1
|
Kacker S, Parsad V, Singh N, Hordiichuk D, Alvarez S, Gohar M, Kacker A, Rai SK. Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation. J Dev Biol 2024; 12:12. [PMID: 38804432 PMCID: PMC11130840 DOI: 10.3390/jdb12020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024] Open
Abstract
The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior-posterior to left-right embryonic plane polarity through the polarization of cilia in the Kupffer's vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP.
Collapse
Affiliation(s)
- Sandeep Kacker
- Department of Pharmacology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Varuneshwar Parsad
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Naveen Singh
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Daria Hordiichuk
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Stacy Alvarez
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Mahnoor Gohar
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Anshu Kacker
- Department of Histology and Human Physiology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Sunil Kumar Rai
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| |
Collapse
|
2
|
Ebrahimi N, Kharazmi K, Ghanaatian M, Miraghel SA, Amiri Y, Seyedebrahimi SS, Mobarak H, Yazdani E, Parkhideh S, Hamblin MR, Aref AR. Role of the Wnt and GTPase pathways in breast cancer tumorigenesis and treatment. Cytokine Growth Factor Rev 2022; 67:11-24. [DOI: 10.1016/j.cytogfr.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022]
|
3
|
Wang IY, Chung CF, Babayeva S, Sogomonian T, Torban E. Loss of Planar Cell Polarity Effector Fuzzy Causes Renal Hypoplasia by Disrupting Several Signaling Pathways. J Dev Biol 2021; 10:jdb10010001. [PMID: 35076510 PMCID: PMC8788523 DOI: 10.3390/jdb10010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022] Open
Abstract
In vertebrates, the planar cell polarity (PCP) pathway regulates tissue morphogenesis during organogenesis, including the kidney. Mutations in human PCP effector proteins have been associated with severe syndromic ciliopathies. Importantly, renal hypoplasia has been reported in some patients. However, the developmental disturbance that causes renal hypoplasia is unknown. Here, we describe the early onset of profound renal hypoplasia in mice homozygous for null mutation of the PCP effector gene, Fuzzy. We found that this phenotype is caused by defective branching morphogenesis of the ureteric bud (UB) in the absence of defects in nephron progenitor specification or in early steps of nephrogenesis. By using various experimental approaches, we show that the loss of Fuzzy affects multiple signaling pathways. Specifically, we found mild involvement of GDNF/c-Ret pathway that drives UB branching. We noted the deficient expression of molecules belonging to the Bmp, Fgf and Shh pathways. Analysis of the primary cilia in the UB structures revealed a significant decrease in ciliary length. We conclude that renal hypoplasia in the mouse Fuzzy mutants is caused by defective UB branching associated with dysregulation of ciliary and non-ciliary signaling pathways. Our work suggests a PCP effector-dependent pathogenetic mechanism that contributes to renal hypoplasia in mice and humans.
Collapse
Affiliation(s)
- Irene-Yanran Wang
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Tamara Sogomonian
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
| | - Elena Torban
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada; (I.-Y.W.); (C.-F.C.); (S.B.); (T.S.)
- McGill University Health Center Research Institute, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
4
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
5
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
6
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
7
|
Gerondopoulos A, Strutt H, Stevenson NL, Sobajima T, Levine TP, Stephens DJ, Strutt D, Barr FA. Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex. Curr Biol 2019; 29:3323-3330.e8. [PMID: 31564489 PMCID: PMC6864590 DOI: 10.1016/j.cub.2019.07.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023]
Abstract
A subset of Rab GTPases have been implicated in cilium formation in cultured mammalian cells [1-6]. Rab11 and Rab8, together with their GDP-GTP exchange factors (GEFs), TRAPP-II and Rabin8, promote recruitment of the ciliary vesicle to the mother centriole and its subsequent maturation, docking, and fusion with the cell surface [2-5]. Rab23 has been linked to cilium formation and membrane trafficking at mature cilia [1, 7, 8]; however, the identity of the GEF pathway activating Rab23, a member of the Rab7 subfamily of Rabs, remains unclear. Longin-domain-containing complexes have been shown to act as GEFs for Rab7 subfamily GTPases [9-12]. Here, we show that Inturned and Fuzzy, proteins previously implicated as planar cell polarity (PCP) effectors and in developmentally regulated cilium formation [13, 14], contain multiple longin domains characteristic of the Mon1-Ccz1 family of Rab7 GEFs and form a specific Rab23 GEF complex. In flies, loss of Rab23 function gave rise to defects in planar-polarized trichome formation consistent with this biochemical relationship. In cultured human and mouse cells, Inturned and Fuzzy localized to the basal body and proximal region of cilia, and cilium formation was compromised by depletion of either Inturned or Fuzzy. Cilium formation arrested after docking of the ciliary vesicle to the mother centriole but prior to axoneme elongation and fusion of the ciliary vesicle and plasma membrane. These findings extend the family of longin domain GEFs and define a molecular activity linking Rab23-regulated membrane traffic to cilia and planar cell polarity.
Collapse
Affiliation(s)
- Andreas Gerondopoulos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Helen Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Nicola L Stevenson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Tomoaki Sobajima
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tim P Levine
- Institute of Ophthalmology, University College London, 11-43 Bath St., London EC1V 9EL, UK
| | - David J Stephens
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
8
|
Steinhauer J, Statman B, Fagan JK, Borck J, Surabhi S, Yarikipati P, Edelman D, Jenny A. Combover interacts with the axonemal component Rsp3 and is required for Drosophila sperm individualization. Development 2019; 146:dev179275. [PMID: 31391193 PMCID: PMC6765124 DOI: 10.1242/dev.179275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022]
Abstract
Gamete formation is key to survival of higher organisms. In male animals, spermatogenesis gives rise to interconnected spermatids that differentiate and individualize into mature sperm, each tightly enclosed by a plasma membrane. In Drosophila melanogaster, individualization of sister spermatids requires the formation of specialized actin cones that synchronously move along the sperm tails, removing inter-spermatid bridges and most of the cytoplasm. Here, we show that Combover (Cmb), originally identified as an effector of planar cell polarity (PCP) under control of Rho kinase, is essential for sperm individualization. cmb mutants are male sterile, with actin cones that fail to move in a synchronized manner along the flagella, despite being correctly formed and polarized initially. These defects are germline autonomous, independent of PCP genes, and can be rescued by wild-type Cmb, but not by a version of Cmb in which known Rho kinase phosphorylation sites are mutated. Furthermore, Cmb binds to the axonemal component Radial spoke protein 3, knockdown of which causes similar individualization defects, suggesting that Cmb coordinates the individualization machinery with the microtubular axonemes.
Collapse
Affiliation(s)
| | - Benjamin Statman
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Jeremy K Fagan
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jacob Borck
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Satya Surabhi
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Prathibha Yarikipati
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Daniel Edelman
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
9
|
A cytoskeletal activator and inhibitor are downstream targets of the frizzled/starry night planar cell polarity pathway in the Drosophila epidermis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:69-75. [PMID: 29649492 DOI: 10.1016/j.pbiomolbio.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022]
Abstract
The frizzled pathway regulates the planar polarity of epithelial cells. In insects this is manifested by the polarity of cuticular structures such as hairs (trichomes) and sensory bristles. A variety of evidence has established that this is achieved by regulating the subcellular location for activating the cytoskeleton in the epithelial cells. How this is accomplished is still poorly understood. In the best-studied tissue, the Drosophila pupal wing two important cytoskeletal regulators have been identified. One, shavenoid (sha), appears to be an activator while the second multiple wing hairs (mwh), appears to be an inhibitor. In vitro biochemistry has confirmed that the Multiple Wing Hairs protein inhibits the elongation of F-actin chains and surprisingly that it also bundles F-actin. These two activities can explain the multifaceted mwh mutant phenotype.
Collapse
|
10
|
Apodaca G. Role of Polarity Proteins in the Generation and Organization of Apical Surface Protrusions. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027813. [PMID: 28264821 DOI: 10.1101/cshperspect.a027813] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protruding from the apical surfaces of epithelial cells are specialized structures, including cilia, microplicae, microvilli, and stereocilia. These contribute to epithelial function by cushioning the apical surface, by amplifying its surface area to facilitate nutrient absorption, and by promoting sensory transduction and barrier function. Despite these important roles, and the diseases that result when their formation is perturbed, there remain significant gaps in our understanding of the biogenesis of apical protrusions, or the pathways that promote their organization and orientation once at the apical surface. Here, I review some general aspects of these apical structures, and then discuss our current understanding of their formation and organization with respect to proteins that specify apicobasolateral polarity and planar cell polarity.
Collapse
Affiliation(s)
- Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
11
|
Planar Cell Polarity Effector Fritz Interacts with Dishevelled and Has Multiple Functions in Regulating PCP. G3-GENES GENOMES GENETICS 2017; 7:1323-1337. [PMID: 28258110 PMCID: PMC5386880 DOI: 10.1534/g3.116.038695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Planar cell Polarity Effector (PPE) genes inturned, fuzzy, and fritz are downstream components in the frizzled/starry night signaling pathway, and their function is instructed by upstream Planar Cell Polarity (PCP) core genes such as frizzled and dishevelled. PPE proteins accumulate asymmetrically in wing cells and function in a protein complex mediated by direct interactions between In and Frtz and In and Fy. How the PCP proteins instruct the accumulation of PPE protein is unknown. We found a likely direct interaction between Dishevelled and Fritz and Dishevelled and Fuzzy that could play a role in this. We previously found that mild overexpression of frtz rescued a weak in allele. To determine if this was due to extra Frtz stabilizing mutant In or due to Frtz being able to bypass the need for In we generate a precise deletion of the inturned gene (inPD). We found that mild overexpression of Fritz partially rescued inPD, indicating that fritz has In independent activity in PCP. Previous studies of PPE proteins used fixed tissues, and did not provide any insights into the dynamic properties of PPE proteins. We used CRISPR/Cas9 genome editing technology to edit the fritz gene to add a green fluorescent protein tag. fritzmNeonGreen provides complete rescue activity and works well for in vivo imaging. Our data showed that Fritz is very dynamic in epidermal cells and preferentially distributed to discrete membrane subdomains (“puncta”). Surprisingly, we found it in stripes in developing bristles.
Collapse
|
12
|
Adler PN, Wallingford JB. From Planar Cell Polarity to Ciliogenesis and Back: The Curious Tale of the PPE and CPLANE proteins. Trends Cell Biol 2017; 27:379-390. [PMID: 28153580 DOI: 10.1016/j.tcb.2016.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/28/2016] [Accepted: 12/23/2016] [Indexed: 12/29/2022]
Abstract
Why some genes are more popular than others remains an open question, but one example of this phenomenon involves the genes controlling planar cell polarity (PCP), the polarization of cells within a plane of a tissue. Indeed, the so-called 'core' PCP genes such as dishevelled, frizzled, and prickle have been extensively studied both in animal models and by human genetics. By contrast, other genes that influence PCP signaling have received far less attention. Among the latter are inturned, fuzzy, and fritz, but recent work should bring these once obscure regulators into the limelight. We provide here a brief history of planar polarity effector (PPE) and CPLANE (ciliogenesis and planar polarity effector) proteins, discuss recent advances in understanding their molecular mechanisms of action, and describe their roles in human disease.
Collapse
Affiliation(s)
- Paul N Adler
- Departments of Biology and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Yang Y, Mlodzik M. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu Rev Cell Dev Biol 2016; 31:623-46. [PMID: 26566118 DOI: 10.1146/annurev-cellbio-100814-125315] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The establishment of planar cell polarity (PCP) in epithelial and mesenchymal cells is a critical, evolutionarily conserved process during development and organogenesis. Analyses in Drosophila and several vertebrate model organisms have contributed a wealth of information on the regulation of PCP. A key conserved pathway regulating PCP, the so-called core Wnt-Frizzled PCP (Fz/PCP) signaling pathway, was initially identified through genetic studies of Drosophila. PCP studies in vertebrates, most notably mouse and zebrafish, have identified novel factors in PCP signaling and have also defined cellular features requiring PCP signaling input. These studies have shifted focus to the role of Van Gogh (Vang)/Vangl genes in this molecular system. This review focuses on new insights into the core Fz/Vangl/PCP pathway and recent advances in Drosophila and vertebrate PCP studies. We attempt to integrate these within the existing core Fz/Vangl/PCP signaling framework.
Collapse
Affiliation(s)
- Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115;
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
14
|
Yasunaga T, Hoff S, Schell C, Helmstädter M, Kretz O, Kuechlin S, Yakulov TA, Engel C, Müller B, Bensch R, Ronneberger O, Huber TB, Lienkamp SS, Walz G. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells. J Cell Biol 2016; 211:963-73. [PMID: 26644512 PMCID: PMC4674276 DOI: 10.1083/jcb.201502043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inturned-mediated complex formation of NPHP4 and DAAM1 is important for ciliogenesis and ciliary function in multiciliated cells, presumably because of its requirement for the local rearrangement of actin cytoskeleton. Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton.
Collapse
Affiliation(s)
- Takayuki Yasunaga
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Sylvia Hoff
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Christoph Schell
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Oliver Kretz
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany Neuroanatomy, University of Freiburg, 79104 Freiburg, Germany
| | - Sebastian Kuechlin
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Toma A Yakulov
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Christina Engel
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Barbara Müller
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Robert Bensch
- Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| | - Olaf Ronneberger
- Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| | - Tobias B Huber
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| | - Soeren S Lienkamp
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Devenport D. Tissue morphodynamics: Translating planar polarity cues into polarized cell behaviors. Semin Cell Dev Biol 2016; 55:99-110. [PMID: 26994528 DOI: 10.1016/j.semcdb.2016.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
The ability of cells to collectively orient and align their behaviors is essential in multicellular organisms for unidirectional cilia beating, collective cell movements, oriented cell divisions, and asymmetric cell fate specification. The planar cell polarity pathway coordinates a vast and diverse array of collective cell behaviors by intersecting with downstream pathways that regulate cytoskeletal dynamics and intercellular signaling. How the planar polarity pathway translates directional cues to produce polarized cell behaviors is the focus of this review.
Collapse
Affiliation(s)
- Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Sobala LF, Wang Y, Adler PN. ChtVis-Tomato, a genetic reporter for in vivo visualization of chitin deposition in Drosophila. Development 2015; 142:3974-81. [PMID: 26395478 DOI: 10.1242/dev.126987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/08/2015] [Indexed: 01/06/2023]
Abstract
Chitin is a polymer of N-acetylglucosamine that is abundant and widely found in the biological world. It is an important constituent of the cuticular exoskeleton that plays a key role in the insect life cycle. To date, the study of chitin deposition during cuticle formation has been limited by the lack of a method to detect it in living organisms. To overcome this limitation, we have developed ChtVis-Tomato, an in vivo reporter for chitin in Drosophila. ChtVis-Tomato encodes a fusion protein that contains an apical secretion signal, a chitin-binding domain (CBD), a fluorescent protein and a cleavage site to release it from the plasma membrane. The chitin reporter allowed us to study chitin deposition in time lapse experiments and by using it we have identified unexpected deposits of chitin fibers in Drosophila pupae. ChtVis-Tomato should facilitate future studies on chitin in Drosophila and other insects.
Collapse
Affiliation(s)
- Lukasz F Sobala
- Biology Department and Cell Biology Department, University of Virginia, Charlottesville, VA 22904, USA
| | - Ying Wang
- Biology Department and Cell Biology Department, University of Virginia, Charlottesville, VA 22904, USA
| | - Paul N Adler
- Biology Department and Cell Biology Department, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
17
|
Lu Q, Schafer DA, Adler PN. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton. Development 2015; 142:2478-86. [PMID: 26153232 DOI: 10.1242/dev.122119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 01/18/2023]
Abstract
The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.
Collapse
Affiliation(s)
- Qiuheng Lu
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Paul N Adler
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
18
|
Abstract
Planar cell polarity (PCP) refers to the coordinated alignment of cell polarity across the tissue plane. Key to the establishment of PCP is asymmetric partitioning of cortical PCP components and intercellular communication to coordinate polarity between neighboring cells. Recent progress has been made toward understanding how protein transport, endocytosis, and intercellular interactions contribute to asymmetric PCP protein localization. Additionally, the functions of gradients and mechanical forces as global cues that bias PCP orientation are beginning to be elucidated. Together, these findings are shedding light on how global cues integrate with local cell interactions to organize cellular polarity at the tissue level.
Collapse
Affiliation(s)
- Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
19
|
Park TJ, Kim SK, Wallingford JB. The planar cell polarity effector protein Wdpcp (Fritz) controls epithelial cell cortex dynamics via septins and actomyosin. Biochem Biophys Res Commun 2014; 456:562-6. [PMID: 25436430 DOI: 10.1016/j.bbrc.2014.11.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 11/26/2022]
Abstract
Planar cell polarity (PCP) signaling controls polarized behaviors in diverse tissues, including the collective cell movements of gastrulation and the planar polarized beating of motile cilia. A major question in PCP signaling concerns the mechanisms linking this signaling cascade with more general cytoskeletal elements to drive polarized behavior. Previously, we reported that the PCP effector protein Wdpcp (formerly known as Fritz) interacts with septins and is critical for collective cell migration and cilia formation. Here, we report that Wdpcp is broadly involved in maintaining cortical tension in epithelial cells. In vivo 3D time-lapse imaging revealed that Wdpcp is necessary for basolateral plasma membrane stability in epithelial tissues, and we further show that Wdpcp controls cortical septin localization to maintain cortical rigidity in mucociliary epithelial cells. Finally, we show that Wdpcp acts via actomyosin to maintain balanced cortical tension in the epithelium. These data suggest that, in addition to its role in controlling plasma membrane dynamics in collective mesenchymal cell movements, Wdpcp is also essential for normal cell cortex stability during epithelial homeostasis.
Collapse
Affiliation(s)
- Tae Joo Park
- Dept. of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| | - Su Kyoung Kim
- Dept. of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States
| | - John B Wallingford
- Dept. of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, United States; Howard Hughes Medical Inst., United States.
| |
Collapse
|
20
|
Merello E, Mascelli S, Raso A, Piatelli G, Consales A, Cama A, Kibar Z, Capra V, Marco PD. Expanding the mutational spectrum associated to neural tube defects: literature revision and description of novel VANGL1 mutations. ACTA ACUST UNITED AC 2014; 103:51-61. [PMID: 25208524 DOI: 10.1002/bdra.23305] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/30/2014] [Accepted: 08/11/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neural Tube Defects (NTD) are a common class of birth defects that occur in approximately 1 in 1000 live births. Both genetic and nongenetic factors are involved in the etiology of NTD. Planar cell polarity (PCP) genes plays a critical role in neural tube closure in model organisms. Studies in humans have identified nonsynonymous mutations in PCP pathway genes, including the VANGL genes, that may play a role as risk factors for NTD. METHODS Here, we present the results of VANGL1 and VANGL2 mutational screening in a series of 53 NTD patients and 27 couples with a previous NTD affected pregnancy. RESULTS We identified three heterozygous missense variants in VANGL1, p.Ala187Val, p.Asp389His, and p.Arg517His, that are absent in controls and predicted to be detrimental on the protein function and, thus, we expanded the mutational spectrum of VANGL1 in NTD cases. We did not identify any new variants having an evident pathogenic effect on protein function in VANGL2. Moreover, we reviewed all the rare nonsynonymous or synonymous variants of VANGL1 and VANGL2 found in patients and controls so far published and re-evaluated them for their pathogenic role by in silico prediction tools. Association tests were performed to demonstrate the enrichment of deleterious variants in reviewed cases versus controls from Exome Variant Server (EVS). CONCLUSION We showed a significant (p = 7.0E-5) association between VANGL1 rare genetic variants, especially missense mutations, and NTDs risk.
Collapse
Affiliation(s)
- E Merello
- Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Combover/CG10732, a novel PCP effector for Drosophila wing hair formation. PLoS One 2014; 9:e107311. [PMID: 25207969 PMCID: PMC4160248 DOI: 10.1371/journal.pone.0107311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/10/2014] [Indexed: 01/22/2023] Open
Abstract
The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh.
Collapse
|
22
|
Wang Y, Yan J, Lee H, Lu Q, Adler PN. The proteins encoded by the Drosophila Planar Polarity Effector genes inturned, fuzzy and fritz interact physically and can re-pattern the accumulation of "upstream" Planar Cell Polarity proteins. Dev Biol 2014; 394:156-69. [PMID: 25072625 DOI: 10.1016/j.ydbio.2014.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 12/12/2022]
Abstract
The frizzled/starry night pathway regulates planar cell polarity in a wide variety of tissues in many types of animals. It was discovered and has been most intensively studied in the Drosophila wing where it controls the formation of the array of distally pointing hairs that cover the wing. The pathway does this by restricting the activation of the cytoskeleton to the distal edge of wing cells. This results in hairs initiating at the distal edge and growing in the distal direction. All of the proteins encoded by genes in the pathway accumulate asymmetrically in wing cells. The pathway is a hierarchy with the Planar Cell Polarity (PCP) genes (aka the core genes) functioning as a group upstream of the Planar Polarity Effector (PPE) genes which in turn function as a group upstream of multiple wing hairs. Upstream proteins, such as Frizzled accumulate on either the distal and/or proximal edges of wing cells. Downstream PPE proteins accumulate on the proximal edge under the instruction of the upstream proteins. A variety of types of data support this hierarchy, however, we have found that when over expressed the PPE proteins can alter both the subcellular location and level of accumulation of the upstream proteins. Thus, the epistatic relationship is context dependent. We further show that the PPE proteins interact physically and can modulate the accumulation of each other in wing cells. We also find that over expression of Frtz results in a marked delay in hair initiation suggesting that it has a separate role/activity in regulating the cytoskeleton that is not shared by other members of the group.
Collapse
Affiliation(s)
- Ying Wang
- Biology Department and Cell Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Jie Yan
- Biology Department and Cell Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Haeryun Lee
- Biology Department and Cell Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Qiuheng Lu
- Biology Department and Cell Biology Department, University of Virginia, Charlottesville, VA 22903, USA
| | - Paul N Adler
- Biology Department and Cell Biology Department, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
23
|
Singh J, Mlodzik M. Planar cell polarity signaling: coordination of cellular orientation across tissues. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:479-99. [PMID: 23066429 DOI: 10.1002/wdev.32] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Establishment of Planar Cell Polarity (PCP) in epithelia, in the plane of an epithelium, is an important feature of the development and homeostasis of most organs. Studies in different model organisms have contributed a wealth of information regarding the mechanisms that govern PCP regulation. Genetic studies in Drosophila have identified two signaling systems, the Fz/PCP and Fat/Dachsous system, which are both required for PCP establishment in many different tissues in a largely non-redundant manner. Recent advances in vertebrate PCP studies have added novel factors of PCP regulation and also new cellular features requiring PCP-signaling input, including the positioning and orientation of the primary cilium of many epithelial cells. This review focuses mostly on several recent advances made in the Drosophila and vertebrate PCP field and integrates these within the existing PCP-signaling framework.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
24
|
Hazelwood LD, Hancock JM. Functional modelling of planar cell polarity: an approach for identifying molecular function. BMC DEVELOPMENTAL BIOLOGY 2013; 13:20. [PMID: 23672397 PMCID: PMC3662592 DOI: 10.1186/1471-213x-13-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/30/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cells in some tissues acquire a polarisation in the plane of the tissue in addition to apical-basal polarity. This polarisation is commonly known as planar cell polarity and has been found to be important in developmental processes, as planar polarity is required to define the in-plane tissue coordinate system at the cellular level. RESULTS We have built an in-silico functional model of cellular polarisation that includes cellular asymmetry, cell-cell signalling and a response to a global cue. The model has been validated and parameterised against domineering non-autonomous wing hair phenotypes in Drosophila. CONCLUSIONS We have carried out a systematic comparison of in-silico polarity phenotypes with patterns observed in vivo under different genetic manipulations in the wing. This has allowed us to classify the specific functional roles of proteins involved in generating cell polarity, providing new hypotheses about their specific functions, in particular for Pk and Dsh. The predictions from the model allow direct assignment of functional roles of genes from genetic mosaic analysis of Drosophila wings.
Collapse
Affiliation(s)
- Lee D Hazelwood
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
25
|
Adler PN, Sobala LF, Thom D, Nagaraj R. dusky-like is required to maintain the integrity and planar cell polarity of hairs during the development of the Drosophila wing. Dev Biol 2013; 379:76-91. [PMID: 23623898 DOI: 10.1016/j.ydbio.2013.04.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/11/2013] [Accepted: 04/04/2013] [Indexed: 11/17/2022]
Abstract
The cuticular hairs and sensory bristles that decorate the adult Drosophila epidermis and the denticles found on the embryo have been used in studies on planar cell polarity and as models for the cytoskeletal mediated morphogenesis of cellular extensions. ZP domain proteins have recently been found to be important for the morphogenesis of both denticles and bristles. Here we show that the ZP domain protein Dusky-like is a key player in hair morphogenesis. As is the case in bristles, in hairs dyl mutants display a dramatic phenotype that is the consequence of a failure to maintain the integrity of the extension after outgrowth. Hairs lacking dyl function are split, thinned, multipled and often very short. dyl is required for normal chitin deposition in hairs, but chitin is not required for the normal accumulation of Dyl, hence dyl acts upstream of chitin. A lack of chitin however, does not mimic the dyl hair phenotype, thus Dyl must have other targets in hair morphogenesis. One of these appears to be the actin cytoskeleton. Interestingly, dyl mutants also display a unique planar cell polarity phenotype that is distinct from that seen with mutations in the frizzled/starry night or dachsous/fat pathway genes. Rab11 was previously found to be essential for Dyl plasma membrane localization in bristles. Here we found that the expression of a dominant negative Rab11 can mimic the dyl hair morphology phenotype consistent with Rab11 also being required for Dyl function in hairs. We carried out a small directed screen to identify genes that might function with dyl and identified Chitinase 6 (Cht6) as a strong candidate, as knocking down Cht6 function led to weak versions of all of the dyl hair phenotypes.
Collapse
Affiliation(s)
- Paul N Adler
- Biology Department, Institute for Morphogenesis and Regenerative Medicine, University of Virginia, Charlottesville, VA 22903, USA.
| | | | | | | |
Collapse
|
26
|
Mouri K, Horiuchi SY, Uemura T. Cohesin controls planar cell polarity by regulating the level of the seven-pass transmembrane cadherin Flamingo. Genes Cells 2012; 17:509-24. [PMID: 22563761 DOI: 10.1111/j.1365-2443.2012.01604.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planar cell polarity (PCP) refers to the coordination of global organ axes and individual cell polarity in vertebrate and invertebrate epithelia. Mechanisms of PCP have been best studied in the Drosophila wing, in which each epidermal cell produces a single wing hair at the distal cell edge, and this spatial specification is mediated by redistribution of the core group proteins, including the seven-pass transmembrane cadherin Flamingo/Starry night (Fmi/Stan), to selective plasma membrane domains. Through genetic screening, we found that a mutation of the SMC3 gene caused dramatic misspecification of wing hair positions. SMC3 protein is one subunit of the cohesin complex, which regulates sister chromatid cohesion and also plays a role in transcriptional control of gene expression. In the SMC3 mutant cells, Fmi appeared to be upregulated by a posttranscriptional mechanism(s), and this elevation of Fmi was at least one cause of the PCP defect. In addition to the PCP phenotype, the loss of the cohesin function affected wing morphogenesis at multiple levels: one malformation was loss of the wing margin, and this was most likely a result of downregulation of the homeodomain protein Cut. At the cellular level, apical cell size and hexagonal packing were affected in the mutant wing. Dysfunction of cohesin in humans results in Cornelia de Lange syndrome (CdLS), which is characterized by various developmental abnormalities and mental retardation. Our analysis of cohesin in epithelia may provide new insight into cellular and molecular mechanisms of CdLS.
Collapse
Affiliation(s)
- Kousuke Mouri
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
27
|
Peng Y, Axelrod JD. Asymmetric protein localization in planar cell polarity: mechanisms, puzzles, and challenges. Curr Top Dev Biol 2012; 101:33-53. [PMID: 23140624 DOI: 10.1016/b978-0-12-394592-1.00002-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polarization of epithelial cells along an axis orthogonal to their apical-basal axis is increasingly recognized for roles in a variety of developmental events and physiological functions. While now studied in many model organisms, mechanistic understanding is rooted in intensive investigations of planar cell polarity (PCP) in Drosophila. Consensus has emerged that two molecular modules, referred to here as the global and core modules, operate upstream of effector proteins to produce morphological PCP. Proteins of the core module develop subcellular asymmetry, accumulating in two groups on opposite sides of cells, consistent with proposed functions in producing cell polarity and in communicating that polarity between neighboring cells. Less clear are the molecular and cell biological mechanisms underlying core module function in the generation and communication of subcellular asymmetry and the relationship between the global and the core modules. In this review, we discuss these two unresolved questions, highlighting important studies and potentially enlightening avenues for further investigation. It is likely that results from Drosophila will continue to inform our views of the growing list of examples of PCP in vertebrate systems.
Collapse
Affiliation(s)
- Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
28
|
Abstract
Drosophila has been the key model system for studies on planar cell polarity (PCP). The rich morphology of the insect exoskeleton contains many structures that display PCP. Among these are the trichomes (cuticular hairs) that cover much of the exoskeleton, sensory bristles, and ommatidia. Many genes have been identified that must function for the development of normal PCP. Among these are the genes that comprise the frizzled/starry night (fz/stan) and dachsous/fat pathways. The mechanisms that underlie the function of the fz/stan pathway are best understood. All of the protein products of these genes accumulate asymmetrically in wing cells and there is good evidence that this involves local intercellular signaling between protein complexes on the distal edge of one cell and the juxtaposed proximal edge of its neighbor. It is thought that a feedback system, directed transport, and stabilizing protein-protein interactions mediate the formation of distal and proximal protein complexes. These complexes appear to recruit downstream proteins that function to spatially restrict the activation of the cytoskeleton in wing cells. This leads to the formation of the array of distally pointing hairs found on wings.
Collapse
Affiliation(s)
- Paul N Adler
- Biology Department, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
29
|
Thomas C, Strutt D. The roles of the cadherins Fat and Dachsous in planar polarity specification in Drosophila. Dev Dyn 2011; 241:27-39. [PMID: 21919123 DOI: 10.1002/dvdy.22736] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 11/06/2022] Open
Abstract
Planar polarity is generated through the activity of two groups of proteins, the "core" system and the Fat (Ft)/Dachsous (Ds) system. Although both are conserved from insects to mammals, vertebrate studies into planar polarity have primarily focussed on core planar polarity proteins and have only recently branched into the study of the Ft/Ds system. In Drosophila, however, years of detailed analysis have started to elucidate some of the mechanisms by which Ft/Ds signalling might set up polarity across a tissue, and how this may impact upon core protein-mediated planar polarity. In this review, we discuss the major findings, models, and controversies that have emerged from Drosophila research into the Ft/Ds system, and indicate some areas for further investigation.
Collapse
Affiliation(s)
- Chloe Thomas
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.
| | | |
Collapse
|
30
|
Abstract
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.
Collapse
Affiliation(s)
- Saw Myat Thanda W Maung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | |
Collapse
|
31
|
Abstract
Planar polarity describes the coordinated polarisation of cells or structures in the plane of a tissue. The patterning mechanisms that underlie planar polarity are well characterised in Drosophila, where many events are regulated by two pathways: the 'core' planar polarity complex and the Fat/Dachsous system. Components of both pathways also function in vertebrates and are implicated in diverse morphogenetic processes, some of which self-evidently involve planar polarisation and some of which do not. Here, we review the molecular mechanisms and cellular consequences of planar polarisation in diverse contexts, seeking to identify the common principles across the animal kingdom.
Collapse
Affiliation(s)
- Lisa V. Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
32
|
Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 2011; 25:201-13. [PMID: 21289065 DOI: 10.1101/gad.2008011] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cilia are important cellular structures that have been implicated in a variety of signaling cascades. In this review, we discuss the current evidence for and against a link between cilia and both the canonical Wnt/β-catenin pathway and the noncanonical Wnt/planar cell polarity (PCP) pathway. Furthermore, we address the evidence implicating a role for PCP components in ciliogenesis. Given the lack of consensus in the field, we use new data on the control of ciliary protein localization as a basis for proposing new models by which cell type-specific regulation of ciliary components via differential transport, regulated entry and exit, or diffusion barriers might generate context-dependent functions for cilia.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
33
|
Wallingford JB. Planar cell polarity signaling, cilia and polarized ciliary beating. Curr Opin Cell Biol 2010; 22:597-604. [PMID: 20817501 PMCID: PMC2974441 DOI: 10.1016/j.ceb.2010.07.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 12/27/2022]
Abstract
Planar cell polarity signaling governs a wide array of polarized cell behaviors in animals. Recent reports now show that PCP signaling is essential for the directional beating of motile cilia. Interestingly, PCP signaling acts in a variety of ciliated cell types that use motile cilia to generate directional fluid flow in very different ways. This review will synthesize these recent papers and place them in context with previous studies of PCP signaling in polarized cellular morphogenesis and collective cell movement.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, Section of Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station C1000, TX 78712, USA.
| |
Collapse
|
34
|
The Drosophila planar polarity proteins inturned and multiple wing hairs interact physically and function together. Genetics 2010; 185:549-58. [PMID: 20351219 DOI: 10.1534/genetics.110.114066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The conserved frizzled (fz) pathway regulates planar cell polarity in both vertebrate and invertebrate animals. This pathway has been most intensively studied in the wing of Drosophila, where the proteins encoded by pathway genes all accumulate asymmetrically. Upstream members of the pathway accumulate on the proximal, distal, or both cell edges in the vicinity of the adherens junction. More downstream components including Inturned and Multiple Wing Hairs accumulate on the proximal side of wing cells prior to hair initiation. The Mwh protein differs from other members of the pathway in also accumulating in growing hairs. Here we show that the two Mwh accumulation patterns are under different genetic control with the early proximal accumulation being regulated by the fz pathway and the latter hair accumulation being largely independent of the pathway. We also establish recruitment by proximally localized Inturned to be a putative mechanism for the localization of Mwh to the proximal side of wing cells. Genetically inturned (in) acts upstream of mwh (mwh) and is required for the proximal localization of Mwh. We show that Mwh can bind to and co-immunoprecipitate with Inturned. We also show that these two proteins can function in close juxtaposition in vivo. An InMwh fusion protein provided complete rescue activity for both in and mwh mutations. The fusion protein localized to the proximal side of wing cells prior to hair formation and in growing hairs as expected if protein localization is a key for the function of these proteins.
Collapse
|
35
|
Drosophila Rab23 is involved in the regulation of the number and planar polarization of the adult cuticular hairs. Genetics 2010; 184:1051-65. [PMID: 20124028 DOI: 10.1534/genetics.109.112060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The planar coordination of cellular polarization is an important, yet not well-understood aspect of animal development. In a screen for genes regulating planar cell polarization in Drosophila, we identified Rab23, encoding a putative vesicular trafficking protein. Mutations in the Drosophila Rab23 ortholog result in abnormal trichome orientation and the formation of multiple hairs on the wing, leg, and abdomen. We show that Rab23 is required for hexagonal packing of the wing cells. We found that Rab23 is able to associate with the proximally accumulated Prickle protein, although Rab23 itself does not seem to display a polarized subcellular distribution in wing cells, and it appears to play a relatively subtle role in cortical polarization of the polarity proteins. The absence of Rab23 leads to increased actin accumulation in the subapical region of the pupal wing cells that fail to restrict prehair initiation to a single site. Rab23 acts as a dominant enhancer of the weak multiple hair phenotype exhibited by the core polarity mutations, whereas the Rab23 homozygous mutant phenotype is sensitive to the gene dose of the planar polarity effector genes. Together, our data suggest that Rab23 contributes to the mechanism that inhibits hair formation at positions outside of the distal vertex by activating the planar polarity effector system.
Collapse
|
36
|
PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals. Dev Biol 2010; 339:418-28. [PMID: 20067783 DOI: 10.1016/j.ydbio.2010.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 01/03/2010] [Accepted: 01/04/2010] [Indexed: 11/21/2022]
Abstract
The PCP effector gene Inturned regulates planar cell polarity (PCP) and wing hair formation in Drosophila wings. In order to understand the roles for Inturned in mammalian embryonic development, we generated a null mutant allele for the mouse homologue of Inturned (Intu) via gene-targeting in ES cells. Mouse Intu null mutants are homozygous lethal at midgestation, exhibiting multiple defects including neural tube closure defects, abnormal dorsal/ventral patterning of the central nervous system and abnormal anterior-posterior patterning of the limbs resulting in severe polydactyly (7-9 digits each limb). The developmental processes affected by the Intu mutation are under the control of Hh signaling through Gli-family transcription factors. We found that in Intu mutant embryos the expression of Gli1 and Ptch1, two direct transcriptional targets of Hh signaling, is down-regulated, and the proteolytic processing of Gli3 is compromised. We further demonstrate that Intu plays significant roles in the formation of primary cilia both during embryonic development and in cultured fibroblasts. Finally, a cytoplasmic GFP-Intu fusion protein efficiently rescues the ciliogenic defects in Intu mutant cells. In conclusion, we show that PCP effector gene Intu is an important regulator of cilia formation, Hh signal transduction, and embryonic development in mammals.
Collapse
|
37
|
Yan J, Lu Q, Fang X, Adler PN. Rho1 has multiple functions in Drosophila wing planar polarity. Dev Biol 2009; 333:186-99. [PMID: 19576201 PMCID: PMC2728161 DOI: 10.1016/j.ydbio.2009.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 11/20/2022]
Abstract
The frizzled (fz) signaling/signal transduction pathway controls planar cell polarity in both vertebrates and invertebrates. Previous data implicated Rho1 as a component of the fz pathway in Drosophila but it was unclear how it functioned. The existence of a G Protein Binding-Formin Homology 3 (GBD-FH3) domain in Multiple Wing Hairs, a downstream component of the pathway suggested that Rho1 might function by binding to and activating Mwh. We re-examined the role of Rho1 in wing planar polarity and found that it had multiple functions. Aberrant Rho1 activity led to changes in the number of hairs formed, changes in cell shape and F-actin and changes in cellular junctions. Experiments that utilized Rho effector loop mutations argued that these phenotypes were mediated by effects of Rho1 on the cytoskeleton and not by effects on transcription. We found strong positive genetic interactions between Rho1 and mwh, that Rho1 regulated the accumulation of Mwh protein and that these two proteins could be co-immunoprecipitated. The Mwh GBD:FH3 domain was sufficient for co-immunoprecipitation with Rho1, consistent with this domain mediating the interaction. However, further experiments showed that Rho1 function in wing differentiation was not limited to interacting with Mwh. We established by genetic experiments that Rho1 could influence hair morphogenesis in the absence of mwh and that the disruption of Rho1 activity could interfere with the zig zag accumulation pattern of upstream fz pathway proteins. Thus, our results argue that in addition to its interaction with Mwh Rho1 has functions in wing planar polarity that are parallel to and upstream of fz. The upstream function may be an indirect one and associated with the requirement for normal apical basal polarity and adherens junctions for the accumulation of PCP protein complexes.
Collapse
Affiliation(s)
- Jie Yan
- Biology Department, Department of Cell Biology, Morphogenesis and Regenerative Medicine Institute and Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | |
Collapse
|
38
|
Abstract
During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical-basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.
Collapse
Affiliation(s)
- Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Room R226a, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Abstract
Cilia are complex structures that have garnered interest because of their roles in vertebrate development and their involvement in human genetic disorders. In contrast to multicellular invertebrates in which cilia are restricted to specific cell types, these organelles are found almost ubiquitously in vertebrate cells, where they serve a diverse set of signaling functions. Here, we highlight properties of vertebrate cilia, with particular emphasis on their relationship with other subcellular structures, and explore the physiological consequences of ciliary dysfunction.
Collapse
Affiliation(s)
- Jantje M. Gerdes
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erica E. Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Strutt H, Strutt D. Asymmetric localisation of planar polarity proteins: Mechanisms and consequences. Semin Cell Dev Biol 2009; 20:957-63. [PMID: 19751618 DOI: 10.1016/j.semcdb.2009.03.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/02/2009] [Accepted: 03/12/2009] [Indexed: 01/30/2023]
Abstract
Planar polarisation of tissues is essential for many aspects of developmental patterning. It is regulated by a conserved group of core planar polarity proteins, which localise asymmetrically within cells prior to morphological signs of polarisation. A subset of these core proteins also interact across cell boundaries, mediating intercellular communication that co-ordinates polarity between neighbouring cells. Core protein localisation subsequently mediates changes in the actin cytoskeleton which lead to overt polarisation. In this review we discuss the mechanisms by which the core planar polarity proteins become asymmetrically localised, and the significance of this subcellular localisation for both intercellular communication and downstream effects on the cytoskeleton.
Collapse
Affiliation(s)
- Helen Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
41
|
The multiple-wing-hairs gene encodes a novel GBD-FH3 domain-containing protein that functions both prior to and after wing hair initiation. Genetics 2008; 180:219-28. [PMID: 18723886 DOI: 10.1534/genetics.108.091314] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The frizzled signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis multiple wing hairs (mwh) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes. One is located on the distal side of wing cells and a second on the proximal side. This asymmetric protein accumulation is thought to lead to the activation of the cytoskeleton on the distal side, which in turn leads to each cell forming a single distally pointing hair. We identified mwh as CG13913, which encodes a novel G protein binding domain-formin homology 3 (GBD-FH3) domain protein. The Mwh protein accumulated on the proximal side of wing cells prior to hair formation. Unlike planar polarity proteins such as Frizzled or Inturned, Mwh also accumulated in growing hairs. This suggested that mwh had two temporally separate functions in wing development. Evidence for these two functions also came from temperature-shift experiments with a temperature-sensitive allele. Overexpression of Mwh inhibited hair initiation, thus Mwh acts as a negative regulator of the cytoskeleton. Our data argued early proximal Mwh accumulation restricts hair initiation to the distal side of wing cells and the later hair accumulation of Mwh prevents the formation of ectopic secondary hairs. This later function appears to be a feedback mechanism that limits cytoskeleton activation to ensure a single hair is formed.
Collapse
|
42
|
Strutt D, Warrington SJ. Planar polarity genes in the Drosophila wing regulate the localisation of the FH3-domain protein Multiple Wing Hairs to control the site of hair production. Development 2008; 135:3103-11. [PMID: 18701542 DOI: 10.1242/dev.025205] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The core planar polarity proteins play important roles in coordinating cell polarity, in part by adopting asymmetric subcellular localisations that are likely to serve as cues for cell polarisation by as yet uncharacterised pathways. Here we describe the role of Multiple Wing Hairs (Mwh), a novel formin homology 3 (FH3)-domain protein, which acts downstream of the core polarity proteins to restrict the production of actin-rich prehairs to distal cell edges in the Drosophila pupal wing. Mwh appears to function as a repressor of actin filament formation and, in its absence, ectopic actin bundles are seen across the entire apical surface of cells. We show that the proximally localised core polarity protein Strabismus acts via the downstream effector proteins Inturned, Fuzzy and Fritz to stabilise Mwh in apico-proximal cellular regions. In addition, the distally localised core polarity protein Frizzled positively promotes prehair initiation, suggesting that both proximal and distal cellular cues act together to ensure accurate prehair placement.
Collapse
Affiliation(s)
- David Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
43
|
Park TJ, Mitchell BJ, Abitua PB, Kintner C, Wallingford JB. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 2008; 40:871-9. [PMID: 18552847 PMCID: PMC2771675 DOI: 10.1038/ng.104] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/28/2008] [Indexed: 02/07/2023]
Abstract
The planar cell polarity (PCP) signaling system governs many aspects of polarized cell behavior. Here, we use an in vivo model of vertebrate mucociliary epithelial development to show that Dishevelled (Dvl) is essential for the apical positioning of basal bodies. We find that Dvl and Inturned mediate the activation of the Rho GTPase specifically at basal bodies, and that these three proteins together mediate the docking of basal bodies to the apical plasma membrane. Moreover, we find that this docking involves a Dvl-dependent association of basal bodies with membrane-bound vesicles and the vesicle-trafficking protein, Sec8. Once docked, basal bodies again require Dvl and Rho for the planar polarization that underlies directional beating of cilia. These results demonstrate previously undescribed functions for PCP signaling components and suggest that a common signaling apparatus governs both apical docking and planar polarization of basal bodies.
Collapse
Affiliation(s)
- Tae Joo Park
- Dept. of Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology University of Texas Austin, Texas 78712
| | - Brian J. Mitchell
- The Salk Institute for Biological Studies, La Jolla, California 92186, USA
| | - Philip B. Abitua
- Dept. of Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology University of Texas Austin, Texas 78712
| | - Chris Kintner
- The Salk Institute for Biological Studies, La Jolla, California 92186, USA
| | - John B. Wallingford
- Dept. of Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology University of Texas Austin, Texas 78712
| |
Collapse
|
44
|
Bastock R, Strutt D. The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis. Development 2007; 134:3055-64. [PMID: 17652348 PMCID: PMC1991286 DOI: 10.1242/dev.010447] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied; however, in vivo, cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in the collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about six to ten epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells that they carry along. Disruption of planar polarity signalling causes abnormalities in actin-rich processes on the cell surface and leads to less-efficient migration. This is apparently due, in part, to a loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that, during collective cell migration, the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics.
Collapse
Affiliation(s)
| | - David Strutt
- Centre for Developmental and Biomedical Genetics Department of Biomedical Science University of Sheffield Western Bank Sheffield S10 2TN UK
| |
Collapse
|
45
|
Ren N, Charlton J, Adler PN. The flare gene, which encodes the AIP1 protein of Drosophila, functions to regulate F-actin disassembly in pupal epidermal cells. Genetics 2007; 176:2223-34. [PMID: 17565945 PMCID: PMC1950627 DOI: 10.1534/genetics.107.072959] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult Drosophila are decorated with several types of polarized cuticular structures, such as hairs and bristles. The morphogenesis of these takes place in pupal cells and is mediated by the actin and microtubule cytoskeletons. Mutations in flare (flr) result in grossly abnormal epidermal hairs. We report here that flr encodes the Drosophila actin interacting protein 1 (AIP1). In other systems this protein has been found to promote cofilin-mediated F-actin disassembly. In Drosophila cofilin is encoded by twinstar (tsr). We show that flr mutations result in increased levels of F-actin accumulation and increased F-actin stability in vivo. Further, flr is essential for cell proliferation and viability and for the function of the frizzled planar cell polarity system. All of these phenotypes are similar to those seen for tsr mutations. This differs from the situation in yeast where cofilin is essential while aip1 mutations result in only subtle defects in the actin cytoskeleton. Surprisingly, we found that mutations in flr and tsr also result in greatly increased tubulin staining, suggesting a tight linkage between the actin and microtubule cytoskeleton in these cells.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Institute for Morphogenesis and Regenerative Medicine and Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | | | | |
Collapse
|
46
|
Seifert JRK, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007; 8:126-38. [PMID: 17230199 DOI: 10.1038/nrg2042] [Citation(s) in RCA: 394] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signalling through Frizzled (Fz)/planar cell polarity (PCP) is a conserved mechanism that polarizes cells along specific axes in a tissue. Genetic screens in Drosophila melanogaster pioneered the discovery of core PCP factors, which regulate the orientation of hairs on wings and facets in eyes. Recent genetic evidence shows that the Fz/PCP pathway is conserved in vertebrates and is crucial for disparate processes as gastrulation and sensory cell orientation. Fz/PCP signalling depends on complex interactions between core components, leading to their asymmetric distribution and ultimately polarized activity in a cell. Whereas several mechanistic aspects of PCP have been uncovered, the global coordination of this polarization remains debated.
Collapse
Affiliation(s)
- Jessica R K Seifert
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
47
|
Abstract
Planar cell polarity (PCP) refers to the polarization of a field of cells within the plane of a cell sheet. This form of polarization is required for diverse cellular processes in vertebrates, including convergent extension (CE), the establishment of PCP in epithelial tissues and ciliogenesis. Perhaps the most distinct example of vertebrate PCP is the uniform orientation of stereociliary bundles at the apices of sensory hair cells in the mammalian auditory sensory organ. The establishment of PCP in the mammalian cochlea occurs concurrently with CE in this ciliated epithelium, therefore linking three cellular processes regulated by the vertebrate PCP pathway in the same tissue and emerging as a model system for dissecting PCP signaling. This review summarizes the morphogenesis of this model system to assist the interpretation of the emerging data and proposes molecular mechanisms underlying PCP signaling in vertebrates.
Collapse
Affiliation(s)
| | - Ping Chen
- Correspondence to: Ping Chen, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.
| |
Collapse
|
48
|
Kelly M, Chen P. Shaping the mammalian auditory sensory organ by the planar cell polarity pathway. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2007; 51:535-47. [PMID: 17891715 PMCID: PMC4158833 DOI: 10.1387/ijdb.072344mk] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.
Collapse
Affiliation(s)
- Michael Kelly
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
49
|
Strutt D, Strutt H. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev Biol 2006; 302:181-94. [PMID: 17045581 PMCID: PMC2082130 DOI: 10.1016/j.ydbio.2006.09.026] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 11/21/2022]
Abstract
During planar polarity patterning of the Drosophila wing, a “core” group of planar polarity genes has been identified which acts downstream of global polarity cues to locally coordinate cell polarity and specify trichome production at distal cell edges. These genes encode protein products that assemble into asymmetric apicolateral complexes that straddle the proximodistal junctional region between adjacent cells. We have carried out detailed genetic analysis experiments, analysing the requirements of each complex component for planar polarity patterning. We find that the three transmembrane proteins at the core of the complex, Frizzled, Strabismus and Flamingo, are required earliest in development and are the only components needed for intercellular polarity signalling. Notably, cells that lack both Frizzled and Strabismus are unable to signal, revealing an absolute requirement for both proteins in cell–cell communication. In contrast the cytoplasmic components Dishevelled, Prickle and Diego are not needed for intercellular communication. These factors contribute to the cell–cell propagation of polarity, most likely by promotion of intracellular asymmetry. Interestingly, both local polarity propagation and trichome placement occur normally in mutant backgrounds where asymmetry of polarity protein distribution is undetectable, suggesting such asymmetry is not an absolute requirement for any of the functions of the core complex.
Collapse
Affiliation(s)
- David Strutt
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, UK.
| | | |
Collapse
|
50
|
|