the haploid cells to generate mature elongate spermatids. The transcriptional regulatory programs that orchestrate this process have been intensively studied in model organisms such as Drosophila melanogaster and mouse. Genetic and biochemical approaches have identified the factors involved and revealed mechanisms of action that are unique to male germ cells. In a well-studied example, cofactors and pathways distinct from those used in somatic tissues mediate the action of CREM in male germ cells. But perhaps the most striking feature concerns the paralogs of somatically expressed transcription factors and of components of the general transcription machinery that act in distinct regulatory mechanisms in both Drosophila and murine spermatogenesis.
Collapse
Affiliation(s)
- Helen White-Cooper
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | | |
Collapse
|
32
|
Akhtar W, Veenstra GJC. TBP-related factors: a paradigm of diversity in transcription initiation. Cell Biosci 2011; 1:23. [PMID: 21711503 PMCID: PMC3142196 DOI: 10.1186/2045-3701-1-23] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/27/2011] [Indexed: 01/24/2023] Open
Abstract
TATA binding protein (TBP) is a key component of the eukaryotic transcription initiation machinery. It functions in several complexes involved in core promoter recognition and assembly of the pre-initiation complex. Through gene duplication eukaryotes have expanded their repertoire of TATA binding proteins, leading to a variable composition of the transcription machinery. In vertebrates this repertoire consists of TBP, TBP-like factor (TLF, also known as TBPL1, TRF2) and TBP2 (also known as TBPL2, TRF3). All three factors are essential, with TLF and TBP2 playing important roles in development and differentiation, in particular gametogenesis and early embryonic development, whereas TBP dominates somatic cell transcription. TBP-related factors may compete for promoters when co-expressed, but also show preferential interactions with subsets of promoters. Initiation factor switching occurs on account of differential expression of these proteins in gametes, embryos and somatic cells. Paralogs of TFIIA and TAF subunits account for additional variation in the transcription initiation complex. This variation in core promoter recognition accommodates the expanded regulatory capacity and specificity required for germ cells and embryonic development in higher eukaryotes.
Collapse
Affiliation(s)
- Waseem Akhtar
- Radboud University Nijmegen, Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands.
| | | |
Collapse
|
33
|
Novel core promoter elements and a cognate transcription factor in the divergent unicellular eukaryote Trichomonas vaginalis. Mol Cell Biol 2011; 31:1444-58. [PMID: 21245378 DOI: 10.1128/mcb.00745-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly conserved DNA initiator (Inr) element has been the only core promoter element described in the divergent unicellular eukaryote Trichomonas vaginalis, although genome analyses reveal that only ∼75% of protein-coding genes appear to contain an Inr. In search of another core promoter element(s), a nonredundant database containing 5' untranslated regions of expressed T. vaginalis genes was searched for overrepresented DNA motifs and known eukaryotic core promoter elements. In addition to identifying the Inr, two elements that lack sequence similarity to the known protein-coding gene core promoter, motif 3 (M3) and motif 5 (M5), were identified. Mutational and functional analyses demonstrate that both are novel core promoter elements. M3 [(A/G/T)(A/G)C(G/C)G(T/C)T(T/A/G)] resembles a Myb recognition element (MRE) and is bound specifically by a unique protein with a Myb-like DNA binding domain. The M5 element (CCTTT) overlaps the transcription start site and replaces the Inr as an alternative, gene-specific initiator element. Transcription specifically initiates at the second cytosine within M5, in contrast to characteristic initiation by RNA polymerase II at an adenosine. In promoters that combine M3 with either M5 or Inr, transcription initiation is regulated by the M3 motif.
Collapse
|
34
|
Müller F, Zaucker A, Tora L. Developmental regulation of transcription initiation: more than just changing the actors. Curr Opin Genet Dev 2010; 20:533-40. [PMID: 20598874 DOI: 10.1016/j.gde.2010.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/26/2010] [Accepted: 06/02/2010] [Indexed: 11/29/2022]
Abstract
The traditional model of transcription initiation nucleated by the TFIID complex has suffered significant erosion in the last decade. The discovery of cell-specific paralogs of TFIID subunits and a variety of complexes that replace TFIID in transcription initiation of protein coding genes have been paralleled by the description of diverse core promoter sequences. These observations suggest an additional level of regulation of developmental and tissue-specific gene expression at the core promoter level. Recent work suggests that this regulation may function through specific roles of distinct TBP-type factors and TBP-associated factors (TAFs), however the picture emerging is still far from complete. Here we summarize the proposed models of transcription initiation by alternative initiation complexes in distinct stages of developmental specialization during vertebrate ontogeny.
Collapse
Affiliation(s)
- Ferenc Müller
- Department of Medical and Molecular Genetics, Division of Reproductive and Child Health, Institute of Biomedical Research, University of Birmingham, B15 2TT Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
35
|
Goodrich JA, Tjian R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat Rev Genet 2010; 11:549-58. [PMID: 20628347 PMCID: PMC2965628 DOI: 10.1038/nrg2847] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The eukaryotic core promoter recognition complex was generally thought to play an essential but passive role in the regulation of gene expression. However, recent evidence now indicates that core promoter recognition complexes together with 'non-prototypical' subunits may have a vital regulatory function in driving cell-specific programmes of transcription during development. Furthermore, new roles for components of these complexes have been identified beyond development; for example, in mediating interactions with chromatin and in maintaining active gene expression across cell divisions.
Collapse
Affiliation(s)
- James A. Goodrich
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Juven-Gershon T, Kadonaga JT. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 2010; 339:225-9. [PMID: 19682982 PMCID: PMC2830304 DOI: 10.1016/j.ydbio.2009.08.009] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 08/04/2009] [Indexed: 01/16/2023]
Abstract
The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional regulatory element. There are two main strategies for transcription initiation - focused and dispersed initiation. In focused initiation, transcription starts from a single nucleotide or within a cluster of several nucleotides, whereas in dispersed initiation, there are several weak transcription start sites over a broad region of about 50 to 100 nucleotides. Focused initiation is the predominant means of transcription in simpler organisms, whereas dispersed initiation is observed in approximately two-thirds of vertebrate genes. Regulated genes tend to have focused promoters, and constitutive genes typically have dispersed promoters. Hence, in vertebrates, focused promoters are used in a small but biologically important fraction of genes. The properties of focused core promoters are dependent upon the presence or absence of sequence motifs such as the TATA box and DPE. For example, Caudal, a key regulator of the homeotic gene network, preferentially activates transcription from DPE- versus TATA-dependent promoters. The basal transcription factors, which act in conjunction with the core promoter, are another important component in the regulation of gene expression. For instance, upon differentiation of myoblasts to myotubes, the cells undergo a switch from a TFIID-based transcription system to a TRF3-TAF3-based system. These findings suggest that the core promoter and basal transcription factors are important yet mostly unexplored components in the regulation of gene expression.
Collapse
Affiliation(s)
- Tamar Juven-Gershon
- Section of Molecular Biology, 0347, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | - James T. Kadonaga
- Section of Molecular Biology, 0347, University of California, San Diego, La Jolla, CA 92093-0347, USA
| |
Collapse
|
37
|
Castañon-Sanchez CA, Luna-Arias JP, de Dios-Bravo MG, Herrera-Aguirre ME, Olivares-Trejo JJ, Orozco E, Hernandez JM. Entamoeba histolytica: A unicellular organism containing two active genes encoding for members of the TBP family. Protein Expr Purif 2010; 70:48-59. [DOI: 10.1016/j.pep.2009.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/06/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022]
|
38
|
Abstract
Animal growth and development depend on the precise control of gene expression at the level of transcription. A central role in the regulation of developmental transcription is attributed to transcription factors that bind DNA enhancer elements, which are often located far from gene transcription start sites. Here, we review recent studies that have uncovered significant regulatory functions in developmental transcription for the TFIID basal transcription factors and for the DNA core promoter elements that are located close to transcription start sites.
Collapse
Affiliation(s)
- Uwe Ohler
- Institute for Genome Sciences & Policy, Departments of Biostatistics & Bioinformatics and Computer Science, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
39
|
Hart DO, Santra MK, Raha T, Green MR. Selective interaction between Trf3 and Taf3 required for early development and hematopoiesis. Dev Dyn 2010; 238:2540-9. [PMID: 19777587 PMCID: PMC2861292 DOI: 10.1002/dvdy.22083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In zebrafish, TATA-box-binding protein (TBP)-related factor 3, Trf3, is required for early development and initiation of hematopoiesis, and functions by promoting expression of a single target gene, mespa. Recent studies have shown that in murine muscle cells, TRF3 interacts with the TBP-associated factor TAF3. Here we investigate the role of Taf3 in zebrafish embryogenesis. We find that like Trf3-depleted zebrafish embryos, Taf3-depleted embryos exhibit multiple developmental defects and fail to undergo hematopoiesis. Both Trf3 and Taf3 are selectively bound to the mespa promoter and are required for mespa expression. Significantly, Taf3 interacts with Trf3 but not Tbp, and a Trf3 mutant that disrupts this interaction fails to support mespa transcription, early development, and hematopoiesis. Thus, a selective interaction between Trf3 and Taf3 is required for early zebrafish development and initiation of hematopoiesis. Finally, we provide evidence that TRF3 and TAF3 are also required for hematopoiesis initiation in the mouse.
Collapse
Affiliation(s)
- Daniel O Hart
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
40
|
D'Alessio JA, Wright KJ, Tjian R. Shifting players and paradigms in cell-specific transcription. Mol Cell 2009; 36:924-31. [PMID: 20064459 PMCID: PMC2807468 DOI: 10.1016/j.molcel.2009.12.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/08/2009] [Indexed: 01/28/2023]
Abstract
Historically, developmental-stage- and tissue-specific patterns of gene expression were assumed to be determined primarily by DNA regulatory sequences and their associated activators, while the general transcription machinery including core promoter recognition complexes, coactivators, and chromatin modifiers was held to be invariant. New evidence suggests that significant changes in these general transcription factors including TFIID, BAF, and Mediator may facilitate global changes in cell-type-specific transcription.
Collapse
Affiliation(s)
- Joseph A D'Alessio
- Howard Hughes Medical Institute, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
41
|
Abstract
The complexity of the core promoter transcription machinery has emerged as an additional level of transcription regulation that is used during vertebrate development. Recent studies, including one published in BMC Biology, provide mechanistic insights into how the TATA binding protein (TBP) and its vertebrate-specific paralog TBP2 (TRF3) switch function during the transition from the oocyte to the embryo. See research article http://www.biomedcentral.com/1741-7007/7/45
Collapse
Affiliation(s)
- Ferenc Müller
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | | |
Collapse
|
42
|
Gazdag E, Santenard A, Ziegler-Birling C, Altobelli G, Poch O, Tora L, Torres-Padilla ME. TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte. Genes Dev 2009; 23:2210-23. [PMID: 19759265 PMCID: PMC2751983 DOI: 10.1101/gad.535209] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 07/27/2009] [Indexed: 02/05/2023]
Abstract
Development of the germline requires consecutive differentiation events. Regulation of these has been associated with germ cell-specific and pluripotency-associated transcription factors, but the role of general transcription factors (GTFs) remains elusive. TATA-binding protein (TBP) is a GTF involved in transcription by all RNA polymerases. During ovarian folliculogenesis in mice the vertebrate-specific member of the TBP family, TBP2/TRF3, is expressed exclusively in oocytes. To determine TBP2 function in vivo, we generated TBP2-deficient mice. We found that Tbp2(-/-) mice are viable with no apparent phenotype. However, females lacking TBP2 are sterile due to defective folliculogenesis, altered chromatin organization, and transcriptional misregulation of key oocyte-specific genes. TBP2 binds to promoters of misregulated genes, suggesting that TBP2 directly regulates their expression. In contrast, TBP ablation in the female germline results in normal ovulation and fertilization, indicating that in these cells TBP is dispensable. We demonstrate that TBP2 is essential for the differentiation of female germ cells, and show the mutually exclusive functions of these key core promoter-binding factors, TBP and TBP2, in the mouse.
Collapse
Affiliation(s)
- Emese Gazdag
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Angèle Santenard
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
- Department of Developmental and Cell Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Céline Ziegler-Birling
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
- Department of Developmental and Cell Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Gioia Altobelli
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
- Bioinformatics and Integrative Biology Laboratory, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Olivier Poch
- Bioinformatics and Integrative Biology Laboratory, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Làszlò Tora
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | - Maria-Elena Torres-Padilla
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
- Department of Developmental and Cell Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 CNRS, UdS, INSERM U964, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| |
Collapse
|
43
|
Akhtar W, Veenstra GJC. TBP2 is a substitute for TBP in Xenopus oocyte transcription. BMC Biol 2009; 7:45. [PMID: 19650908 PMCID: PMC2731028 DOI: 10.1186/1741-7007-7-45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/03/2009] [Indexed: 11/14/2022] Open
Abstract
Background TATA-box-binding protein 2 (TBP2/TRF3) is a vertebrate-specific paralog of TBP that shares with TBP a highly conserved carboxy-terminal domain and the ability to bind the TATA box. TBP2 is highly expressed in oocytes whereas TBP is more abundant in embryos. Results We find that TBP2 is proteolytically degraded upon meiotic maturation; after germinal vesicle breakdown relatively low levels of TBP2 expression persist. Furthermore, TBP2 localizes to the transcriptionally active loops of lampbrush chromosomes and is recruited to a number of injected promoters in oocyte nuclei. Using an altered binding specificity mutant reporter system we show that TBP2 promotes RNA polymerase II transcription in vivo. Intriguingly, TBP, which in oocytes is undetectable at the protein level, can functionally replace TBP2 when ectopically expressed in oocytes, showing that switching of initiation factors can be driven by changes in their expression. Proteolytic degradation of TBP2 is not required for repression of transcription during meiotic maturation, suggesting a redundant role in this repression or a role in initiation factor switching between oocytes and embryos. Conclusion The expression and transcriptional activity of TBP2 in oocytes show that TBP2 is the predominant initiation factor in oocytes, which is substituted by TBP on a subset of promoters in embryos as a result of proteolytic degradation of TBP2 during meiotic maturation.
Collapse
Affiliation(s)
- Waseem Akhtar
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands.
| | | |
Collapse
|
44
|
Di Pietro C, Vento M, Ragusa M, Barbagallo D, Guglielmino MR, Maniscalchi T, Duro LR, Tomasello L, Majorana A, De Palma A, Borzì P, Scollo P, Purrello M. Expression analysis of TFIID in single human oocytes: new potential molecular markers of oocyte quality. Reprod Biomed Online 2008; 17:338-49. [PMID: 18765004 DOI: 10.1016/s1472-6483(10)60217-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Molecular characterization of human female gametes should make it easier to understand the basis of certain infertility disorders. Biologically significant mRNAs have been analysed in single oocytes to search for molecular biomarkers of oocyte quality. Initial analysis was focused on mRNA for proteins involved in cell growth and cycle control, specifically those encoding members of the general transcription apparatus such as the subunits of the general transcription factor TFIID. This heteromultimeric protein, comprising about 15 subunits, is the most important general transcription factor of the second class. These proteins are essential for the initiation of transcription of protein-coding genes, so they must be present in mature oocytes for mRNA synthesis during the first phases of embryonic development. Semi-quantitative reverse transcriptionpolymerase chain reaction was used to identify different TFIID subunits in single oocytes and to search for differences in expression as compared with control tissues. The data show that the mRNAs for most TFIID subunits are indeed synthesized in oocytes, but their expression profiles differ markedly. TATAbox-binding protein associated factor 4B (TAF4B), TAF5 and TATAbox-binding protein-like 2 (TBPL2) are expressed at higher levels in oocytes than in control tissues. It is suggested that they could be used as biomarkers of oocyte quality.
Collapse
Affiliation(s)
- C Di Pietro
- Dipartimento di Scienze Biomediche, Sezione di Biologia Generale, Biologia Cellulare, Genetica molecolare, Unità di Biologia Genomica e dei Sistemi Complessi, Genetica, Bioinformatica, Università di Catania, 95123 Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Deato MDE, Marr MT, Sottero T, Inouye C, Hu P, Tjian R. MyoD targets TAF3/TRF3 to activate myogenin transcription. Mol Cell 2008; 32:96-105. [PMID: 18851836 PMCID: PMC2629732 DOI: 10.1016/j.molcel.2008.09.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/29/2008] [Accepted: 09/19/2008] [Indexed: 01/02/2023]
Abstract
Skeletal muscle differentiation requires a cascade of transcriptional events to control the spatial and temporal expression of muscle-specific genes. Until recently, muscle-specific transcription was primarily attributed to prototypic enhancer-binding factors, while the role of core promoter recognition complexes in directing myogenesis remained unknown. Here, we report the development of a purified reconstituted system to analyze the properties of a TAF3/TRF3 complex in directing transcription initiation at the Myogenin promoter. Importantly, this new complex is required to replace the canonical TFIID to recapitulate MyoD-dependent activation of Myogenin. In vitro and cell-based assays identify a domain of TAF3 that mediates coactivator functions targeted by MyoD. Our findings also suggest changes to CRSP/Mediator in terminally differentiated myotubes. This switching of the core promoter recognition complex during myogenesis allows a more balanced division of labor between activators and TAF coactivators, thus providing another strategy to accommodate cell-specific regulation during metazoan development.
Collapse
Affiliation(s)
- Maria Divina E. Deato
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael T. Marr
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology MS 029, Brandeis University, Waltham MA 02454, USA
| | - Theo Sottero
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carla Inouye
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ping Hu
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
46
|
|
47
|
Dominant and Redundant Functions of TFIID Involved in the Regulation of Hepatic Genes. Mol Cell 2008; 31:531-543. [DOI: 10.1016/j.molcel.2008.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 04/18/2008] [Accepted: 07/25/2008] [Indexed: 12/17/2022]
|
48
|
López-Maury L, Marguerat S, Bähler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 2008; 9:583-93. [PMID: 18591982 DOI: 10.1038/nrg2398] [Citation(s) in RCA: 681] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Organisms are constantly exposed to a wide range of environmental changes, including both short-term changes during their lifetime and longer-term changes across generations. Stress-related gene expression programmes, characterized by distinct transcriptional mechanisms and high levels of noise in their expression patterns, need to be balanced with growth-related gene expression programmes. A range of recent studies give fascinating insight into cellular strategies for keeping gene expression in tune with physiological needs dictated by the environment, promoting adaptation to both short- and long-term environmental changes. Not only do organisms show great resilience to external challenges, but emerging data suggest that they also exploit these challenges to fuel phenotypic variation and evolutionary innovation.
Collapse
Affiliation(s)
- Luis López-Maury
- Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
49
|
Abstract
The zebrafish had landed in Singapore as an ornamental fish long before it became a fashionable model of scientific research. By the early 1990s, however, it became a part of the local scientific landscape. During the past decade the number of groups using zebrafish as a research model increased dramatically. In June 2004, the Institute of Molecular and Cell Biology (IMCB) launched its zebrafish facility at the newly established center of biomedical research in Singapore, Biopolis. This review describes how this tiny fish became an important research model in Singapore and what problems were overcome to establish high density cultures of this species in local conditions. Finally, it will highlight the research interests of scientists of the local zebrafish community.
Collapse
Affiliation(s)
- May-Su You
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | | |
Collapse
|
50
|
Torres-Padilla ME, Tora L. TBP homologues in embryo transcription: who does what? EMBO Rep 2008; 8:1016-8. [PMID: 17972900 DOI: 10.1038/sj.embor.7401093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/17/2007] [Indexed: 11/09/2022] Open
Affiliation(s)
- Maria Elena Torres-Padilla
- Maria Elena Torres-Padilla & Làszlò Tora are at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 10142, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | | |
Collapse
|