1
|
Shen J, Jiang Y, Bu W, Yu M, Huang R, Tang C, Yang Z, Gao H, Su L, Cheng D, Zhao X. Protein Ubiquitination Modification in Pulmonary Fibrosis. Compr Physiol 2025; 15:e70013. [PMID: 40312137 DOI: 10.1002/cph4.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive fibrotic interstitial lung disease characterized by a high incidence and mortality rate, which encompasses features, such as diffuse alveolar inflammation, invasive fibroblast activation, and uncontrolled extracellular matrix (ECM) deposition. Beyond the local pathological processes, PF can be better understood in light of interorgan communication networks that are involved in its progression. Notably, pulmonary inflammation can affect cardiovascular, renal, hepatic, and neural functions, highlighting the importance of understanding these systemic interactions. Posttranslational modifications play a crucial role in regulating protein function, localization, stability, and activity. Specifically, protein ubiquitination modifications are involved in PF induced by various stimuli, involving a range of ubiquitin-modifying enzymes and substrates. In this review, we provide an overview of how E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) modulate PF through several signaling pathways, such as TGF-β, Wnt, metabolic activity, aging, ferroptosis, endoplasmic reticulum stress, and inflammatory responses. This perspective includes the role of ubiquitin-proteasome systems in interorgan communication, affecting the progression of PF and related systemic conditions. Additionally, we also summarize the currently available therapeutic compounds targeting protein ubiquitination-related enzymes or ubiquitination substrates for the treatment of PF. Understanding the interplay between ubiquitination and interorgan communication may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jinping Shen
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Mengjiao Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong, China
| | - Can Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Zeyun Yang
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Haiping Gao
- Nantong Center for Disease Control and Prevention, Nantong, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Demin Cheng
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
2
|
Zhang Z, Shen Z, Xie S, Li J, Zhang Z, Zhang S, Peng B, Huang Q, Li M, Ma S, Huang Q. Rapamycin exerts neuroprotective effects by inhibiting FKBP12 instead of mTORC1 in the mouse model of Parkinson's disease. Neuropharmacology 2025; 275:110504. [PMID: 40345576 DOI: 10.1016/j.neuropharm.2025.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Parkinson's disease (PD), characterized by the selective loss of nigral dopaminergic neurons, is a common neurodegenerative disorder for which effective disease-modifying therapies remain unavailable. Rapamycin, a clinical immunosuppressant used for decades, has demonstrated neuroprotective effects in various animal models of neurological diseases, including PD. These effects are believed to be mediated through the inhibition of mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling, with rapamycin binding to FKBP12. However, recent studies have suggested that mTOR activation can be neuroprotective in degenerating dopaminergic neurons, presenting a paradox to the neuroprotective mechanism of rapamycin via mTORC1 inhibition. In this study, we showed that mTORC1 signaling was inactivated in nigral dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Notably, the optimal neuroprotective dose of rapamycin did not inhibit mTORC1 signaling nor restore autophagy defects in nigral dopaminergic neurons of MPTP-treated male C57BL/6 mice. Furthermore, acute Raptor knockout in dopaminergic neurons, which abolishes mTORC1 activity, did not diminish rapamycin's neuroprotective effects, suggesting that its protection is independent of mTORC1 inhibition. Importantly, rapamycin is also a potent inhibitor of FKBP12, a peptidyl-prolyl cis-trans isomerase highly expressed in the brain. Selective knockdown of FKBP12 in nigral dopaminergic neurons confers neuroprotective effects comparable to that of rapamycin, with no synergism observed when the two are combined. Collectively, our results indicate that rapamycin exerts neuroprotective effects in parkinsonian mice through inhibition of FKBP12 rather than mTORC1 signaling. These findings suggest that FKBP12 may serve as a novel target for disease-modifying therapies in PD.
Collapse
Affiliation(s)
- Zeyan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ziyue Shen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shiming Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bo Peng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, 200032, China
| | - Qianchu Huang
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Niu P, Li D, Chen H, Zhu Y, Zhou J, Zhang J, Liu Y. Cardamonin suppresses mTORC1/SREBP1 through reducing Raptor and inhibits de novo lipogenesis in ovarian cancer. PLoS One 2025; 20:e0322733. [PMID: 40315213 PMCID: PMC12047825 DOI: 10.1371/journal.pone.0322733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2025] [Indexed: 05/04/2025] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and de novo lipogenesis (DNL) accelerates the progression of ovarian cancer. In this study, we investigated the effects of cardamonin, a natural compound potential to suppress various malignancies, on the lipid anabolism in ovarian cancer. Cell proliferation was assessed using CCK-8 and clone formation assay. Cell apoptosis was detected by flow cytometry with Annexin V-FITC/PI staining and mitochondrial membrane potential (MMP) was measured with JC-10 probe. Free fatty acids (FFA) was measured by fluorescence using acyl-CoA oxidation and carnitine palmitoyl transferase-1 (CPT-1) activity was analyzed by spectrophotometric assay using palmitoyl-CoA and DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) reaction. mRNA expression was measured by Quantitative Real-Time PCR. Protein expression was analyzed through western blotting and immunofluorescence. Raptor was knocked down by shRNA and Raptor was overexpressed by lentiviral transfection. The antitumor effect of cardamonin was evaluated using a xenotransplantation tumor bearing mouse model. Cardamonin suppressed the cell proliferation, induced cell apoptosis and triggered mitochondrial damage in ovarian cancer cells. Cardamonin inhibited the protein expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream lipogenic enzymes and decreased FFA content and CPT-1 activity. Additionally, cardamonin inhibited the activation of mechanistic target of rapamycin complex 1 (mTORC1) and expression of regulatory-associated protein of mTOR (Raptor). Raptor knockdown abolished the inhibitory effect of cardamonin on mTORC1 and SREBP1. Furthermore, cardamonin inhibited mTORC1 activation and lipogenic proteins expression induced by Raptor overexpression. Cardamonin reduced the tumor growth and fatty acid synthase of the tumors, as evidenced by decreased expression of Ki-67 and FASN. It suggests that cardamonin suppresses mTORC1/SREBP1 through reducing the protein level of Raptor and inhibits DNL of ovarian cancer.
Collapse
Affiliation(s)
- Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research [Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital)], Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Danyun Li
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research [Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital)], Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Liu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Backlund AE, Bain B, Kite K, Babbitt C, Long LJ, Leatherman J, Schwartz B, Rele CP, Reed LK. Gene model for the ortholog of rictor in Drosophila ananassae. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.000982. [PMID: 40321833 PMCID: PMC12046423 DOI: 10.17912/micropub.biology.000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/16/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025]
Abstract
Gene model for the ortholog of rapamycin-insensitive companion of Tor ( rictor ) in the May 2011 (Agencourt dana_caf1/DanaCAF1) Genome Assembly (GenBank Accession: GCA_000005115.1 ) of Drosophila ananassae . This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus Drosophila using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.
Collapse
Affiliation(s)
| | | | - Kayton Kite
- Oklahoma Christian University, Edmond, OK USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Feliciano DM, Bordey A. TSC-mTORC1 Pathway in Postnatal V-SVZ Neurodevelopment. Biomolecules 2025; 15:573. [PMID: 40305300 PMCID: PMC12024678 DOI: 10.3390/biom15040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
In restricted regions of the rodent brain, neurogenesis persists throughout life, hinting that perhaps similar phenomena may exist in humans. Neural stem cells (NSCs) that reside within the ventricular-subventricular zone (V-SVZ) continually produce functional cells, including neurons that integrate into the olfactory bulb circuitry. The ability to achieve this feat is based on genetically encoded transcriptional programs that are controlled by environmentally regulated post-transcriptional signaling pathways. One such pathway that molds V-SVZ neurogenesis is the mTOR pathway. This pathway integrates nutrient sufficiency with growth factor signaling to control distinct steps of neurogenesis. Alterations in mTOR pathway signaling occur in numerous neurodevelopmental disorders. Here, we provide a narrative review for the role of the mTOR pathway in this process and discuss the use of this region to study the mTOR pathway in both health and disease.
Collapse
Affiliation(s)
- David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06520-8082, USA;
| |
Collapse
|
6
|
Khayatan D, Razavi SM, Arab ZN, Nasoori H, Fouladi A, Pasha AVK, Butler AE, Karav S, Momtaz S, Abdolghaffari AH, Sahebkar A. Targeting mTOR with curcumin: therapeutic implications for complex diseases. Inflammopharmacology 2025; 33:1583-1616. [PMID: 39955697 DOI: 10.1007/s10787-025-01643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/16/2024] [Indexed: 02/17/2025]
Abstract
The mammalian target of rapamycin (mTOR) is a crucial enzyme in regulating multiple signaling pathways in the body, including autophagy, proliferation and apoptosis. Disruption of these mTOR signaling pathways can lead to an array of abnormalities and trigger disease processes, examples being neurodegenerative conditions, cancer, obesity and diabetes. Under conditions of oxidative stress, mTOR can regulate apoptosis and autophagy, with tissue repair being favored under such circumstances. Moreover, the correlation between mTOR and other signaling pathways could play a pivotal role in the pathophysiology of numerous disorders. mTOR has a tight connection with NF-κB, Akt, PI3K, MAPK, GSK-3β, Nrf2/HO-1, JAK/STAT, CREB/BDNF, and ERK1/2 pathways, which together could play significant roles in the regulation of inflammation, apoptosis, cell survival, and oxidative stress in different body organs. Research suggests that inhibiting mTOR could be beneficial in treating metabolic, neurological and cardiovascular conditions, as well as potentially extending life expectancy. Therefore, identifying new chemicals and agents that can modulate the mTOR signaling pathway holds promise for treating and preventing these disorders. Curcumin is one such agent that has demonstrated regulatory effects on the mTOR pathway, making it an exciting alternative for reducing complications associated with complex diseases by targeting mTOR. This review aims to examine the potential of curcumin in modulating the mTOR signaling pathway and its therapeutic implications.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hadis Nasoori
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aytak Vahdat Khajeh Pasha
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Ni M, Zhu Y, Chen Y, Zhao S, Gao A, Lu J, Wang W, Liu R, Gu W, Hong J, Wang J. A gain-of-function variant in RICTOR predisposes to human obesity. J Genet Genomics 2025; 52:549-558. [PMID: 39984155 DOI: 10.1016/j.jgg.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
mTORC1/2 play central roles as signaling hubs of cell growth and metabolism and are therapeutic targets for several diseases. However, the human genetic evidence linking mutations of mTORC1/2 to obesity remains elusive. Using whole-exome sequencing of 1944 cases with severe obesity and 2161 healthy lean controls, we identify a rare RICTOR p.I116V variant enriched in 9 unrelated cases. In Rictor null mouse embryonic fibroblasts, overexpression of the RICTOR p.I116V mutant increases phosphorylation of AKT, a canonical mTORC2 substrate, compared with wild-type RICTOR, indicating a gain-of-function change. Consistent with the human obesity phenotype, the knock-in mice carrying homogenous Rictor p.I116V variants gain more body weight under a high-fat diet. Additionally, the stromal vascular fraction cells derived from inguinal white adipose tissue of knock-in mice display an enhanced capacity for adipocyte differentiation via AKT activity. These findings demonstrate that the rare gain-of-function RICTOR p.I116V mutation activates AKT signaling, promotes adipogenesis, and contributes to obesity in humans.
Collapse
Affiliation(s)
- Mengshan Ni
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China
| | - Yinmeng Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China
| | - Yufei Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China
| | - Shaoqian Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China.
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, China.
| |
Collapse
|
8
|
Adams-Brown SE, Reid KZ. The Central FacilitaTOR: Coordinating Transcription and Translation in Eukaryotes. Int J Mol Sci 2025; 26:2845. [PMID: 40243440 PMCID: PMC11989106 DOI: 10.3390/ijms26072845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
One of the biggest challenges to eukaryotic gene expression is coordinating transcription in the nucleus and protein synthesis in the cytoplasm. However, little is known about how these major steps in gene expression are connected. The Target of Rapamycin (TOR) signaling pathway is crucial in connecting these critical phases of gene expression. Highly conserved among eukaryotic cells, TOR regulates growth, metabolism, and cellular equilibrium in response to changes in nutrients, energy levels, and stress conditions. This review examines the extensive role of TOR in gene expression regulation. We highlight how TOR is involved in phosphorylation, remodeling chromatin structure, and managing the factors that facilitate transcription and translation. Furthermore, the critical functions of TOR extend to processing RNA, assembling RNA-protein complexes, and managing their export from the nucleus, demonstrating its wide-reaching impact throughout the cell. Our discussion emphasizes the integral roles of TOR in bridging the processes of transcription and translation and explores how it orchestrates these complex cellular processes.
Collapse
Affiliation(s)
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
9
|
O'Rourke RL, Garner AL. Chemical Probes for Studying the Eukaryotic Translation Initiation Factor 4E (eIF4E)-Regulated Translatome in Cancer. ACS Pharmacol Transl Sci 2025; 8:621-635. [PMID: 40109752 PMCID: PMC11915038 DOI: 10.1021/acsptsci.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
The dysregulation of translation is a hallmark of cancer that enables rapid changes in the cell proteome to shape oncogenic phenotypes that promote tumor survival. The predominant signaling pathways leading to dysregulation of translational control in cancer are the PI3K-AKT-mTORC1, RAS-RAF-MAPK, and MYC pathways, which all converge on eukaryotic translation initiation factor 4E (eIF4E), an RNA-binding protein that binds to the m7GpppX cap structure at the 5' end of mRNAs to initiate cap-dependent translation. eIF4E is the rate-limiting factor of translation initiation, and its overexpression is known to drive oncogenic transformation, progression, and chemoresistance across many cancers, establishing it as an attractive therapeutic target. Over the last several decades, significant efforts have been made to inhibit eIF4E through the development of mechanistically distinct small-molecule inhibitors that both directly and indirectly act on eIF4E to prevent cap-dependent translation initiation. These inhibitors can serve as powerful chemical tools to improve our understanding of the mechanisms of cap-dependent translation in cancer and to ultimately predict specific cancers that may benefit from eIF4E-targeted therapeutics. This review discusses the progress made in the development of different classes of small-molecule eIF4E inhibitors, the challenges that remain, and their potential as chemical probes to elucidate the complexities of cap-dependent translation in cancer.
Collapse
Affiliation(s)
- Rachel L O'Rourke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Tong M, Homans C, Pelit W, Delikkaya B, de la Monte SM. Progressive Alcohol-Related Brain Atrophy and White Matter Pathology Are Linked to Long-Term Inhibitory Effects on mTOR Signaling. Biomolecules 2025; 15:413. [PMID: 40149949 PMCID: PMC11940526 DOI: 10.3390/biom15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) causes cognitive-behavioral impairments that can lead to dementia. White matter is a major target in ARBD. Additional research is needed to better understand the mechanisms of ARBD progression to advanced stages with permanent disability. Potential contributing factors include neuroinflammation and altered signaling through pathways that regulate cell survival, neuronal plasticity, myelin maintenance, and energy metabolism. OBJECTIVES This study characterizes the time course-related effects of chronic heavy ethanol feeding on white matter myelin protein expression, neuroinflammation, and molecules that mediate signaling through the mechanistic target of rapamycin (mTOR) pathways. METHODS Adult Long Evans rats (8-12/group) were fed with isocaloric liquid diets containing 0% (control) or 36% ethanol. Experimental endpoints spanned from 1 day to 8 weeks. The frontal lobes were used for histopathology and molecular and biochemical analyses. RESULTS Chronic ethanol feeding caused significant brain atrophy that was detected within 4 weeks and sustained over the course of the study. Early exposure time points, i.e., 2 weeks or less, were associated with global increases in the expression of non-myelinating, myelinating, and astrocyte markers, whereas at 6 or 8 weeks, white matter oligodendrocyte/myelin/glial protein expression was reduced. These effects were not associated with shifts in neuroinflammatory markers. Instead, the early stages of ARBD were accompanied by increases in several mTOR proteins and phosphoproteins, while later phases were marked by inhibition of downstream mTOR signaling through P70S6K. CONCLUSIONS Short-term versus long-term ethanol exposures differentially altered white matter glial protein expression and signaling through mTOR's downstream mediators that have known roles in myelin maintenance. These findings suggest that strategic targeting of mTOR signaling dysregulation may be critical for maintaining the functional integrity of white matter and ultimately preventing long-term ARBD-related cognitive impairment.
Collapse
Affiliation(s)
- Ming Tong
- Department of Medicine, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Camilla Homans
- Molecular Pharmacology, Physiology, and Biotechnology Graduate Program, Brown University, Providence, RI 02903, USA
| | - William Pelit
- Department of Chemistry, Brown University, Providence, RI 02903, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
- Departments of Neurosurgery and Neurology, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
11
|
Bao J, Dai B, Yang L, Liu Z, Jin Y, Zhao H, Pan Y. sPLA2-IB and PLA2R Mediate Aberrant Glucose Metabolism in Podocytes via Hyperactivation of the mTOR/HIF-1α Pathway. Cell Biochem Biophys 2025:10.1007/s12013-025-01714-5. [PMID: 40072831 DOI: 10.1007/s12013-025-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Secretory phospholipase A2 group IB (sPLA2-IB) and M-type phospholipase A2 receptor (PLA2R) are closely related to proteinuria and idiopathic membranous nephropathy (IMN). Podocytes are important components of the glomerular filtration barrier and glucose metabolism, including glycolysis and tricarboxylic acid (TCA) cycle, is crucial for maintaining podocyte physiological function. Aberrant energy metabolism has been reported in proteinuria diseases, including diabetic nephropathy. However, altering energy states in podocytes in IMN remain unknown. The study aimed to determine whether sPLA2-IB induces energy metabolism abnormalities in podocytes. Cultured podocytes were treated with sPLA2-IB. siRNAs were used to knockdown expression of HIF-1α and PLA2R. Adenosine triphosphate (ATP) levels, the oxygen consumption rate and lactate content were assessed. Key enzyme of glycolysis, PKM2 and LDHA, TCA cycle-related enzymes and mTOR/HIF-1α pathway, were analyzed by PCR and immunoblotting. MTT assay was used for cell viability and phalloidin for cytoskeleton staining. sPLA2-IB induced insufficient energy states in podocytes, by decreased ATP production, increased lactate accumulation and reduced oxygen consumption rates. Under sPLA2-IB stimulation, LDHA and PKM2 were increased, while TCA cycle-related enzymes (CS, FH and SDHD) were decreased, with upregulated mTOR and HIF-1α. Mechanically, HIF-1α knockdown mitigated sPLA2-IB -induced LDHA upregulation and downregulated TCA cycle-related enzymes. Rapamycin (inhibitor of mTOR) reversed decreased ATP levels and oxygen consumption. 3-MA (activator of mTOR) aggravated lactate production. PLA2R knockdown reversed PKM2 and LDHA upregulation, FH and SDHD downregulation, and increased mTOR and HIF-1α expression. PLA2R activation by sPLA2-IB caused abnormal energy states in podocytes. The underlying mechanism involved the activation of mTOR/HIF-1α pathway.
Collapse
Affiliation(s)
- Jiwen Bao
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Liyan Yang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zikang Liu
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Yuxuan Jin
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Hanxue Zhao
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Division of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China.
| |
Collapse
|
12
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 PMCID: PMC11863469 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
14
|
Gulieva RE, Ahmadvand P, Freedman BS. A novel rapalog shows improved safety vs. efficacy in a human organoid model of polycystic kidney disease. Stem Cell Reports 2025; 20:102395. [PMID: 39855202 PMCID: PMC11864154 DOI: 10.1016/j.stemcr.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is a therapeutic target in polycystic kidney disease (PKD), but mTOR inhibitors such as everolimus have failed to show efficacy at tolerated doses in clinical trials. Here, we introduce AV457, a novel rapalog developed to reduce side effects, and assess its dose-dependent safety and efficacy versus everolimus in PKD1-/- and PKD2-/- human kidney organoids, which form cysts in a PKD-specific way. Both AV457 and everolimus reduce cyst growth over time. At intermediate doses, AV457 exhibits an improved safety profile relative to everolimus, with comparable efficacy. Target engagement assays confirm mTOR pathway inhibition and greater selectivity of AV457 for mTOR complex 1 versus complex 2, compared to everolimus. AV457 thus provides a more favorable balance of safety and efficacy for PKD compared to everolimus and merits further consideration as an investigational therapeutic.
Collapse
Affiliation(s)
- Ramila E Gulieva
- Department of Medicine, Division of Nephrology, Institute for Stem Cell & Regenerative Medicine, and Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | - Benjamin S Freedman
- Department of Medicine, Division of Nephrology, Institute for Stem Cell & Regenerative Medicine, and Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Plurexa LLC, Seattle, WA 98109, USA.
| |
Collapse
|
15
|
Mu Y, Hu S, Liu X, Tang X, Lin J, Shi H. Mechanical forces pattern endocardial Notch activation via mTORC2-PKC pathway. eLife 2025; 13:RP97268. [PMID: 39932433 PMCID: PMC11813223 DOI: 10.7554/elife.97268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.
Collapse
Affiliation(s)
- Yunfei Mu
- Fudan UniversityShanghaiChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Shijia Hu
- Fudan UniversityShanghaiChina
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Xiangyang Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Xin Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
- Institute of Basic Medical Sciences, Westlake Institute for Advanced StudyHangzhouChina
| |
Collapse
|
16
|
Wang J, Huang Y, Wang Z, Liu J, Liu Z, Yang J, He Z. The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease. Biomedicines 2025; 13:397. [PMID: 40002810 PMCID: PMC11853667 DOI: 10.3390/biomedicines13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Heart disease, including myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathy, remains a leading cause of mortality worldwide. The mammalian target of rapamycin (mTOR) is a centrally regulated kinase that governs key cellular processes, including growth, proliferation, metabolism, and survival. Notably, mTOR plays a pivotal role in cardiovascular health and disease, particularly in the onset and progression of cardiac conditions. In this review, we discuss mTOR's structure and function as well as the regulatory mechanisms of its associated signaling pathways. We focus on the molecular mechanisms by which mTOR signaling regulates cardiac diseases and the potential of mTOR inhibitors and related regulatory drugs in preventing these conditions. We conclude that the mTOR signaling pathway is a promising therapeutic target for heart disease.
Collapse
Affiliation(s)
- Jieyu Wang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Yuxuan Huang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Zhaoxia Wang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Jing Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Zhijian Liu
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, School of Medicine, Central South University, Changsha 410013, China;
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, School of Medicine, Central South University, Changsha 410013, China;
| | - Zuping He
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
17
|
Chen F, Zhang Y, Wang X, Jing M, Zhang L, Pei K, Zhao T, Su K. Protective effect of Astragaloside II against lung injury in COPD based on mTORC1/GSK-3β signaling pathway. Eur J Pharmacol 2025; 988:177214. [PMID: 39706467 DOI: 10.1016/j.ejphar.2024.177214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Astragaloside II (AST II) is one of the principal bioactive components of Astragalus mongholicus Bunge, exhibiting multiple pharmacological properties. However, the therapeutic efficacy of AST II in Chronic Obstructive Pulmonary Disease (COPD) remains to be fully elucidated. The study explored the effects and mechanisms of AST II in a COPD model induced by exposure to cigarette smoke (CS) and lipopolysaccharide (LPS) in mice. METHODS An animal model of COPD was established by intratracheal instillation of LPS and cigarette smoking in mice. Serum samples were collected to determine inflammatory cell infiltration and cytokine levels. Lung tissues were collected for histological, immunofluorescence and Western blot analysis. The RAW264.7 macrophage cell line was employed to investigate the molecular mechanism of AST II in vitro. RESULTS Lung dysfunction, histopathological damage, inflammatory infiltration, and pro-inflammatory factors secretion in COPD mice induced by CS and LPS were mitigated by AST II. AST II exerted an anti-inflammatory effect by enhancing the activation of the mammalian target of rapamycin complex 1 (mTORC1)/glycogen synthase kinase-3β (GSK-3β) signaling pathway, which promoted the binding of CREB-binding protein (CBP) to CREB, thereby antagonizing the binding to nuclear factor-κB (NF-κB) and inhibiting its transcriptional activity. However, AST II did not demonstrate a protective effect against LPS-induced inflammatory damage to RAW264.7 cells when mTORC1 was inhibited by rapamycin. CONCLUSION AST II exhibits potential therapeutic benefits as an alternative medication for COPD and other respiratory inflammatory conditions since it may reduce lung injury and inflammatory response in mice exposed to CS and LPS.
Collapse
Affiliation(s)
- Fengxi Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yeqing Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xuejian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Mei Jing
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210017, China
| | - Ke Pei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tong Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kelei Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
18
|
Wong C, Rodriguez-Hernandez LD, Lister KC, Gu N, Cai W, Hooshmandi M, Fan J, Brown N, Nguyen V, Ribeiro-da-Silva A, Bonin RP, Khoutorsky A. Targeting spinal mechanistic target of rapamycin complex 2 alleviates inflammatory and neuropathic pain. Brain 2025; 148:675-686. [PMID: 39167538 PMCID: PMC11788203 DOI: 10.1093/brain/awae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
The development and maintenance of chronic pain involve the reorganization of spinal nocioceptive circuits. The mechanistic target of rapamycin complex 2 (mTORC2), a central signalling hub that modulates both actin-dependent structural changes and mechanistic target of rapamycin complex 1 (mTORC1)-dependent mRNA translation, plays key roles in hippocampal synaptic plasticity and memory formation. However, its function in spinal plasticity and chronic pain is poorly understood. Here, we show that pharmacological activation of spinal mTORC2 induces pain hypersensitivity, whereas its inhibition, using downregulation of the mTORC2-defining component Rictor, alleviates both inflammatory and neuropathic pain. Cell type-specific deletion of Rictor showed that the selective inhibition of mTORC2 in a subset of excitatory neurons impairs spinal synaptic potentiation and alleviates inflammation-induced mechanical and thermal hypersensitivity and nerve injury-induced heat hyperalgesia. The ablation of mTORC2 in inhibitory interneurons strongly alleviated nerve injury-induced mechanical hypersensitivity. Our findings reveal the role of mTORC2 in chronic pain and highlight its cell type-specific functions in mediating pain hypersensitivity in response to peripheral inflammation and nerve injury.
Collapse
Affiliation(s)
- Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Luis David Rodriguez-Hernandez
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Kevin C Lister
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ning Gu
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Weihua Cai
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Mehdi Hooshmandi
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jonathan Fan
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Nicole Brown
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Vivienne Nguyen
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada
- Alan Edwards Center for the Research on Pain, McGill University, Montreal, QC, H3A 2B4 Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC, H3G 1Y6, Canada
- Alan Edwards Center for the Research on Pain, McGill University, Montreal, QC, H3A 2B4 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
19
|
Zhou H, Li X, Liu D. Inhibition of Renal Cell Carcinoma Growth by 1,3-thiazin-6-one Through Targeting the Inflammatory Reaction. DOKL BIOCHEM BIOPHYS 2025; 520:101-108. [PMID: 39847292 DOI: 10.1134/s1607672924601008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 01/24/2025]
Abstract
The current study examined the underlying mechanism and the effect of 1,3-thiazin-6-one on the growth of renal cancer. The findings showed that 1,3-thiazin-6-one treatment inhibited the growth of xenograft tumors in a dose-dependent manner in mice model of renal cancer. Furthermore, when 1,3-thiazin-6-one was administered in a dose-dependent manner to mice with renal cancer, the expression of the proteins p-PI3K and p-Akt significantly decreased. In mice model of renal cancer, 1,3-thiazin-6-one treatment also inhibited p-mTOR expression. In a model of renal cancer in mice, the 1,3-thiazin-6-one therapy specifically targeted the expression of nuclear factor κB (NF κB) and signal transducer and activator of transcription 3 (STAT3). Renal cancer cells' vitality was significantly (p < 0.05) reduced in a dose-dependent manner upon exposure to 1,3-thiazin-6-one. It also prevents invasiveness of the renal cancer cells in addition to suppression of colony forming potential. In summary, the 1,3-thiazin-6-one blocks the growth of kidney cancer by focusing on the pathways that trigger the inflammatory cascade. Therefore, 1,3-thiazin-6-one might be developed as a significant medicinal agent to cure renal cancer.
Collapse
Affiliation(s)
- Hongmei Zhou
- Nephrology Department, Zhongxian People's Hospital of Chongqing, Zhongxian County, 404300, Chongqing, China
| | - Xin Li
- Nephrology Department, Zhongxian People's Hospital of Chongqing, Zhongxian County, 404300, Chongqing, China
| | - Dongju Liu
- Nephrology Department, Liangping Hospital, Liangping District People's Hospital of Chongqing, 405299, Chongqing, China.
| |
Collapse
|
20
|
Lanz M, Cortada M, Lu Y, Levano S, Bodmer D. mTORC2 Regulates Actin Polymerization in Auditory Cells. J Neurochem 2025; 169:e70012. [PMID: 39921391 DOI: 10.1111/jnc.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
Mammalian target of rapamycin complex 2 (mTORC2) is essential for hearing by regulating auditory hair cell structure and function. However, mechanistic details of how mTORC2 regulates intracellular processes in sensory hair cells have not yet been clarified. To further elucidate the role of mTORC2 in auditory cells, we generated a Rictor knockout cell line from HEI-OC1 auditory cells. mTORC2-deficient auditory cells exhibited significant alterations in actin cytoskeleton morphology and decreased proliferation rates. Additionally, we observed a reduction in phosphorylation of protein kinase C alpha (PKCα) and disrupted actin polymerization in mTORC2-deficient cells. Using proteomics, we found that mTORC2 disruption altered expression of cytoskeleton-related proteins in auditory cells. These findings provide valuable mechanistic insights into the functional role of mTORC2 in auditory cells, potentially opening new perspectives to address sensorineural hearing loss.
Collapse
Affiliation(s)
- Michael Lanz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Yu Lu
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
21
|
Filipovich E, Gorodkova E, Shcherbakova A, Asaad W, Popov S, Melnichenko G, Mokrysheva N, Utkina M. The role of cell cycle-related genes in the tumorigenesis of adrenal and thyroid neuroendocrine tumors. Heliyon 2025; 11:e41457. [PMID: 39834406 PMCID: PMC11742855 DOI: 10.1016/j.heliyon.2024.e41457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The molecular mechanisms underlying adrenal and thyroid neuroendocrine tumors, including their tumorigenesis, progression, and metastasis, involve unique pathways regulating cell cycle progression. To better understand these mechanisms and pathways, extensive in-depth research on cell cycle-related genes is necessary. This review aims to describe and interpret current single-cell RNA sequencing studies on neuroblastoma, medullary thyroid cancer, and pheochromocytoma tumors. Our review summarizes differentially expressed cell cycle-related genes with distinct functions, highlighting their potential as therapeutic targets and components of panels used to determine tumor type or aggressiveness. Although some insights have been gained, there is still limited information on these topics, and further research is required to explore the regulatory mechanisms of these tumors.
Collapse
Affiliation(s)
- Ekaterina Filipovich
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Ekaterina Gorodkova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Anastasia Shcherbakova
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Walaa Asaad
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Sergey Popov
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Galina Melnichenko
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Natalya Mokrysheva
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| | - Marina Utkina
- Laboratory of General, Molecular and Population Genetics, Endocrinology Research Center, Moscow, 117292, Russia
| |
Collapse
|
22
|
Miyamoto T, Kuboyama K, Honda M, Ohkawa Y, Oki S, Sawamoto K. High spatial resolution gene expression profiling and characterization of neuroblasts migrating in the peri-injured cortex using photo-isolation chemistry. Front Neurosci 2025; 18:1504047. [PMID: 39840011 PMCID: PMC11747130 DOI: 10.3389/fnins.2024.1504047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery. Elucidation of the molecular basis of neuroblast migration toward lesions is expected to lead to the development of new therapeutic strategies for brain regenerative medicine. Here, we show gene expression profiles of neuroblasts migrating in the peri-injured cortex compared with those migrating in the V-SVZ using photo-isolation chemistry, a method for spatial transcriptome analysis. Differentially expressed gene analysis showed that the expression levels of 215 genes (97 upregulated and 118 downregulated genes) were significantly different in neuroblasts migrating in the peri-injured cortex from those migrating in the V-SVZ. Gene Ontology analysis revealed that in neuroblasts migrating in the peri-injured cortex, expression of genes involved in regulating migration direction and preventing cell death was upregulated, while the expression of genes involved in cell proliferation and maintenance of the immature state was downregulated. Indeed, neuroblasts migrating in the peri-injured cortex had significantly lower Cyclin D2 mRNA and Ki67 protein expression levels than those in the V-SVZ. In the injured brain, amoeboid microglia/macrophages expressed transforming growth factor-β (TGF-β), and neuroblasts migrating in the peri-injured cortex expressed TGF-β receptors. Experiments using primary cultured neuroblasts showed that application of TGF-β significantly decreased proliferating cells labeled with BrdU. These data suggest that the proliferative activity of neuroblasts migrating toward lesions is suppressed by TGF-β secreted from cells surrounding the lesion. This is the first comprehensive study characterizing the gene expression profiles of neuroblasts migrating in the peri-injured cortex.
Collapse
Affiliation(s)
- Takuya Miyamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuya Kuboyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mizuki Honda
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
23
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
24
|
Qin B, Xue H, Wang X, Kim H, Jin LH. Atg2 controls Drosophila hematopoiesis through the PVR/TOR signaling pathways. FEBS J 2025; 292:294-312. [PMID: 39513270 DOI: 10.1111/febs.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
The hematopoietic system of Drosophila is a well-established genetic model for studying hematopoiesis mechanisms, which are strictly regulated by multiple signaling pathways. Autophagy-related 2 (Atg2) protein is involved in autophagosome formation through its lipid transfer function; however, other functions in animal development, especially the role of Atg2 in maintaining hematopoietic homeostasis, are unclear. Here, we show that Atg2 knockdown in the cortical zone (CZ) induced the proliferation and differentiation of mature plasmatocytes and disrupted progenitor maintenance in the medullary zone (MZ). We also observed the differentiation of lamellocytes among circulating hemocytes and in the lymph gland, which is rarely observed in healthy larvae. The above results on hematopoiesis disorders are due to Atg2 regulating the Drosophila PDGF/VEGF receptor (PVR) and target of rapamycin (TOR) in the CZ of lymph gland. In conclusion, we identified Atg2 as a previously undescribed regulator of hematopoiesis. Understanding the mechanism of maintenance of hematopoietic homeostasis in Drosophila will help us better evaluate human blood disorder-related diseases.
Collapse
Affiliation(s)
- Bo Qin
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongmei Xue
- Peking University People's Hospital, Qingdao, China
- Women and Children's Hospital, Qingdao University, China
| | - Xiaoran Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim Il Sung University, Pyongyang, Korea
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
25
|
Vázquez-Rivera D, Huerta-Venegas PI, Raya-González J, Peña-Uribe CA, López-Bucio JS, García-Pineda E, López-Bucio J, Campos-García J, Reyes de la Cruz H. BX517, an inhibitor of the mammalian phospholipid-dependent kinase 1 (PDK1), antagonizes sucrose-induced plant growth and represses the target of rapamycin (TOR) signaling and the cell cycle through WEE1 kinase in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154386. [PMID: 39616729 DOI: 10.1016/j.jplph.2024.154386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/30/2025]
Abstract
The target of rapamycin (TOR) signaling pathway is critical for plant growth and stress adaptation through maintaining the proper balance between cell proliferation and differentiation. Here, by using BX517, an inhibitor of the mammalian phosphoinositide-dependent protein kinase 1 (PDK1), we tested the hypothesis that a plant ortholog of PDK1 could influence the TOR complex activity and its target, the S6 ribosomal protein kinase (S6K) in Arabidopsis seedlings. Through locally applying sucrose to leaves, which promotes root growth and plant biomass production via TOR signaling, we could demonstrate the opposite trend upon BX517 treatment, which antagonized sucrose-induced plant growth and overly decreased root development through inhibiting the expression of mitotic cyclins CYCB1 and CYCA3 in root meristems. Evidence was gathered that the WEE1 kinase, a master regulator of the DNA damage rescue system in meristems, operates downstream of a plant BX517 target(s). TOR protein activity and WEE1 expression were analyzed through protein blots and reporter gene activity, respectively, and their relationship with meristematic cell cycle progression was tested through genetic analyses. BX517 reduced TOR kinase activity, activated WEE1 expression in shoot, root, and lateral root meristems, and inhibited meristematic cell cycle progression in roots, suggesting that PDK1 is a critical element for plant responses to mitogenic factors through modulating TOR activity. Our data uncover a relation between a PDK1 ortholog with TOR activity and the expression of WEE1 kinase for growth and stress responses in plants.
Collapse
Affiliation(s)
- Dolores Vázquez-Rivera
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Pedro Iván Huerta-Venegas
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biología del Desarrollo, Universidad Michoacana de San Nicolás de Hidalgo, Ed A1', Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzuntzan 173 Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - César Arturo Peña-Uribe
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Jesús Salvador López-Bucio
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Bioquímica y Biología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed A1', Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biología del Desarrollo, Universidad Michoacana de San Nicolás de Hidalgo, Ed A1', Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Microbiana, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030.
| |
Collapse
|
26
|
K MS, Rathi E, Udupa KS, Prasada K S, Pai KSR, Kini SG. Design of PI3K-mTOR Dual Inhibitors for Ovarian Cancer: Are we on the Right Track? Curr Med Chem 2025; 32:1121-1143. [PMID: 38584538 DOI: 10.2174/0109298673293028240326051835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
Ovarian cancer is one of the most familiar kinds of gynecological cancer seen in women. Though it is not as familiar as breast cancer, the survival rate for ovarian cancer is very low when compared with breast cancer. Even after being one among the familiar types, to date, there are no proper treatments available for ovarian cancer. All the treatments that are present currently show a high rate of recurrence after the treatment. Therefore, treating this silent killer from the roots is the need of the hour. PI3K/AKT/m-TOR pathway is one of the pathways that get altered during ovarian cancer. Studies are already going on for the inhibition of PI3K and mTOR separately. Efforts have been made to inhibit either PI3K or mTOR separately earlier. However, due to its side effects and resistance to the treatments available, current studies are based on the inhibition of PI3K and mTOR together. Inhibition of PI3K and mTOR simultaneously reduces the chances of negative feedback, thus decreasing the toxicity. This review contains the evolution of PI3K and mTOR drugs that are approved by the FDA and are in the trials for different cancer types, including ovarian cancer. In this article, how a molecular targeted therapy can be made successful and free from toxicity for treating ovarian cancer is discussed. Therefore, this review paves the way for finding an effective scaffold rather than the clinical part. The scaffold thus selected can be further modified and synthesized in the future as dual PI3K/mTOR inhibitors specifically for OC.
Collapse
Affiliation(s)
- Mangala Shenoy K
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suvarna Ganesh Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| |
Collapse
|
27
|
Jung SH, Olsen LK, Jones KA, Moore RJ, Harshman SW, Hatcher-Solis CN. VNS paired with training enhances recognition memory: mechanistic insights from proteomic analysis of the hippocampal synapse. Front Mol Neurosci 2024; 17:1452327. [PMID: 39741691 PMCID: PMC11685747 DOI: 10.3389/fnmol.2024.1452327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Recognition memory, an essential component of cognitive health, can suffer from biological limitations of stress, aging, or neurodegenerative disease. Vagus nerve stimulation (VNS) is a neuromodulation therapy with the potential to improve cognitive function. This study investigated the effectiveness of multiple sessions of VNS to enhance recognition memory in healthy rodents and the underlying cognitive benefits of VNS by proteomic analysis of the synaptosome. Methods Rats demonstrated VNS-induced recognition memory improvements using a novel object recognition (NOR) task. Using the LC-MS/MS method, roughly 3,000 proteins in the synaptosome of the hippocampus were analyzed. Results Protein-protein interaction (PPI) enrichment analysis found differentially expressed proteins related to synaptic signaling and neurotransmitter pathways. PPI network analysis identified six unique protein clusters, including a cluster of synaptic signaling related pathways. Using ingenuity pathway analysis (IPA), rapamycin-insensitive companion of mTOR was identified as an upstream regulator of synaptosome changes due to VNS-paired training. Discussion Based on these results, it is proposed that VNS may mediate cognitive enhancement via increases in glutamatergic signaling and early LTP during the consolidation period, followed by sustained synaptic plasticity via modified post-synaptic receptor expression and dendritic outgrowth. Further investigation is required to determine if VNS is a good candidate to ameliorate cognitive impairment.
Collapse
Affiliation(s)
- Seung H. Jung
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- DCS Infoscitex, Dayton, OH, United States
| | - Laura K. Olsen
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Krysten A. Jones
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- Integrative Health & Performance Sciences, UES, Inc., Blue Halo, Dayton, OH, United States
| | - Raquel J. Moore
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
- DCS Infoscitex, Dayton, OH, United States
| | - Sean W. Harshman
- Analytical Chemistry, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| | - Candice N. Hatcher-Solis
- Cognitive Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH, United States
| |
Collapse
|
28
|
Mehta D, Rajput K, Jain D, Bajaj A, Dasgupta U. Unveiling the Role of Mechanistic Target of Rapamycin Kinase (MTOR) Signaling in Cancer Progression and the Emergence of MTOR Inhibitors as Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:3758-3779. [PMID: 39698262 PMCID: PMC11650738 DOI: 10.1021/acsptsci.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The mechanistic target of rapamycin kinase (MTOR) is pivotal for cell growth, metabolism, and survival. It functions through two distinct complexes, mechanistic TORC1 and mechanistic TORC2 (mTORC1 and mTORC2). These complexes function in the development and progression of cancer by regulating different cellular processes, such as protein synthesis, lipid metabolism, and glucose homeostasis. The mTORC1 complex senses nutrients and initiates proliferative signals, and mTORC2 is crucial for cell survival and cytoskeletal rearrangements. mTORC1 and mTORC2 have therefore emerged as potential targets for cancer treatment. Several mTOR inhibitors, including rapamycin and its analogs (rapalogs), primarily target mTORC1 and are effective for specific cancer types. However, these inhibitors often lead to resistance and limited long-term advantages due to the activation of survival pathways through feedback mechanisms. Researchers have created next-generation inhibitors targeting mTORC1 and mTORC2 and dual PI3K/mTOR inhibitors to address these difficulties. These inhibitors demonstrate enhanced anti-tumor effects by simultaneously disrupting multiple signaling pathways and show promise for improved and long-lasting therapies. However, development of resistance and adverse side effects remain a significant obstacle. Recent additions known as RapaLinks have emerged as a boon to counter drug-resistant cancer cells, as they are more potent and provide a more comprehensive blockade of mTOR signaling pathways. This Review combines current research findings and clinical insights to enhance our understanding of the crucial role of mTOR signaling in cancer biology and highlights the evolution of mTOR inhibitors as promising therapeutic approaches.
Collapse
Affiliation(s)
- Devashish Mehta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Kajal Rajput
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Ujjaini Dasgupta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| |
Collapse
|
29
|
Sluzala ZB, Shan Y, Elghazi L, Cárdenas EL, Hamati A, Garner AL, Fort PE. Novel mTORC2/HSPB4 Interaction: Role and Regulation of HSPB4 T148 Phosphorylation. Cells 2024; 13:2000. [PMID: 39682748 PMCID: PMC11640050 DOI: 10.3390/cells13232000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity. We recently demonstrated that this phosphorylation is reduced in retinal tissues from patients with diabetic retinopathy, raising the question of its regulation during diseases. The kinase(s) responsible for regulating this phosphorylation, however, have yet to be identified. To this end, we employed a multi-tier strategy utilizing in vitro kinome profiling, bioinformatics, and chemoproteomics to predict and discover the kinases capable of phosphorylating T148. Several kinases were identified as being capable of specifically phosphorylating T148 in vitro, and further analysis highlighted mTORC2 as a particularly strong candidate. Altogether, our data demonstrate that the HSPB4-mTORC2 interaction is multi-faceted. Our data support the role of mTORC2 as a specific kinase phosphorylating HSPB4 at T148, but also provide evidence that the HSPB4 chaperone function further strengthens the interaction. This study addresses a critical gap in our understanding of the regulatory underpinnings of T148 phosphorylation-mediated neuroprotection.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Yang Shan
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Lynda Elghazi
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Emilio L. Cárdenas
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA; (E.L.C.); (A.L.G.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
| | - Amanda L. Garner
- Interdepartmental Program in Medicinal Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA; (E.L.C.); (A.L.G.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (Y.S.); (L.E.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Biffi R, Benoit SW, Sariyer IK, Safak M. JC virus small tumor antigen promotes S phase entry and cell cycle progression. Tumour Virus Res 2024; 18:200298. [PMID: 39586476 DOI: 10.1016/j.tvr.2024.200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The early coding region of JC virus (JCV) encodes several regulatory proteins including large T antigen (LT-Ag), small t antigen (Sm t-Ag) and T' proteins because of the alternative splicing of the pre-mRNA. LT-Ag plays a critical role in cell transformation by targeting the key cell cycle regulatory proteins including p53 and pRb, however, the role of Sm t-Ag in this process remains elusive. Here, we investigated the effect of Sm t-Ag on the cell cycle progression and demonstrated that it facilitates S phase entry and exit when cells are released from G0/G1 growth arrest. Examination of the cell cycle stage specific expression profiles of the selected cyclins and cyclin-dependent kinases, including those active at the G1/S and G2/M transition state, demonstrated a higher level of early expression of these regulators such as cyclin B, cycling E, and Cdk2. In addition, analysis of the effect of Sm t-Ag on the growth promoting pathways including those active in the PI3K/Akt/mTOR axis showed substantially higher levels of the phosphorylated-Akt, -Gsk3-β and -S6K1 in Sm t-Ag-positive cells. Collectively, our results demonstrate that Sm t-Ag promotes cell cycle progression by activating the growth promoting pathways through which it may contribute to LT-Ag-mediated cell transformation.
Collapse
Affiliation(s)
- Renato Biffi
- Eurofins Biolabs S.R.L, Via Brubno Buozzi 2, Vimodrone, MI, 20055, Italy
| | - Stefanie W Benoit
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Burnet Campus, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Ilker K Sariyer
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
31
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
32
|
Rocka A, Suchcicka M, Jankowska AM, Woźniak MM, Lejman M. Pathway of LCK Tyrosine Kinase and mTOR Signaling in Children with T-Cell Acute Lymphoblastic Leukemia. Appl Clin Genet 2024; 17:187-198. [PMID: 39583285 PMCID: PMC11585986 DOI: 10.2147/tacg.s494389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The aim of this study is to analyze available research on targeting signaling pathways for the development of new drugs in patients with T-cell acute lymphoblastic leukemia (T-ALL). This analysis focuses specifically on the role of LCK tyrosine kinase and mTOR signaling pathways in pediatric patients. Outcome: Current literature suggests that these pathways play a significant role in the regulation of T-cell cycles, making them potential therapeutic targets. However, despite promising findings, there remains a need for further research, particularly in pediatric populations, to fully understand the therapeutic implications and to optimize drug development. The conclusion drawn from this analysis highlights the significant influence of LCK and mTOR on T-cell cycle regulation, underscoring the importance of continued investigation in this area.
Collapse
Affiliation(s)
- Agata Rocka
- Pediatric Radiology, Medical University of Lublin, Medical University of Lublin, Prof. Antoni Gębali 6, Lublin, 20-093, Poland
| | - Maria Suchcicka
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Prof. Antoni Gębali 6, Lublin, 20-093, Poland
| | - Aleksandra M Jankowska
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Prof. Antoni Gębali 6, Lublin, 20-093, Poland
| | - Magdalena M Woźniak
- Pediatric Radiology, Medical University of Lublin, Medical University of Lublin, Prof. Antoni Gębali 6, Lublin, 20-093, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Prof. Antoni Gębali 6, Lublin, 20-093, Poland
| |
Collapse
|
33
|
Manjunath GK, Sharma S, Nashier D, Vasanthaiah S, Jha S, Bage S, Mitra T, Goyal P, Neerathilingam M, Kumar A. Breast cancer genomic analyses reveal genes, mutations, and signaling networks. Funct Integr Genomics 2024; 24:206. [PMID: 39496981 DOI: 10.1007/s10142-024-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and protein‒protein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Srihari Sharma
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Shruthi Vasanthaiah
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Spriha Jha
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Muniasamy Neerathilingam
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India.
| |
Collapse
|
34
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
35
|
Jiang C, Tan X, Liu N, Yan P, Hou T, Wei W. Nutrient sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol 2024; 106-107:1-12. [PMID: 39153724 DOI: 10.1016/j.semcancer.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
Collapse
Affiliation(s)
- Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Liu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Hou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
36
|
Bączyńska E, Zaręba-Kozioł M, Ruszczycki B, Krzystyniak A, Wójtowicz T, Bijata K, Pochwat B, Magnowska M, Roszkowska M, Figiel I, Masternak J, Pytyś A, Dzwonek J, Worch R, Olszyński K, Wardak A, Szymczak P, Labus J, Radwańska K, Jahołkowski P, Hogendorf A, Ponimaskin E, Filipkowski R, Szewczyk B, Bijata M, Włodarczyk J. Stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. Neurobiol Stress 2024; 33:100683. [PMID: 39524934 PMCID: PMC11543545 DOI: 10.1016/j.ynstr.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Stress resilience is the ability of neuronal networks to maintain their function despite the stress exposure. Using a mouse model we investigate stress resilience phenomenon. To assess the resilient and anhedonic behavioral phenotypes developed after the induction of chronic unpredictable stress, we quantitatively characterized the structural and functional plasticity of excitatory synapses in the hippocampus using a combination of proteomic, electrophysiological, and imaging methods. Our results indicate that stress resilience is an active and multifactorial process manifested by structural, functional, and molecular changes in synapses. We reveal that chronic stress influences palmitoylation of synaptic proteins, whose profiles differ between resilient and anhedonic animals. The changes in palmitoylation are predominantly related with the glutamate receptor signaling thus affects synaptic transmission and associated structures of dendritic spines. We show that stress resilience is associated with structural compensatory plasticity of the postsynaptic parts of synapses in CA1 subregion of the hippocampus.
Collapse
Affiliation(s)
- E. Bączyńska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, 02-781, Poland
| | - M. Zaręba-Kozioł
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - B. Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - A. Krzystyniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - T. Wójtowicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - K. Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - B. Pochwat
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - M. Magnowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - M. Roszkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - I. Figiel
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Masternak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - A. Pytyś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Dzwonek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - R. Worch
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - K.H. Olszyński
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - A.D. Wardak
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - P. Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - J. Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - K. Radwańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - P. Jahołkowski
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - A. Hogendorf
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - E. Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - R.K. Filipkowski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | - B. Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Cracow, Poland
| | - M. Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| | - J. Włodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, Warsaw, 02-093, Poland
| |
Collapse
|
37
|
Zhou CY, Yang YL, Han ZY, Chen YX, Liu HL, Fan K, Li MC, Tu SH, Wen Q, Zhou XY, Ma L. Peripheral blood MR1 tetramer-positive mucosal-associated invariant T-cell function is modulated by mammalian target of rapamycin complex 1 in patients with active tuberculosis. Immunology 2024; 173:497-510. [PMID: 39022997 DOI: 10.1111/imm.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Tuberculosis (TB) is still an urgent global public health problem. Notably, mucosal-associated invariant T (MAIT) cells play an important role in early anti-TB immune response. Targeted control of them may be an effective method to improve vaccine efficacy and TB treatment. However, the biology and signal regulation mechanisms of MAIT cells in TB patients are still poorly understood. Previous studies have been limited by the lack of reagents to specifically identify MAIT cells. In addition, the use of alternative markers may subsume non-MAIT cell into MAIT cell populations. In this study, the human MR1 tetramer which can specifically identify MAIT cells was used to further explore the effect and mechanism of MAIT cells in anti-TB immune response. Our results showed that the tetramer+ MAIT cells in peripheral blood of TB patients were mainly CD8+ or CD4-CD8- cells, and very few were CD4+ cells. After BCG infecting autologous antigen-presenting cells, MAIT cells in patients produced significantly higher levels of cytokines, lysis and proliferation compared with healthy controls. After suppression of mTORC1 by the mTORC1-specific inhibitor rapamycin, the immune response of MAIT cells in patients was significantly reduced. This study demonstrates that peripheral blood tetramer+ MAIT cells from TB patients have significant anti-TB immune effect, which is regulated by mTORC1. This could provide ideas and potential therapeutic targets for the development of novel anti-TB immunotherapy.
Collapse
Affiliation(s)
- Chao-Ying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ya-Long Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Zhen-Yu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Yao-Xin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Hong-Lin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ke Fan
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ming-Chong Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Si-Hang Tu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xin-Ying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Zhou Q, Harding JC, Fan P, Spasojevic I, Kovacs A, Akk A, Mitchell A, Springer LE, Gaut JP, Rauch DA, Wickline SA, Pham CTN, Fuh K, Pan H. Safety Evaluations of Rapamycin Perfluorocarbon Nanoparticles in Ovarian Tumor-Bearing Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1752. [PMID: 39513832 PMCID: PMC11547995 DOI: 10.3390/nano14211752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Nanomedicine holds great potential for revolutionizing medical treatment. Ongoing research and advancements in nanotechnology are continuously expanding the possibilities, promising significant advancements in healthcare. To fully harness the potential of nanotechnology in medical applications, it is crucial to conduct safety evaluations for the nanomedicines that offer effective benefits in the preclinical stage. Our recent efficacy studies indicated that rapamycin perfluorocarbon (PFC) nanoparticles showed promise in mitigating cisplatin-induced acute kidney injury (AKI). As cisplatin is routinely administered to ovarian cancer patients as their first-line chemotherapy, in this study, we focused on evaluating the safety of rapamycin PFC nanoparticles in mice bearing ovarian tumor xenografts. Specifically, this study evaluated the effects of repeat-dose rapamycin PFC nanoparticle treatment on vital organs, the immune system, and tumor growth and assessed pharmacokinetics and biodistribution. Our results indicated that rapamycin PFC nanoparticle treatment did not cause any detectable adverse effects on cardiac, renal, or hepatic functions or on splenocyte populations, but it reduced the splenocyte secretion of IL-10, TNFα, and IL12p70 upon IgM stimulation. The pharmacokinetics and biodistribution results revealed a significant enhancement in the delivery of rapamycin to tumors by rapamycin PFC nanoparticles, which, in turn, led to a significant reduction in ovarian tumor growth. Therefore, rapamycin PFC nanoparticles have the potential to be clinically beneficial in cisplatin-treated ovarian cancer patients.
Collapse
Affiliation(s)
- Qingyu Zhou
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - John C. Harding
- Molecular Oncology, Oncology Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ping Fan
- Medical Oncology, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Ivan Spasojevic
- Medical Oncology, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Attila Kovacs
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Antonina Akk
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam Mitchell
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luke E. Springer
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph P. Gaut
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel A. Rauch
- Molecular Oncology, Oncology Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel A. Wickline
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, MO 63106, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, University of California, San Francisco, NC 90095, USA
| | - Hua Pan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
39
|
Afzal NU, Kabir ME, Barman H, Sharmah B, Roy MK, Kalita J, Manna P. The role of lipid-soluble vitamins on glucose transporter. VITAMINS AND HORMONES 2024; 128:123-153. [PMID: 40097248 DOI: 10.1016/bs.vh.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Glucose is the primary source of energy for most of the cells and essential for basic functionalities of life's biochemical processes. Transportation of glucose via biological membranes is essential for life mediated by glucose transporters (GLUT) through facilitated diffusion. Glucose transporters perform a crucial role in maintaining normal health as they transfer the most essential molecules of life, glucose. There are 14 various types of glucose transporters that transport primarily glucose and fructose. GUTTs are trans-membrane proteins expressed in the plasma membrane that facilitate the entry of carbohydrate molecules inside the cells. These transporters provide the passage for the carbohydrate molecules, which undergo oxidation inside the cells and provide essential energy in the form of ATPs. Lipid-soluble vitamins, namely A, D, E, and K have been reported to play a key role in stimulating several glucose transporters. Supplementation of lipid-soluble vitamins stimulates the expression of glucose transporters, most importantly GLUT4, GLUT2, GLUT1, and GLUT3, which play a critical role in regulating glucose metabolism in muscle, liver, brain, and RBCs. For their ability to increase the expression of GLUTs, the lipid-soluble vitamins can be the potential micronutrient for combating various non-communicable diseases. The present article discusses the essential role of lipid-soluble vitamins in the regulation of glucose transporters.
Collapse
Affiliation(s)
- Nazim Uddin Afzal
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Mir Ekbal Kabir
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Hiranmoy Barman
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Bhaben Sharmah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Monojit Kumar Roy
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Jatin Kalita
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India
| | - Prasenjit Manna
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST, Jorhat, Assam, India.
| |
Collapse
|
40
|
Flores K, Almeida C, Arriaza K, Pena E, El Alam S. mTOR in the Development of Hypoxic Pulmonary Hypertension Associated with Cardiometabolic Risk Factors. Int J Mol Sci 2024; 25:11023. [PMID: 39456805 PMCID: PMC11508063 DOI: 10.3390/ijms252011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The pathophysiology of pulmonary hypertension is complex and multifactorial. It is a disease characterized by increased pulmonary vascular resistance at the level due to sustained vasoconstriction and remodeling of the pulmonary arteries, which triggers an increase in the mean pulmonary artery pressure and subsequent right ventricular hypertrophy, which in some cases can cause right heart failure. Hypoxic pulmonary hypertension (HPH) is currently classified into Group 3 of the five different groups of pulmonary hypertensions, which are determined according to the cause of the disease. HPH mainly develops as a product of lung diseases, among the most prevalent causes of obstructive sleep apnea (OSA), chronic obstructive pulmonary disease (COPD), or hypobaric hypoxia due to exposure to high altitudes. Additionally, cardiometabolic risk factors converge on molecular mechanisms involving overactivation of the mammalian target of rapamycin (mTOR), which correspond to a central axis in the development of HPH. The aim of this review is to summarize the role of mTOR in the development of HPH associated with metabolic risk factors and its therapeutic alternatives, which will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Karem Arriaza
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (K.F.); (C.A.); (E.P.); (S.E.A.)
| | | | | |
Collapse
|
41
|
Yildirim E, Onel T, Agus S, Gunalan E, Yilmaz B, Aydin MS, Yaba A. The effect of rapamycin treatment on mouse ovarian follicle development in dehydroepiandrosterone-induced polycystic ovary syndrome mouse model. ZYGOTE 2024; 32:386-395. [PMID: 39498504 DOI: 10.1017/s0967199424000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex reproductive and endocrine disorder affecting 5-10% of women of reproductive age, but the pathophysiology of PCOS still remains unknown. Here, the aim of our study was to analyze the effects of rapamycin treatment that may regulate impaired hormonal levels and folliculogenesis in dehydroepiandrosterone (DHEA)-treated PCOS mouse. We hypothesized that rapamycin may ameliorate the negative effects of PCOS in DHEA-induced PCOS mouse model. The target of rapamycin (TOR) gene product is a serine/threonine kinase that has been implicated in the control of cell growth, proliferation and autophagy, and rapamycin is a potent inhibitor of mTORC1 pathway. In this study, for the first time, mTORC1 and activation products are presented at protein and mRNA levels after rapamycin treatment in DHEA-induced PCOS mouse ovary. We showed that rapamycin treatment may regulate follicular development, hormonal levels and provide ovulation in DHEA-induced PCOS mouse. Additionally, we assessed decreased primordial follicle reserve, increased number of primary and secondary follicles, corpus luteum structure forms again after 10 days of rapamycin treatment. This study presented here suggests rapamycin treatment regulates hormonal phenotype and folliculogenesis in the ovary and also mTOR signalling pathway in granulosa cells of DHEA-induced PCOS mouse ovary which may have potential to attenuate understanding the mechanism of dominant follicle selection and anovulatory infertility.
Collapse
Affiliation(s)
- Ecem Yildirim
- Yeditepe University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| | - Tugce Onel
- Yeditepe University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| | - Sami Agus
- Yeditepe University Faculty of Medicine, Department of Physiology, İstanbul, Turkey
| | - Elif Gunalan
- Istanbul Health and Technology University, Faculty of Health Science, Department of Nutrition and Dietetics, Istanbul, Turkey
| | - Bayram Yilmaz
- Yeditepe University Faculty of Medicine, Department of Physiology, İstanbul, Turkey
| | - Mehmet Serif Aydin
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Aylin Yaba
- Yeditepe University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| |
Collapse
|
42
|
Thomas ACQ, Stead CA, Burniston JG, Phillips SM. Exercise-specific adaptations in human skeletal muscle: Molecular mechanisms of making muscles fit and mighty. Free Radic Biol Med 2024; 223:341-356. [PMID: 39147070 DOI: 10.1016/j.freeradbiomed.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
The mechanisms leading to a predominantly hypertrophied phenotype versus a predominantly oxidative phenotype, the hallmarks of resistance training (RT) or aerobic training (AT), respectively, are being unraveled. In humans, exposure of naïve persons to either AT or RT results in their skeletal muscle exhibiting generic 'exercise stress-related' signaling, transcription, and translation responses. However, with increasing engagement in AT or RT, the responses become refined, and the phenotype typically associated with each form of exercise emerges. Here, we review some of the mechanisms underpinning the adaptations of how muscles become, through AT, 'fit' and RT, 'mighty.' Much of our understanding of molecular exercise physiology has arisen from targeted analysis of post-translational modifications and measures of protein synthesis. Phosphorylation of specific residue sites has been a dominant focus, with canonical signaling pathways (AMPK and mTOR) studied extensively in the context of AT and RT, respectively. These alone, along with protein synthesis, have only begun to elucidate key differences in AT and RT signaling. Still, key yet uncharacterized differences exist in signaling and regulation of protein synthesis that drive unique adaptation to AT and RT. Omic studies are required to better understand the divergent relationship between exercise and phenotypic outcomes of training.
Collapse
Affiliation(s)
- Aaron C Q Thomas
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada; Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Stuart M Phillips
- Protein Metabolism Research Lab, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
43
|
Teran Pumar OY, Zanotelli MR, Lin MCJ, Schmitt RR, Green KS, Rojas KS, Hwang IY, Cerione RA, Wilson KF. A multiprotein signaling complex sustains AKT and mTOR/S6K activity necessary for the survival of cancer cells undergoing stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.03.522657. [PMID: 36711811 PMCID: PMC9881951 DOI: 10.1101/2023.01.03.522657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability of cancer cells to survive microenvironmental stresses is critical for tumor progression and metastasis; however, how they survive these challenges is not fully understood. Here, we describe a novel multiprotein complex (DockTOR) essential for the survival of cancer cells under stress, triggered by the GTPase Cdc42 and a signaling partner Dock7, which includes AKT, mTOR, and the mTOR regulators TSC1, TSC2, and Rheb. DockTOR enables cancer cells to maintain a low but critical mTORC2-dependent phosphorylation of AKT during serum deprivation by preventing AKT dephosphorylation through an interaction between phospho-AKT and the Dock7 DHR1 domain. This activity stimulates a Raptor-independent but Rapamycin-sensitive mTOR/S6K activity necessary for survival. These findings address long-standing questions of how Cdc42 signals result in mTOR activation and demonstrate how cancer cells survive conditions when growth factor-dependent activation of mTORC1 is off. Determining how cancer cells survive stress conditions could identify vulnerabilities that lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Oriana Y. Teran Pumar
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Matthew R. Zanotelli
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Miao-chong Joy Lin
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Rebecca R. Schmitt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Kai Su Green
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Katherine S. Rojas
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Irene Y. Hwang
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry, Cornell University, Ithaca, NY 14853, USA
| | - Kristin F. Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
44
|
Rajesh R U, Sangeetha D. Therapeutic potentials and targeting strategies of quercetin on cancer cells: Challenges and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155902. [PMID: 39059266 DOI: 10.1016/j.phymed.2024.155902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Every cell in the human body is vital because it maintains equilibrium and carries out a variety of tasks, including growth and development. These activities are carried out by a set of instructions carried by many different genes and organized into DNA. It is well recognized that some lifestyle decisions, like using tobacco, alcohol, UV, or multiple sexual partners, might increase one's risk of developing cancer. The advantages of natural products for any health issue are well known, and researchers are making attempts to separate flavonoid-containing substances from plants. Various parts of plants contain a phenolic compound called flavonoid. Quercetin, which belongs to the class of compounds known as flavones with chromone skeletal structure, has anti-cancer activity. PURPOSE The study was aimed at investigating the therapeutic action of the flavonoid quercetin on various cancer cells. METHODS The phrases quercetin, anti-cancer, nanoparticles, and cell line were used to search the data using online resources such as PubMed, and Google Scholar. Several critical previous studies have been included. RESULTS Quercetin inhibits various dysregulated signaling pathways that cause cancer cells to undergo apoptosis to exercise its anticancer effects. Numerous signaling pathways are impacted by quercetin, such as the Hedgehog system, Akt, NF-κB pathway, downregulated mutant p53, JAK/STAT, G1 phase arrest, Wnt/β-Catenin, and MAPK. There are downsides to quercetin, like hydrophobicity, first-pass effect, instability in the gastrointestinal tract, etc., because of which it is not well-established in the pharmaceutical industry. The solution to these drawbacks in the future is using bio-nanomaterials like chitosan, PLGA, liposomes, and silk fibroin as carriers, which can enhance the target specificity of quercetin. The first section of this review covers the specifics of flavonoids and quercetin; the second section covers the anti-cancer activity of quercetin; and the third section explains the drawbacks and conjugation of quercetin with nanoparticles for drug delivery by overcoming quercetin's drawback. CONCLUSIONS Overall, this review presented details about quercetin, which is a plant derivative with a promising molecular mechanism of action. They inhibit cancer by various mechanisms with little or no side effects. It is anticipated that plant-based materials will become increasingly relevant in the treatment of cancer.
Collapse
Affiliation(s)
- Udaya Rajesh R
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India
| | - Dhanaraj Sangeetha
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India.
| |
Collapse
|
45
|
Cully D, Cohen NR, Breen PC, Newman MA, Dowen RH. A novel gain-of-function mutation in sgk-1 partially suppresses mTORC2 defects. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001163. [PMID: 39410967 PMCID: PMC11474317 DOI: 10.17912/micropub.biology.001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
The serine/threonine protein kinase SGK-1 is a downstream target of mTOR complex 2 (mTORC2) and is a conserved regulator of growth and metabolism. In C. elegans , mutations in rict-1 , which encodes an essential component of mTORC2, impairs lipid homeostasis and growth; however, these defects are partially suppressed by an activating mutation in SGK-1 , E116K. Here, we describe a stronger gain-of-function mutation in sgk-1 , L112F, that was identified in a forward genetic screen for rict-1 suppressor mutations . This allele will be useful in further dissecting the mTORC2 pathway and provides new insight into the role of this conserved residue in regulating SGK-1 kinase activity.
Collapse
Affiliation(s)
- David Cully
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Natalie R. Cohen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Peter C. Breen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Martin A. Newman
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
46
|
Zhou Y, Zhang S, Qiu G, Wang X, Yonemura A, Xu H, Cui G, Deng S, Chun J, Chen N, Xu M, Song X, Wang J, Xu Z, Deng Y, Evert M, Calvisi DF, Lin S, Wang H, Chen X. TSC/mTORC1 mediates mTORC2/AKT1 signaling in c-MYC-induced murine hepatocarcinogenesis via centromere protein M. J Clin Invest 2024; 134:e174415. [PMID: 39325536 PMCID: PMC11563669 DOI: 10.1172/jci174415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Activated mTORC2/AKT signaling plays a role in hepatocellular carcinoma (HCC). Research has shown that TSC/mTORC1 and FOXO1 are distinct downstream effectors of AKT signaling in liver regeneration and metabolism. However, the mechanisms by which these pathways mediate mTORC2/AKT activation in HCC are not yet fully understood. Amplification and activation of c-MYC are key molecular events in HCC. In this study, we explored the roles of tuberous sclerosis complex/mTORC1 (TSC/mTORC1) and FOXO1 as downstream effectors of mTORC2/AKT1 in c-MYC-induced hepatocarcinogenesis. Using various genetic approaches in mice, we found that manipulating the FOXO pathway had a minimal effect on c-MYC-induced HCC. In contrast, loss of mTORC2 inhibited c-MYC-induced HCC, an effect that was completely reversed by ablation of TSC2, which activated mTORC1. Additionally, we discovered that p70/RPS6 and 4EBP1/eIF4E acted downstream of mTORC1, regulating distinct molecular pathways. Notably, the 4EBP1/eIF4E cascade is crucial for cell proliferation and glycolysis in c-MYC-induced HCC. We also identified centromere protein M (CENPM) as a downstream target of the TSC2/mTORC1 pathway in c-MYC-driven hepatocarcinogenesis, and its ablation entirely inhibited c-MYC-dependent HCC formation. Our findings demonstrate that the TSC/mTORC1/CENPM pathway, rather than the FOXO cascade, is the primary signaling pathway regulating c-MYC-driven hepatocarcinogenesis. Targeting CENPM holds therapeutic potential for treating c-MYC-driven HCC.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Infectious Diseases, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| | - Shu Zhang
- Department of Head and Neck Oncology, Cancer Center
- Department of Radiation Oncology, Cancer Center
| | - Guoteng Qiu
- Division of Liver Surgery, Department of General Surgery, and
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Wang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Andrew Yonemura
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Hongwei Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
- Division of Liver Surgery, Department of General Surgery, and
| | - Guofei Cui
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Shanshan Deng
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Joanne Chun
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Nianyong Chen
- Department of Head and Neck Oncology, Cancer Center
- Department of Radiation Oncology, Cancer Center
- Laboratory of Single Cell Research and Liquid Biopsy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Xu
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinhua Song
- School of Traditional Chinese Medicine, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jingwen Wang
- School of Traditional Chinese Medicine, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zijing Xu
- School of Traditional Chinese Medicine, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Youping Deng
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, Honolulu, Hawaii, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Shumei Lin
- Department of Infectious Diseases, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haichuan Wang
- Division of Liver Surgery, Department of General Surgery, and
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
47
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
48
|
Yue L, Li J, Yao M, Song S, Zhang X, Wang Y. Cutting edge of immune response and immunosuppressants in allogeneic and xenogeneic islet transplantation. Front Immunol 2024; 15:1455691. [PMID: 39346923 PMCID: PMC11427288 DOI: 10.3389/fimmu.2024.1455691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
As an effective treatment for diabetes, islet transplantation has garnered significant attention and research in recent years. However, immune rejection and the toxicity of immunosuppressive drugs remain critical factors influencing the success of islet transplantation. While immunosuppressants are essential in reducing immune rejection reactions and can significantly improve the survival rate of islet transplants, improper use of these drugs can markedly increase mortality rates following transplantation. Additionally, the current availability of islet organ donations fails to meet the demand for organ transplants, making xenotransplantation a crucial method for addressing organ shortages. This review will cover the following three aspects: 1) the immune responses occurring during allogeneic islet transplantation, including three stages: inflammation and IBMIR, allogeneic immune response, and autoimmune recurrence; 2) commonly used immunosuppressants in allogeneic islet transplantation, including calcineurin inhibitors (Cyclosporine A, Tacrolimus), mycophenolate mofetil, glucocorticoids, and Bortezomib; and 3) early and late immune responses in xenogeneic islet transplantation and the immune effects of triple therapy (ECDI-fixed donor spleen cells (ECDI-SP) + anti-CD20 + Sirolimus) on xenotransplantation.
Collapse
Affiliation(s)
- Liting Yue
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Yao
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Xiaoqin Zhang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
49
|
Demko J, Weber R, Pearce D, Saha B. Aldosterone-independent regulation of K + secretion in the distal nephron. Curr Opin Nephrol Hypertens 2024; 33:526-534. [PMID: 38888034 PMCID: PMC11290980 DOI: 10.1097/mnh.0000000000001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW Maintenance of plasma K + concentration within a narrow range is critical to all cellular functions. The kidneys are the central organ for K + excretion, and robust renal excretory responses to dietary K + loads are essential for survival. Recent advances in the field have challenged the view that aldosterone is at the center of K + regulation. This review will examine recent findings and propose a new mechanism for regulating K + secretion. RECENT FINDINGS Local aldosterone-independent response systems in the distal nephron are increasingly recognized as key components of the rapid response to an acute K + load, as well as playing an essential role in sustained responses to increased dietary K + . The master kinase mTOR, best known for its role in mediating the effects of growth factors and insulin on growth and cellular metabolism, is central to these aldosterone-independent responses. Recent studies have shown that mTOR, particularly in the context of the "type 2" complex (mTORC2), is regulated by K + in a cell-autonomous fashion. SUMMARY New concepts related to cell-autonomous K + signaling and how it interfaces with aldosterone-dependent regulation are emerging. The underlying signaling pathways and effectors of regulated K + secretion, as well as implications for the aldosterone paradox and disease pathogenesis are discussed.
Collapse
Affiliation(s)
- John Demko
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
| | - Robert Weber
- Division of Endocrinology, University of California at San Francisco, San Francisco, CA, USA
| | - David Pearce
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bidisha Saha
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Qiu P, Zhou K, Wang Y, Chen X, Xiao C, Li W, Chen Y, Chang Y, Liu J, Zhou F, Wang X, Shang J, Liu L, Qiu Z. Revitalizing gut barrier integrity: role of miR-192-5p in enhancing autophagy via Rictor in enteritis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G317-G332. [PMID: 38954822 DOI: 10.1152/ajpgi.00291.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, Western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also used. Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in patients with enteritis.NEW & NOTEWORTHY We uncover the pivotal role of miR-192-5p in fortifying intestinal barriers amidst inflammation. Reduced miR-192-5p levels correlated with compromised gut integrity during inflammation. Notably, boosting miR-192-5p reversed gut damage by enhancing autophagy via suppressing Rictor, offering a potential therapeutic strategy for fortifying the intestinal barrier and alleviating inflammation in patients with enteritis.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Kezhi Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Zhao Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|