1
|
Sandeep P, Sharma P, Luhach K, Dhiman N, Kharkwal H, Sharma B. Neuron navigators: A novel frontier with physiological and pathological implications. Mol Cell Neurosci 2023; 127:103905. [PMID: 37972804 DOI: 10.1016/j.mcn.2023.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.
Collapse
Affiliation(s)
- Parth Sandeep
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Harsha Kharkwal
- Amity Natural and Herbal Product Research, Amity Institute of Phytochemistry and Phytomedicine, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
2
|
Romeiro Motta M, Biswas S, Schaedel L. Beyond uniformity: Exploring the heterogeneous and dynamic nature of the microtubule lattice. Eur J Cell Biol 2023; 102:151370. [PMID: 37922811 DOI: 10.1016/j.ejcb.2023.151370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
A fair amount of research on microtubules since their discovery in 1963 has focused on their dynamic tips. In contrast, the microtubule lattice was long believed to be highly regular and static, and consequently received far less attention. Yet, as it turned out, the microtubule lattice is neither as regular, nor as static as previously believed: structural studies uncovered the remarkable wealth of different conformations the lattice can accommodate. In the last decade, the microtubule lattice was shown to be labile and to spontaneously undergo renovation, a phenomenon that is intimately linked to structural defects and was called "microtubule self-repair". Following this breakthrough discovery, further recent research provided a deeper understanding of the lattice self-repair mechanism, which we review here. Instrumental to these discoveries were in vitro microtubule reconstitution assays, in which microtubules are grown from the minimal components required for their dynamics. In this review, we propose a shift from the term "lattice self-repair" to "lattice dynamics", since this phenomenon is an inherent property of microtubules and can happen without microtubule damage. We focus on how in vitro microtubule reconstitution assays helped us learn (1) which types of structural variations microtubules display, (2) how these structural variations influence lattice dynamics and microtubule damage caused by mechanical stress, (3) how lattice dynamics impact tip dynamics, and (4) how microtubule-associated proteins (MAPs) can play a role in structuring the lattice. Finally, we discuss the unanswered questions about lattice dynamics and how technical advances will help us tackle these questions.
Collapse
Affiliation(s)
- Mariana Romeiro Motta
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany; Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École normale supérieure de Lyon, Lyon 69364, France
| | - Subham Biswas
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany
| | - Laura Schaedel
- Department of Physics, Center for Biophysics, Campus A2 4, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
3
|
Joseph I, Flores J, Farrell V, Davis J, Bianchi‐Smak J, Feng Q, Goswami S, Lin X, Wei Z, Tong K, Feng Z, Verzi MP, Bonder EM, Goldenring JR, Gao N. RAB11A and RAB11B control mitotic spindle function in intestinal epithelial progenitor cells. EMBO Rep 2023; 24:e56240. [PMID: 37424454 PMCID: PMC10481667 DOI: 10.15252/embr.202256240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
RAB11 small GTPases and associated recycling endosome have been localized to mitotic spindles and implicated in regulating mitosis. However, the physiological significance of such regulation has not been observed in mammalian tissues. We have used newly engineered mouse models to investigate intestinal epithelial renewal in the absence of single or double isoforms of RAB11 family members: Rab11a and Rab11b. Comparing with single knockouts, mice with compound ablation demonstrate a defective cell cycle entry and robust mitotic arrest followed by apoptosis, leading to a total penetrance of lethality within 3 days of gene ablation. Upon Rab11 deletion ex vivo, enteroids show abnormal mitotic spindle formation and cell death. Untargeted proteomic profiling of Rab11a and Rab11b immunoprecipitates has uncovered a shared interactome containing mitotic spindle microtubule regulators. Disrupting Rab11 alters kinesin motor KIF11 function and impairs bipolar spindle formation and cell division. These data demonstrate that RAB11A and RAB11B redundantly control mitotic spindle function and intestinal progenitor cell division, a mechanism that may be utilized to govern the homeostasis and renewal of other mammalian tissues.
Collapse
Affiliation(s)
- Ivor Joseph
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - Juan Flores
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Justin Davis
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Qiang Feng
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | | | - Xiang Lin
- Department of Computer SciencesNew Jersey Institute of TechnologyNewarkNJUSA
| | - Zhi Wei
- Department of Computer SciencesNew Jersey Institute of TechnologyNewarkNJUSA
| | - Kevin Tong
- Department of GeneticsRutgers UniversityNew BrunswickNJUSA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New JerseyNew BrunswickNJUSA
| | | | - Edward M Bonder
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| | - James R Goldenring
- Section of Surgical Sciences and Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Nan Gao
- Department of Biological SciencesRutgers UniversityNewarkNJUSA
| |
Collapse
|
4
|
Chen X, Portran D, Widmer LA, Stangier MM, Czub MP, Liakopoulos D, Stelling J, Steinmetz MO, Barral Y. The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips. J Cell Biol 2023; 222:214052. [PMID: 37093124 PMCID: PMC10130750 DOI: 10.1083/jcb.202110126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Kinesins are microtubule-dependent motor proteins, some of which moonlight as microtubule polymerases, such as the yeast protein Kip2. Here, we show that the CLIP-170 ortholog Bik1 stabilizes Kip2 at microtubule ends where the motor domain of Kip2 promotes microtubule polymerization. Live-cell imaging and mathematical estimation of Kip2 dynamics reveal that disrupting the Kip2-Bik1 interaction aborts Kip2 dwelling at microtubule ends and abrogates its microtubule polymerization activity. Structural modeling and biochemical experiments identify a patch of positively charged residues that enables the motor domain to bind free tubulin dimers alternatively to the microtubule shaft. Neutralizing this patch abolished the ability of Kip2 to promote microtubule growth both in vivo and in vitro without affecting its ability to walk along microtubules. Our studies suggest that Kip2 utilizes Bik1 as a cofactor to track microtubule tips, where its motor domain then recruits free tubulin and catalyzes microtubule assembly.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich , Zurich, Switzerland
| | - Didier Portran
- CRBM, Université de Montpellier , CNRS, Montpellier, France
| | - Lukas A Widmer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marcel M Stangier
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Mateusz P Czub
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Dimitris Liakopoulos
- CRBM, Université de Montpellier , CNRS, Montpellier, France
- Laboratory of Biology, University of Ioannina, Faculty of Medicine, Ioannina, Greece
| | - Jörg Stelling
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michel O Steinmetz
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- University of Basel, Biozentrum , Basel, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich , Zurich, Switzerland
| |
Collapse
|
5
|
Hotta T, McAlear TS, Yue Y, Higaki T, Haynes SE, Nesvizhskii AI, Sept D, Verhey KJ, Bechstedt S, Ohi R. EML2-S constitutes a new class of proteins that recognizes and regulates the dynamics of tyrosinated microtubules. Curr Biol 2022; 32:3898-3910.e14. [PMID: 35963242 PMCID: PMC9530018 DOI: 10.1016/j.cub.2022.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023]
Abstract
Tubulin post-translational modifications (PTMs) alter microtubule properties by affecting the binding of microtubule-associated proteins (MAPs). Microtubule detyrosination, which occurs by proteolytic removal of the C-terminal tyrosine from ɑ-tubulin, generates the oldest known tubulin PTM, but we lack comprehensive knowledge of MAPs that are regulated by this PTM. We developed a screening pipeline to identify proteins that discriminate between Y- and ΔY-microtubules and found that echinoderm microtubule-associated protein-like 2 (EML2) preferentially interacts with Y-microtubules. This activity depends on a Y-microtubule interaction motif built from WD40 repeats. We show that EML2 tracks the tips of shortening microtubules, a behavior not previously seen among human MAPs in vivo, and influences dynamics to increase microtubule stability. Our screening pipeline is readily adapted to identify proteins that specifically recognize a wide range of microtubule PTMs.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas S McAlear
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology (FAST), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Sarah E Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Wu YFO, Miller RA, Alberico EO, Huang YAP, Bryant AT, Nelson NT, Jonasson EM, Goodson HV. The CLIP-170 N-terminal domain binds directly to both F-actin and microtubules in a mutually exclusive manner. J Biol Chem 2022; 298:101820. [PMID: 35283190 PMCID: PMC9062740 DOI: 10.1016/j.jbc.2022.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022] Open
Abstract
The cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. However, a full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein CLIP-170 has been implicated in this actin-MT coordination by associating with the actin-binding signaling protein IQGAP1 and by promoting actin polymerization through binding with formins. Thus far, the interactions of CLIP-170 with actin were assumed to be indirect. Here, we demonstrate using high-speed cosedimentation assays that CLIP-170 can bind to filamentous actin (F-actin) directly. We found that the affinity of this binding is relatively weak but strong enough to be significant in the actin-rich cortex, where actin concentrations can be extremely high. Using CLIP-170 fragments and mutants, we show that the direct CLIP-170-F-actin interaction is independent of the FEED domain, the region that mediates formin-dependent actin polymerization, and that the CLIP-170 F-actin-binding region overlaps with the MT-binding region. Consistent with these observations, in vitro competition assays indicate that CLIP-170-F-actin and CLIP-170-MT interactions are mutually exclusive. Taken together, these observations lead us to speculate that direct CLIP-170-F-actin interactions may function to reduce the stability of MTs in actin-rich regions of the cell, as previously proposed for MT end-binding protein 1.
Collapse
Affiliation(s)
- Yueh-Fu O Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rachel A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Emily O Alberico
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yaobing A P Huang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Annamarie T Bryant
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nora T Nelson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
7
|
Motor usage imprints microtubule stability along the shaft. Dev Cell 2021; 57:5-18.e8. [PMID: 34883065 DOI: 10.1016/j.devcel.2021.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Tubulin dimers assemble into dynamic microtubules, which are used by molecular motors as tracks for intracellular transport. Organization and dynamics of the microtubule network are commonly thought to be regulated at the polymer ends, where tubulin dimers can be added or removed. Here, we show that molecular motors running on microtubules cause exchange of dimers along the shaft in vitro and in cells. These sites of dimer exchange act as rescue sites where depolymerizing microtubules stop shrinking and start re-growing. Consequently, the average length of microtubules increases depending on how frequently they are used as motor tracks. An increase of motor activity densifies the cellular microtubule network and enhances cell polarity. Running motors leave marks in the shaft, serving as traces of microtubule usage to organize the polarity landscape of the cell.
Collapse
|
8
|
Chen J, Kholina E, Szyk A, Fedorov VA, Kovalenko I, Gudimchuk N, Roll-Mecak A. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics. Dev Cell 2021; 56:2016-2028.e4. [PMID: 34022132 PMCID: PMC8476856 DOI: 10.1016/j.devcel.2021.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Microtubules are non-covalent polymers of αβ-tubulin dimers. Posttranslational processing of the intrinsically disordered C-terminal α-tubulin tail produces detyrosinated and Δ2-tubulin. Although these are widely employed as proxies for stable cellular microtubules, their effect (and of the α-tail) on microtubule dynamics remains uncharacterized. Using recombinant, engineered human tubulins, we now find that neither detyrosinated nor Δ2-tubulin affect microtubule dynamics, while the α-tubulin tail is an inhibitor of microtubule growth. Consistent with the latter, molecular dynamics simulations show the α-tubulin tail transiently occluding the longitudinal microtubule polymerization interface. The marked differential in vivo stabilities of the modified microtubule subpopulations, therefore, must result exclusively from selective effector recruitment. We find that tyrosination quantitatively tunes CLIP-170 density at the growing plus end and that CLIP170 and EB1 synergize to selectively upregulate the dynamicity of tyrosinated microtubules. Modification-dependent recruitment of regulators thereby results in microtubule subpopulations with distinct dynamics, a tenet of the tubulin code hypothesis.
Collapse
Affiliation(s)
- Jiayi Chen
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ekaterina Kholina
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Vladimir A Fedorov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kovalenko
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia; Astrakhan State University, Astrakhan 414056, Russia; Sechenov University, Moscow 119991, Russia
| | - Nikita Gudimchuk
- Department of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Barisic M, Rajendraprasad G, Steblyanko Y. The metaphase spindle at steady state - Mechanism and functions of microtubule poleward flux. Semin Cell Dev Biol 2021; 117:99-117. [PMID: 34053864 DOI: 10.1016/j.semcdb.2021.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
The mitotic spindle is a bipolar cellular structure, built from tubulin polymers, called microtubules, and interacting proteins. This macromolecular machine orchestrates chromosome segregation, thereby ensuring accurate distribution of genetic material into the two daughter cells during cell division. Powered by GTP hydrolysis upon tubulin polymerization, the microtubule ends exhibit a metastable behavior known as the dynamic instability, during which they stochastically switch between the growth and shrinkage phases. In the context of the mitotic spindle, dynamic instability is furthermore regulated by microtubule-associated proteins and motor proteins, which enables the spindle to undergo profound changes during mitosis. This highly dynamic behavior is essential for chromosome capture and congression in prometaphase, as well as for chromosome alignment to the spindle equator in metaphase and their segregation in anaphase. In this review we focus on the mechanisms underlying microtubule dynamics and sliding and their importance for the maintenance of shape, structure and dynamics of the metaphase spindle. We discuss how these spindle properties are related to the phenomenon of microtubule poleward flux, highlighting its highly cooperative molecular basis and role in keeping the metaphase spindle at a steady state.
Collapse
Affiliation(s)
- Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Yulia Steblyanko
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center (DCRC), Strandboulevarden 49, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Henrie H, Bakhos-Douaihy D, Cantaloube I, Pilon A, Talantikite M, Stoppin-Mellet V, Baillet A, Poüs C, Benoit B. Stress-induced phosphorylation of CLIP-170 by JNK promotes microtubule rescue. J Cell Biol 2021; 219:151834. [PMID: 32491151 PMCID: PMC7337496 DOI: 10.1083/jcb.201909093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
The stress-induced c-Jun N-terminal kinase (JNK) controls microtubule dynamics by enhancing both microtubule growth and rescues. Here, we show that upon cell stress, JNK directly phosphorylates the microtubule rescue factor CLIP-170 in its microtubule-binding domain to increase its rescue-promoting activity. Phosphomimetic versions of CLIP-170 enhance its ability to promote rescue events in vitro and in cells. Furthermore, while phosphomimetic mutations do not alter CLIP-170’s capability to form comets at growing microtubule ends, both phosphomimetic mutations and JNK activation increase the occurrence of CLIP-170 remnants on the microtubule lattice at the rear of comets. As the CLIP-170 remnants, which are potential sites of microtubule rescue, display a shorter lifetime when CLIP-170 is phosphorylated, we propose that instead of acting at the time of rescue occurrence, CLIP-170 would rather contribute in preparing the microtubule lattice for future rescues at these predetermined sites.
Collapse
Affiliation(s)
- Hélène Henrie
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Dalal Bakhos-Douaihy
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Isabelle Cantaloube
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Antoine Pilon
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France.,Département de Biochimie, Hormonologie et Suivi Thérapeutique, Département Médico-Universitaire BioGeM, Assistance Publique - Hôpitaux de Paris Sorbonne Université, Paris, France
| | - Maya Talantikite
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Virginie Stoppin-Mellet
- Grenoble Institut des Neurosciences, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1216, Université Grenoble Alpes, Grenoble, France
| | - Anita Baillet
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| | - Christian Poüs
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France.,Biochimie-Hormonologie, Assistance Publique - Hôpitaux de Paris Université Paris-Saclay, Clamart, France
| | - Béatrice Benoit
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1193, Châtenay-Malabry, France
| |
Collapse
|
11
|
Arru C, Serra E, Porcu C, Gadau SD. Confocal investigation on colocalization between tubulin posttranslational modifications and associated proteins in rat C6 glioma cells. J Struct Biol 2020; 213:107676. [PMID: 33279655 DOI: 10.1016/j.jsb.2020.107676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/29/2023]
Abstract
Glioblastoma multiforme is the most lethal brain tumor. In the study of mechanisms underlying its development attention has been paid to the microtubular network of its cells, mainly on βIII tubulin, considered as a marker of malignancy. In the present work, we chose to investigate the tubulin code in glioblastoma cells, analyzing the degree of interaction between tubulin post-translational modifications and different proteins associated with them. The pattern of diverse associated proteins such as EB-1, CLIP-170 and kinesin-1 and their degree of co-distribution with the most abundant post-translational tubulin modifications (tyrosination, acetylation and polyglutamylation) were evaluated. Through immunofluorescence we have shown that EB-1, CLIP-170 and kinesin-1 were well detectable in glioblastoma cells. The double fluorescence and colocalization index between the post-translational modifications of tubulin and associated proteins showed that tyrosinated α-tubulin has significantly high affinity with EB-1, CLIP-170 and kinesin-1, while for acetylated and polyglutamylated tubulin, the degree of interaction with the three associated proteins evaluated was less apparent. Data presented in this paper underline the importance of a thorough analysis of the microtubular mechanics in glioblastoma cells. This may suggest new experimental therapeutic approaches able to act more selectively on the microtubular network of cells in this type of cancer.
Collapse
Affiliation(s)
- Caterina Arru
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Elisa Serra
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Italy
| | - Sergio D Gadau
- Department of Veterinary Medicine, University of Sassari, Italy.
| |
Collapse
|
12
|
Reid TA, Coombes C, Mukherjee S, Goldblum RR, White K, Parmar S, McClellan M, Zanic M, Courtemanche N, Gardner MK. Structural state recognition facilitates tip tracking of EB1 at growing microtubule ends. eLife 2019; 8:48117. [PMID: 31478831 PMCID: PMC6742484 DOI: 10.7554/elife.48117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
The microtubule binding protein EB1 specifically targets the growing ends of microtubules in cells, where EB1 facilitates the interactions of cellular proteins with microtubule plus-ends. Microtubule end targeting of EB1 has been attributed to high-affinity binding of EB1 to GTP-tubulin that is present at growing microtubule ends. However, our 3D single-molecule diffusion simulations predicted a ~ 6000% increase in EB1 arrivals to open, tapered microtubule tip structures relative to closed lattice conformations. Using quantitative fluorescence, single-molecule, and electron microscopy experiments, we found that the binding of EB1 onto opened, structurally disrupted microtubules was dramatically increased relative to closed, intact microtubules, regardless of hydrolysis state. Correspondingly, in cells, the blunting of growing microtubule plus-ends by Vinblastine was correlated with reduced EB1 targeting. Together, our results suggest that microtubule structural recognition, based on a fundamental diffusion-limited binding model, facilitates the tip tracking of EB1 at growing microtubule ends.
Collapse
Affiliation(s)
- Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Rebecca R Goldblum
- Medical Scientist Training Program, University of Minnesota, Minneapolis, United States.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Kyle White
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Sneha Parmar
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| |
Collapse
|
13
|
Best RL, LaPointe NE, Liang J, Ruan K, Shade MF, Wilson L, Feinstein SC. Tau isoform-specific stabilization of intermediate states during microtubule assembly and disassembly. J Biol Chem 2019; 294:12265-12280. [PMID: 31266806 DOI: 10.1074/jbc.ra119.009124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
The microtubule (MT)-associated protein tau regulates the critical growing and shortening behaviors of MTs, and its normal activity is essential for neuronal development and maintenance. Accordingly, aberrant tau action is tightly associated with Alzheimer's disease and is genetically linked to several additional neurodegenerative diseases known as tauopathies. Although tau is known to promote net MT growth and stability, the precise mechanistic details governing its regulation of MT dynamics remain unclear. Here, we have used the slowly-hydrolyzable GTP analog, guanylyl-(α,β)-methylene-diphosphonate (GMPCPP), to examine the structural effects of tau at MT ends that may otherwise be too transient to observe. The addition of both four-repeat (4R) and three-repeat (3R) tau isoforms to pre-formed GMPCPP MTs resulted in the formation of extended, multiprotofilament-wide projections at MT ends. Furthermore, at temperatures too low for assembly of bona fide MTs, both tau isoforms promoted the formation of long spiral ribbons from GMPCPP tubulin heterodimers. In addition, GMPCPP MTs undergoing cold-induced disassembly in the presence of 4R tau (and to a much lesser extent 3R tau) also formed spirals. Finally, three pathological tau mutations known to cause neurodegeneration and dementia were differentially compromised in their abilities to stabilize MT disassembly intermediates. Taken together, we propose that tau promotes the formation/stabilization of intermediate states in MT assembly and disassembly by promoting both longitudinal and lateral tubulin-tubulin contacts. We hypothesize that these activities represent fundamental aspects of tau action that normally occur at the GTP-rich ends of GTP/GDP MTs and that may be compromised in neurodegeneration-causing tau variants.
Collapse
Affiliation(s)
- Rebecca L Best
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Nichole E LaPointe
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Jiahao Liang
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Kevin Ruan
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Madeleine F Shade
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Leslie Wilson
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Stuart C Feinstein
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106.
| |
Collapse
|
14
|
Fees CP, Moore JK. A unified model for microtubule rescue. Mol Biol Cell 2019; 30:753-765. [PMID: 30672721 PMCID: PMC6589779 DOI: 10.1091/mbc.e18-08-0541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 11/23/2022] Open
Abstract
How microtubules transition from depolymerization to polymerization, known as rescue, is poorly understood. Here we examine two models for rescue: 1) an "end-driven" model in which the depolymerizing end stochastically switches to a stable state; and 2) a "lattice-driven" model in which rescue sites are integrated into the microtubule before depolymerization. We test these models using a combination of computational simulations and in vitro experiments with purified tubulin. Our findings support the "lattice-driven" model by identifying repeated rescue sites in microtubules. In addition, we discover an important role for divalent cations in determining the frequency and location of rescue sites. We use "wash-in" experiments to show that divalent cations inhibit rescue during depolymerization, but not during polymerization. We propose a unified model in which rescues are driven by embedded rescue sites in microtubules, but the activity of these sites is influenced by changes in the depolymerizing ends.
Collapse
Affiliation(s)
- Colby P. Fees
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
15
|
Gadau SD. Tubulin post-translational modifications in developing dog primary neurons obtained with methods according to the 3Rs principles. Res Vet Sci 2018; 122:56-63. [PMID: 30458355 DOI: 10.1016/j.rvsc.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 11/30/2022]
Abstract
Microtubules play a crucial role during neuronal morphogenesis regulating many functions. In the study of these phenomena in vitro cellular models have been employed, mainly resorting to housed experimental animals. Among alternative models in neurobiological study, recently dog caught particular attention. In fact, the complexity of the canine brain, the life long span and the neurodegenerative pathologies render the dog a species more close to humans than rodents. Lately, growing interest in the limitation of the use of experimental animals, has stimulated the search for alternative experimental protocols. Starting from fetal dog brain, obtained by alternative way of sampling, we set neuronal primary cultures. Through immunofluorescence, we examined the presence and the cellular distribution of tubulin post-translational modifications as tyrosinated and acetylated α-tubulin, as markers of dynamic and stable microtubule respectively. In addition, we evaluated the pattern of two associated proteins which may slide on these two tubulin modifications, i.e. CLIP-170 and Kinesin-1. A clear positivity for tyrosinated and acetylated α-tubulin, was found. As far as the motor proteins are concerned, we detected a prevalence of CLIP-170 compared to kinesin-1 with a better overlapping between tyrosinated α-tubulin and CLIP-170. Our findings highlighted some original data about the role of the microtubular network during early phases of canine neuronal morphogenesis. In addition, the experimental protocol underlined the utility of this alternative model that allows to bypass both the scarcity of commercial canine neuronal cell lines and the need to resort to experimental dogs, respecting the 3Rs principles (reduction, refinement, and replacement).
Collapse
Affiliation(s)
- Sergio Domenico Gadau
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Italy.
| |
Collapse
|
16
|
Lawrence EJ, Arpag G, Norris SR, Zanic M. Human CLASP2 specifically regulates microtubule catastrophe and rescue. Mol Biol Cell 2018. [PMID: 29540526 PMCID: PMC5935067 DOI: 10.1091/mbc.e18-01-0016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic linker-associated proteins (CLASPs) are microtubule-associated proteins essential for microtubule regulation in many cellular processes. However, the molecular mechanisms underlying CLASP activity are not understood. Here, we use purified protein components and total internal reflection fluorescence microscopy to investigate the effects of human CLASP2 on microtubule dynamics in vitro. We demonstrate that CLASP2 suppresses microtubule catastrophe and promotes rescue without affecting the rates of microtubule growth or shrinkage. Strikingly, when CLASP2 is combined with EB1, a known binding partner, the effects on microtubule dynamics are strongly enhanced. We show that synergy between CLASP2 and EB1 is dependent on a direct interaction, since a truncated EB1 protein that lacks the CLASP2-binding domain does not enhance CLASP2 activity. Further, we find that EB1 targets CLASP2 to microtubules and increases the dwell time of CLASP2 at microtubule tips. Although the temporally averaged microtubule growth rates are unaffected by CLASP2, we find that microtubules grown with CLASP2 display greater variability in growth rates. Our results provide insight into the regulation of microtubule dynamics by CLASP proteins and highlight the importance of the functional interplay between regulatory proteins at dynamic microtubule ends.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Göker Arpag
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Stephen R Norris
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240.,Department of Biochemistry, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
17
|
Portilho DM, Persson R, Arhel N. Role of non-motile microtubule-associated proteins in virus trafficking. Biomol Concepts 2017; 7:283-292. [PMID: 27879481 DOI: 10.1515/bmc-2016-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 11/15/2022] Open
Abstract
Viruses are entirely dependent on their ability to infect a host cell in order to replicate. To reach their site of replication as rapidly and efficiently as possible following cell entry, many have evolved elaborate mechanisms to hijack the cellular transport machinery to propel themselves across the cytoplasm. Long-range movements have been shown to involve motor proteins along microtubules (MTs) and direct interactions between viral proteins and dynein and/or kinesin motors have been well described. Although less well-characterized, it is also becoming increasingly clear that non-motile microtubule-associated proteins (MAPs), including structural MAPs of the MAP1 and MAP2 families, and microtubule plus-end tracking proteins (+TIPs), can also promote viral trafficking in infected cells, by mediating interaction of viruses with filaments and/or motor proteins, and modulating filament stability. Here we review our current knowledge on non-motile MAPs, their role in the regulation of cytoskeletal dynamics and in viral trafficking during the early steps of infection.
Collapse
|
18
|
Charafeddine RA, Nosanchuk JD, Sharp DJ. Targeting Microtubules for Wound Repair. Adv Wound Care (New Rochelle) 2016; 5:444-454. [PMID: 27785378 DOI: 10.1089/wound.2015.0658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022] Open
Abstract
Significance: Fast and seamless healing is essential for both deep and chronic wounds to restore the skin and protect the body from harmful pathogens. Thus, finding new targets that can both expedite and enhance the repair process without altering the upstream signaling milieu and causing serious side effects can improve the way we treat wounds. Since cell migration is key during the different stages of wound healing, it presents an ideal process and intracellular structural machineries to target. Recent Advances and Critical Issues: The microtubule (MT) cytoskeleton is rising as an important structural and functional regulator of wound healing. MTs have been reported to play different roles in the migration of the various cell types involved in wound healing. Specific microtubule regulatory proteins (MRPs) can be targeted to alter a section or subtype of the MT cytoskeleton and boost or hinder cell motility. However, inhibiting intracellular components can be challenging in vivo, especially using unstable molecules, such as small interfering RNA. Nanoparticles can be used to protect these unstable molecules and topically deliver them to the wound. Utilizing this approach, we recently showed that fidgetin-like 2, an uncharacterized MRP, can be targeted to enhance cell migration and wound healing. Future Directions: To harness the full potential of the current MRP therapeutic targets, studies should test them with different delivery platforms, dosages, and skin models. Screening for new MT effectors that boost cell migration in vivo would also help find new targets for skin repair.
Collapse
Affiliation(s)
- Rabab A. Charafeddine
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - David J. Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
19
|
Abstract
The dynamic instability of microtubules is characterised by slow growth phases stochastically interrupted by rapid depolymerisations called catastrophes. Rescue events can arrest the depolymerisation and restore microtubule elongation. However the origin of these rescue events remain unexplained. Here we show that microtubule lattice self-repair, in structurally damaged sites, is responsible for the rescue of microtubule growth. Tubulin photo-conversion in cells revealed that free tubulin dimers can incorporate along the shafts of microtubules, especially in regions where microtubules cross each other, form bundles or become bent due to mechanical constraints. These incorporation sites appeared to act as effective rescue sites ensuring microtubule rejuvenation. By securing damaged microtubule growth, the self-repair process supports a mechanosensitive growth by specifically promoting microtubule assembly in regions where they are subjected to physical constraints.
Collapse
|
20
|
Kent IA, Lele TP. Microtubule-based force generation. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27562344 DOI: 10.1002/wnan.1428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/20/2016] [Accepted: 07/30/2016] [Indexed: 11/11/2022]
Abstract
Microtubules are vital to many important cell processes, such as cell division, transport of cellular cargo, organelle positioning, and cell migration. Owing to their diverse functions, understanding microtubule function is an important part of cell biological research that can help in combating various diseases. For example, microtubules are an important target of chemotherapeutic drugs such as paclitaxel because of their pivotal role in cell division. Many functions of microtubules relate to the generation of mechanical forces. These forces are generally either a direct result of microtubule polymerization/depolymerization or generated by motor proteins that move processively along microtubules. In this review, we summarize recent efforts to quantify and model force generation by microtubules in the context of microtubule function. WIREs Nanomed Nanobiotechnol 2017, 9:e1428. doi: 10.1002/wnan.1428 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ian A Kent
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Weng JH, Chung BC. Nongenomic actions of neurosteroid pregnenolone and its metabolites. Steroids 2016; 111:54-59. [PMID: 26844377 DOI: 10.1016/j.steroids.2016.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Steroids have been widely used in the clinical setting. They bind and activate nuclear receptors to regulate gene expression. In addition to activating genomic transcription, steroids also exert nongenomic actions. The current article focuses on the nongenomic actions of neurosteroids, including pregnenolone (P5), 7α-hydroxypregnenolone, pregnenolone sulfate and allopregnanolone. Pregnenolone and its derivatives promote neuronal activity by enhancing learning and memory, relieving depression, enhancing locomotor activity, and promoting neuronal cell survival. They exert these effects by activating various target proteins located in the cytoplasm or cell membrane. Pregnenolone and its metabolites bind to receptors such as microtubule-associated proteins and neurotransmitter receptors to elicit a series of reactions including stabilization of microtubules, increase of ion flux into cells, and dopamine release. The wide actions of neurosteroids indicate that pregnenolone derivatives have great potential in future treatment of neurological diseases.
Collapse
Affiliation(s)
- Jui-Hsia Weng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
22
|
Li N, Mruk DD, Lee WM, Wong CKC, Cheng CY. Is toxicant-induced Sertoli cell injury in vitro a useful model to study molecular mechanisms in spermatogenesis? Semin Cell Dev Biol 2016; 59:141-156. [PMID: 26779951 DOI: 10.1016/j.semcdb.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022]
Abstract
Sertoli cells isolated from rodents or humans and cultured in vitro are known to establish a functional tight junction (TJ)-permeability barrier that mimics the blood-testis barrier (BTB) in vivo. This model has been widely used by investigators to study the biology of the TJ and the BTB. Studies have shown that environmental toxicants (e.g., perfluorooctanesulfonate (PFOS), bisphenol A (BPA) and cadmium) that exert their disruptive effects to induce Sertoli cell injury using this in vitro model are reproducible in studies in vivo. Thus, this in vitro system provides a convenient approach to probe the molecular mechanism(s) underlying toxicant-induced testis injury but also to provide new insights in understanding spermatogenesis, such as the biology of cell adhesion, BTB restructuring that supports preleptotene spermatocyte transport, and others. Herein, we provide a brief and critical review based on studies using this in vitro model of Sertoli cell cultures using primary cells isolated from rodent testes vs. humans to monitor environmental toxicant-mediated Sertoli cell injury. In short, recent findings have shown that environmental toxicants exert their effects on Sertoli cells to induce testis injury through their action on Sertoli cell actin- and/or microtubule-based cytoskeleton. These effects are mediated via their disruptive effects on actin- and/or microtubule-binding proteins. Sertoli cells also utilize differential spatiotemporal expression of these actin binding proteins to confer plasticity to the BTB to regulate germ cell transport across the BTB.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
23
|
Beaven R, Dzhindzhev NS, Qu Y, Hahn I, Dajas-Bailador F, Ohkura H, Prokop A. Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system. Mol Biol Cell 2015; 26:1491-508. [PMID: 25694447 PMCID: PMC4395129 DOI: 10.1091/mbc.e14-06-1083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/05/2015] [Accepted: 02/10/2015] [Indexed: 11/11/2022] Open
Abstract
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end-tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain-containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin-dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.
Collapse
Affiliation(s)
- Robin Beaven
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nikola S Dzhindzhev
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Yue Qu
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
24
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
25
|
Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics. Proc Natl Acad Sci U S A 2014; 111:11347-52. [PMID: 25059720 DOI: 10.1073/pnas.1403135111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
p150(glued) belongs to a group of proteins accumulating at microtubule plus ends (+TIPs). It plays a key role in initiating retrograde transport by recruiting and tethering endosomes and dynein to microtubules. p150(glued) contains an N-terminal microtubule-binding cytoskeleton-associated protein glycine-rich (CAP-Gly) domain that accelerates tubulin polymerization. Although this copolymerization is well-studied using light microscopic techniques, structural consequences of this interaction are elusive. Here, using electron-microscopic and spectroscopic approaches, we provide a detailed structural view of p150(glued) CAP-Gly binding to microtubules and tubulin. Cryo-EM 3D reconstructions of p150(glued)-CAP-Gly complexed with microtubules revealed the recognition of the microtubule surface, including tubulin C-terminal tails by CAP-Gly. These binding surfaces differ from other retrograde initiation proteins like EB1 or dynein, which could facilitate the simultaneous attachment of all accessory components. Furthermore, the CAP-Gly domain, with its basic extensions, facilitates lateral and longitudinal interactions of tubulin molecules by covering the tubulin acidic tails. This shielding effect of CAP-Gly and its basic extensions may provide a molecular basis of the roles of p150(glued) in microtubule dynamics.
Collapse
|
26
|
Abstract
The following protocol describes a method to control the orientation and polarity of polymerizing microtubules (MTs). Reconstitution of specific geometries of dynamic MT networks is achieved using a ultraviolet (UV) micropatterning technique in combination with stabilized MT microseeds. The process is described in three main parts. First, the surface is passivated to avoid the non-specific absorption of proteins, using different polyethylene glycol (PEG)-based surface treatment. Second, specific adhesive surfaces (the micropatterns) are imprinted through a photomask using deep UVs. Lastly, MT microseeds are adhered to the micropatterns followed by MT polymerization.
Collapse
Affiliation(s)
- Didier Portran
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
27
|
|
28
|
Weng JH, Liang MR, Chen CH, Tong SK, Huang TC, Lee SP, Chen YR, Chen CT, Chung BC. Pregnenolone activates CLIP-170 to promote microtubule growth and cell migration. Nat Chem Biol 2013; 9:636-42. [PMID: 23955365 DOI: 10.1038/nchembio.1321] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2013] [Indexed: 01/09/2023]
Abstract
Pregnenolone (P5) is a neurosteroid that improves memory and neurological recovery. It is also required for zebrafish embryonic development. However, its mode of action is unclear. Here we show that P5 promotes cell migration and microtubule polymerization by binding a microtubule plus end-tracking protein, cytoplasmic linker protein 1 (CLIP-170). We captured CLIP-170 from zebrafish embryonic extract using a P5 photoaffinity probe conjugated to diaminobenzophenone. P5 interacted with CLIP-170 at its coiled-coil domain and changed it into an extended conformation. This increased CLIP-170 interaction with microtubules, dynactin subunit p150(Glued) and LIS1; it also promoted CLIP-170-dependent microtubule polymerization. CLIP-170 was essential for P5 to promote microtubule abundance and zebrafish epiboly cell migration during embryogenesis, and overexpression of the P5-binding region of CLIP-170 delayed this migration. P5 also sustained migration directionality of cultured mammalian cells. Our results show that P5 activates CLIP-170 to promote microtubule polymerization and cell migration.
Collapse
Affiliation(s)
- Jui-Hsia Weng
- 1] Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan. [2] Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A functional link between localized Oskar, dynamic microtubules, and endocytosis. Dev Biol 2012; 367:66-77. [DOI: 10.1016/j.ydbio.2012.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/19/2022]
|
30
|
Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci 2012; 50:10-20. [DOI: 10.1016/j.mcn.2012.03.005] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/09/2012] [Indexed: 01/21/2023] Open
|
31
|
Lopus M, Manatschal C, Buey RM, Bjelić S, Miller HP, Steinmetz MO, Wilson L. Cooperative stabilization of microtubule dynamics by EB1 and CLIP-170 involves displacement of stably bound P(i) at microtubule ends. Biochemistry 2012; 51:3021-30. [PMID: 22424550 DOI: 10.1021/bi300038t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
End binding protein 1 (EB1) and cytoplasmic linker protein of 170 kDa (CLIP-170) are two well-studied microtubule plus-end-tracking proteins (+TIPs) that target growing microtubule plus ends in the form of comet tails and regulate microtubule dynamics. However, the mechanism by which they regulate microtubule dynamics is not well understood. Using full-length EB1 and a minimal functional fragment of CLIP-170 (ClipCG12), we found that EB1 and CLIP-170 cooperatively regulate microtubule dynamic instability at concentrations below which neither protein is effective. By use of small-angle X-ray scattering and analytical ultracentrifugation, we found that ClipCG12 adopts a largely extended conformation with two noninteracting CAP-Gly domains and that it formed a complex in solution with EB1. Using a reconstituted steady-state mammalian microtubule system, we found that at a low concentration of 250 nM, neither EB1 nor ClipCG12 individually modulated plus-end dynamic instability. Higher concentrations (up to 2 μM) of the two proteins individually did modulate dynamic instability, perhaps by a combination of effects at the tips and along the microtubule lengths. However, when low concentrations (250 nM) of EB1 and ClipCG12 were present together, the mixture modulated dynamic instability considerably. Using a pulsing strategy with [γ(32)P]GTP, we further found that unlike EB1 or ClipCG12 alone, the EB1-ClipCG12 mixture partially depleted the microtubule ends of stably bound (32)P(i). Together, our results suggest that EB1 and ClipCG12 act cooperatively to regulate microtubule dynamics. They further indicate that stabilization of microtubule plus ends by the EB1-ClipCG12 mixture may involve modification of an aspect of the stabilizing cap.
Collapse
Affiliation(s)
- Manu Lopus
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol 2011; 22:968-74. [PMID: 22001384 DOI: 10.1016/j.semcdb.2011.09.017] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022]
Abstract
Microtubules define the architecture and internal organization of cells by positioning organelles and activities, as well as by supporting cell shape and mechanics. One of the major functions of microtubules is the control of polarized cell motility. In order to support the asymmetry of polarized cells, microtubules have to be organized asymmetrically themselves. Asymmetry in microtubule distribution and stability is regulated by multiple molecular factors, most of which are microtubule-associated proteins that locally control microtubule nucleation and dynamics. At the same time, the dynamic state of microtubules is key to the regulatory mechanisms by which microtubules regulate cell polarity, modulate cell adhesion and control force-production by the actin cytoskeleton. Here, we propose that even small alterations in microtubule dynamics can influence cell migration via several different microtubule-dependent pathways. We discuss regulatory factors, potential feedback mechanisms due to functional microtubule-actin crosstalk and implications for cancer cell motility.
Collapse
|
33
|
Galjart N. Plus-end-tracking proteins and their interactions at microtubule ends. Curr Biol 2010; 20:R528-37. [PMID: 20620909 DOI: 10.1016/j.cub.2010.05.022] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microtubules are cytoskeletal elements that are essential for a large number of intracellular processes, including mitosis, cell differentiation and migration, and vesicle transport. In many cells, the microtubule network is organized in a radial manner, with one end of a microtubule (the minus end) embedded near the nucleus and the other end (the plus end) exploring cytoplasmic space, switching between episodes of growth and shrinkage. Mammalian plus-end-tracking proteins (+TIPs) localize to the ends of growing microtubules and regulate both the dynamic behavior of microtubules as well as the interactions of microtubules with other cellular components. Because of these crucial roles, +TIPs and the mechanisms underlying their association with microtubule ends have been intensively investigated. Results indicate that +TIPs reach microtubule ends by motor-mediated transport or diffusion. Individual +TIP molecules exchange rapidly on microtubule end-binding sites that are formed during microtubule polymerization and that have a slower turnover. Most +TIPs associate with the end-binding (EB) proteins, and appear to require these 'core' +TIPs for localization at microtubule ends. Accumulation of +TIPs may also involve structural features of the microtubule end and interactions with other +TIPs. This complexity makes it difficult to assign discrete roles to specific +TIPs. Given that +TIPs concentrate at microtubule ends and that each +TIP binds in a conformationally distinct manner, I propose that the ends of growing microtubules are 'nano-platforms' for productive interactions between selected proteins and that these interactions might persist and be functional elsewhere in the cytoplasm than at the microtubule end at which they originated.
Collapse
Affiliation(s)
- Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res 2010; 316:2969-81. [DOI: 10.1016/j.yexcr.2010.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/22/2010] [Accepted: 07/29/2010] [Indexed: 11/24/2022]
|
35
|
Bieling P, Telley IA, Surrey T. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 2010; 142:420-32. [PMID: 20691901 DOI: 10.1016/j.cell.2010.06.033] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/19/2010] [Accepted: 06/07/2010] [Indexed: 01/21/2023]
Abstract
During cell division, microtubules are arranged in a large bipolar structure, the mitotic spindle, to segregate the duplicated chromosomes. Antiparallel microtubule overlaps in the spindle center are essential for establishing bipolarity and maintaining spindle stability throughout mitosis. In anaphase, this antiparallel microtubule array is tightly bundled forming the midzone, which serves as a hub for the recruitment of proteins essential for late mitotic events. The molecular mechanism of midzone formation and the control of its size are not understood. Using an in vitro reconstitution approach, we show here that PRC1 autonomously bundles antiparallel microtubules and recruits Xklp1, a kinesin-4, selectively to overlapping antiparallel microtubules. The processive motor Xklp1 controls overlap size by overlap length-dependent microtubule growth inhibition. Our results mechanistically explain how the two conserved, essential midzone proteins PRC1 and Xklp1 cooperate to constitute a minimal protein module capable of dynamically organizing the core structure of the central anaphase spindle.
Collapse
Affiliation(s)
- Peter Bieling
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
36
|
Lee HS, Komarova YA, Nadezhdina ES, Anjum R, Peloquin JG, Schober JM, Danciu O, van Haren J, Galjart N, Gygi SP, Akhmanova A, Borisy GG. Phosphorylation controls autoinhibition of cytoplasmic linker protein-170. Mol Biol Cell 2010; 21:2661-73. [PMID: 20519438 PMCID: PMC2912352 DOI: 10.1091/mbc.e09-12-1036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLIP-170 conformational changes are regulated by phosphorylation on S309 and S311 residues resulting in diminished binding of CLIP-170 for growing MT ends and p150Glued. Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150Glued (J. Cell Biol. 2004: 166, 1003–1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an “open” conformation and a higher binding affinity for growing MT ends and p150Glued as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the “folded back” conformation shows decreased MT association and does not interact with p150Glued. We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.
Collapse
Affiliation(s)
- Ho-Sup Lee
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Blake-Hodek KA, Cassimeris L, Huffaker TC. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Mol Biol Cell 2010; 21:2013-23. [PMID: 20392838 PMCID: PMC2883945 DOI: 10.1091/mbc.e10-02-0083] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bim1 promotes microtubule assembly in vitro, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. These proteins interact to form a complex that affects microtubule dynamics in much the same way as Bim1 alone. Microtubule dynamics are regulated by plus-end tracking proteins (+TIPs), which bind microtubule ends and influence their polymerization properties. In addition to binding microtubules, most +TIPs physically associate with other +TIPs, creating a complex web of interactions. To fully understand how +TIPs regulate microtubule dynamics, it is essential to know the intrinsic biochemical activities of each +TIP and how +TIP interactions affect these activities. Here, we describe the activities of Bim1 and Bik1, two +TIP proteins from budding yeast and members of the EB1 and CLIP-170 families, respectively. We find that purified Bim1 and Bik1 form homodimers that interact with each other to form a tetramer. Bim1 binds along the microtubule lattice but with highest affinity for the microtubule end; however, Bik1 requires Bim1 for localization to the microtubule lattice and end. In vitro microtubule polymerization assays show that Bim1 promotes microtubule assembly, primarily by decreasing the frequency of catastrophes. In contrast, Bik1 inhibits microtubule assembly by slowing growth and, consequently, promoting catastrophes. Interestingly, the Bim1-Bik1 complex affects microtubule dynamics in much the same way as Bim1 alone. These studies reveal new activities for EB1 and CLIP-170 family members and demonstrate how interactions between two +TIP proteins influence their activities.
Collapse
|
38
|
Valiron O, Arnal I, Caudron N, Job D. GDP-tubulin incorporation into growing microtubules modulates polymer stability. J Biol Chem 2010; 285:17507-13. [PMID: 20371874 DOI: 10.1074/jbc.m109.099515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule "structural plasticity."
Collapse
Affiliation(s)
- Odile Valiron
- Institut National de la Santé et de la Recherche Médicale Unité 836, Institut des Neurosciences de Grenoble, Université Joseph Fourier, 38042 Grenoble, Cedex 9, France.
| | | | | | | |
Collapse
|
39
|
Weis F, Moullintraffort L, Heichette C, Chrétien D, Garnier C. The 90-kDa heat shock protein Hsp90 protects tubulin against thermal denaturation. J Biol Chem 2010; 285:9525-9534. [PMID: 20110359 DOI: 10.1074/jbc.m109.096586] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hsp90 and tubulin are among the most abundant proteins in the cytosol of eukaryotic cells. Although Hsp90 plays key roles in maintaining its client proteins in their active state, tubulin is essential for fundamental processes such as cell morphogenesis and division. Several studies have suggested a possible connection between Hsp90 and the microtubule cytoskeleton. Because tubulin is a labile protein in its soluble form, we investigated whether Hsp90 protects it against thermal denaturation. Both proteins were purified from porcine brain, and their interaction was characterized in vitro by using spectrophotometry, sedimentation assays, video-enhanced differential interference contrast light microscopy, and native polyacrylamide gel electrophoresis. Our results show that Hsp90 protects tubulin against thermal denaturation and keeps it in a state compatible with microtubule polymerization. We demonstrate that Hsp90 cannot resolve tubulin aggregates but that it likely binds early unfolding intermediates, preventing their aggregation. Protection was maximal at a stoichiometry of two molecules of Hsp90 for one of tubulin. This protection does not require ATP binding and hydrolysis by Hsp90, but it is counteracted by geldanamycin, a specific inhibitor of Hsp90.
Collapse
Affiliation(s)
- Felix Weis
- UMR-CNRS 6026, IFR 140-Génétique Fonctionnelle Agronomie et Santé, "Interactions Cellulaires et Moléculaires," Université de Rennes 1, Campus de Beaulieu, Bâtiment 13, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Laura Moullintraffort
- UMR-CNRS 6026, IFR 140-Génétique Fonctionnelle Agronomie et Santé, "Interactions Cellulaires et Moléculaires," Université de Rennes 1, Campus de Beaulieu, Bâtiment 13, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Claire Heichette
- UMR-CNRS 6026, IFR 140-Génétique Fonctionnelle Agronomie et Santé, "Interactions Cellulaires et Moléculaires," Université de Rennes 1, Campus de Beaulieu, Bâtiment 13, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Denis Chrétien
- UMR-CNRS 6026, IFR 140-Génétique Fonctionnelle Agronomie et Santé, "Interactions Cellulaires et Moléculaires," Université de Rennes 1, Campus de Beaulieu, Bâtiment 13, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Cyrille Garnier
- UMR-CNRS 6026, IFR 140-Génétique Fonctionnelle Agronomie et Santé, "Interactions Cellulaires et Moléculaires," Université de Rennes 1, Campus de Beaulieu, Bâtiment 13, 263 Avenue du Général Leclerc, 35042 Rennes, France.
| |
Collapse
|
40
|
Gouveia SM, Akhmanova A. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:1-74. [DOI: 10.1016/b978-0-12-381047-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Osiecka KM, Nieznanska H, Skowronek KJ, Karolczak J, Schneider G, Nieznanski K. Prion protein region 23-32 interacts with tubulin and inhibits microtubule assembly. Proteins 2009; 77:279-96. [PMID: 19422054 DOI: 10.1002/prot.22435] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous studies we have demonstrated that prion protein (PrP) binds directly to tubulin and this interaction leads to the inhibition of microtubule formation by inducement of tubulin oligomerization. This report is aimed at mapping the regions of PrP and tubulin involved in the interaction and identification of PrP domains responsible for tubulin oligomerization. Preliminary studies focused our attention to the N-terminal flexible part of PrP encompassing residues 23-110. Using a panel of deletion mutants of PrP, we identified two microtubule-binding motifs at both ends of this part of the molecule. We found that residues 23-32 constitute a major site of interaction, whereas residues 101-110 represent a weak binding site. The crucial role of the 23-32 sequence in the interaction with tubulin was confirmed employing chymotryptic fragments of PrP. Surprisingly, the octarepeat region linking the above motifs plays only a supporting role in the interaction. The binding of Cu(2+) to PrP did not affect the interaction. We also demonstrate that PrP deletion mutants lacking residues 23-32 exhibit very low efficiency in the inducement of tubulin oligomerization. Moreover, a synthetic peptide corresponding to this sequence, but not that identical with fragment 101-110, mimics the effects of the full-length protein on tubulin oligomerization and microtubule assembly. At the cellular level, peptide composed of the PrP motive 23-30 and signal sequence (1-22) disrupted the microtubular cytoskeleton. Using tryptic and chymotryptic fragments of alpha- and beta-tubulin, we mapped the docking sites for PrP within the C-terminal domains constituting the outer surface of microtubule.
Collapse
Affiliation(s)
- Katarzyna M Osiecka
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Gupta KK, Joyce MV, Slabbekoorn AR, Zhu ZC, Paulson BA, Boggess B, Goodson HV. Probing interactions between CLIP-170, EB1, and microtubules. J Mol Biol 2009; 395:1049-62. [PMID: 19913027 DOI: 10.1016/j.jmb.2009.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule (MT) plus-end tracking protein (+TIP) that dynamically localizes to the MT plus end and regulates MT dynamics. The mechanisms of these activities remain unclear because the CLIP-170-MT interaction is poorly understood, and even less is known about how CLIP-170 and other +TIPs act together as a network. CLIP-170 binds to the acidic C-terminal tail of alpha-tubulin. However, the observation that CLIP-170 has two CAP-Gly (cytoskeleton-associated protein glycine-rich) motifs and multiple serine-rich regions suggests that a single CLIP-170 molecule has multiple tubulin binding sites, and that these sites might bind to multiple parts of the tubulin dimer. Using a combination of chemical cross-linking and mass spectrometry, we find that CLIP-170 binds to both alpha-tubulin and beta-tubulin, and that binding is not limited to the acidic C-terminal tails. We provide evidence that these additional binding sites include the H12 helices of both alpha-tubulin and beta-tubulin and are significant for CLIP-170 activity. Previous work has shown that CLIP-170 binds to end-binding protein 1 (EB1) via the EB1 C-terminus, which mimics the acidic C-terminal tail of tubulin. We find that CLIP-170 can utilize its multiple tubulin binding sites to bind to EB1 and MT simultaneously. These observations help to explain how CLIP-170 can nucleate MTs and alter MT dynamics, and they contribute to understanding the significance and properties of the +TIP network.
Collapse
Affiliation(s)
- Kamlesh K Gupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci 2009; 43:15-32. [PMID: 19660553 DOI: 10.1016/j.mcn.2009.07.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022] Open
Abstract
Nervous system function and plasticity rely on the complex architecture of neuronal networks elaborated during development, when neurons acquire their specific and complex shape. During neuronal morphogenesis, the formation and outgrowth of functionally and structurally distinct axons and dendrites require a coordinated and dynamic reorganization of the microtubule cytoskeleton involving numerous regulators. While most of these factors act directly on microtubules to stabilize them or promote their assembly, depolymerization or fragmentation, others are now emerging as essential regulators of neuronal differentiation by controlling tubulin availability and modulating microtubule dynamics. In this review, we recapitulate how the microtubule network is actively regulated during the successive phases of neuronal morphogenesis, and what are the specific roles of the various microtubule-regulating proteins in that process. We then describe the specific signaling pathways and inter-regulations that coordinate the different activities of these proteins to sustain neuronal development in response to environmental cues.
Collapse
|
44
|
Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ. Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 2009; 30:555-65. [PMID: 19168579 DOI: 10.1093/carcin/bgp022] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translationally controlled tumor-associated protein (TCTP) is a ubiquitous and highly conserved protein implicated in cancers. Here, we demonstrate that interactions of TCTP with microtubules (MTs) are functionally important but indirect, and we reveal novel interaction of TCTP with the actin cytoskeleton. Firstly, immunofluorescence in Xenopus XL2 cells revealed cytoplasmic fibers stained with TCTP but not with tubulin antibodies, as well as MTs free of TCTP. Furthermore, TCTP localized to a subset of actin-rich fibers in migrating cells. Secondly, Xenopus laevis TCTP did not affect in vitro assembly/disassembly of MTs and lacked MT-binding affinity both in pull-down assays and in cell-free extracts. Although TCTP also failed to bind to purified filamentous actin (F-actin), it was associated with microfilaments in cell-free extracts. Thirdly, TCTP concentrated in mitotic spindle did not colocalize with MTs and was easily dissociated from these structures except at the poles. Finally, RNA interference knockdown of TCTP in XL2 and HeLa cells provoked drastic, MT-dependent shape change. These data show that although TCTP interacts with MTs, it does not behave as classic MT-associated protein. Our evidence for an association of TCTP with F-actin structures, and for an involvement in cell shape regulation, implicates this protein in integrating cytoskeletal interactions both in interphase and mitosis providing a new avenue to fully understand the role of TCTP.
Collapse
Affiliation(s)
- Franck Bazile
- CNRS UMR 6061, Institute of Genetics & Development, Mitosis & Meiosis Group, IFR 140 GFAS, Faculty of Medicine, University of Rennes 1, 35043 Rennes cedex, France
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Microtubules are polarized polymers that exhibit dynamic instability, with alternating phases of elongation and shortening, particularly at the more dynamic plus-end. Microtubule plus-end tracking proteins (+TIPs) localize to and track with growing microtubule plus-ends in the cell. +TIPs regulate microtubule dynamics and mediate interactions with other cellular components. The molecular mechanisms responsible for the +TIP tracking activity are not well understood, however. We reconstituted the +TIP tracking of mammalian proteins EB1 and CLIP-170 in vitro at single-molecule resolution using time-lapse total internal reflection fluorescence microscopy. We found that EB1 is capable of dynamically tracking growing microtubule plus-ends. Our single-molecule studies demonstrate that EB1 exchanges rapidly at microtubule plus-ends with a dwell time of <1 s, indicating that single EB1 molecules go through multiple rounds of binding and dissociation during microtubule polymerization. CLIP-170 exhibits lattice diffusion and fails to selectively track microtubule ends in the absence of EB1; the addition of EB1 is both necessary and sufficient to mediate plus-end tracking by CLIP-170. Single-molecule analysis of the CLIP-170-EB1 complex also indicates a short dwell time at growing plus-ends, an observation inconsistent with the copolymerization of this complex with tubulin for plus-end-specific localization. GTP hydrolysis is required for +TIP tracking, because end-specificity is lost when tubulin is polymerized in the presence of guanosine 5'-[alpha,beta-methylene]triphosphate (GMPCPP). Together, our data provide insight into the mechanisms driving plus-end tracking by mammalian +TIPs and suggest that EB1 specifically recognizes the distinct lattice structure at the growing microtubule end.
Collapse
|
46
|
Bieling P, Kandels-Lewis S, Telley IA, van Dijk J, Janke C, Surrey T. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. ACTA ACUST UNITED AC 2008; 183:1223-33. [PMID: 19103809 PMCID: PMC2606963 DOI: 10.1083/jcb.200809190] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.
Collapse
Affiliation(s)
- Peter Bieling
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Gupta KK, Paulson BA, Folker ES, Charlebois B, Hunt AJ, Goodson HV. Minimal plus-end tracking unit of the cytoplasmic linker protein CLIP-170. J Biol Chem 2008; 284:6735-42. [PMID: 19074770 DOI: 10.1074/jbc.m807675200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic linker protein 170 (CLIP-170) is the prototype microtubule (MT) plus-end tracking protein (+TIP) and is involved in regulating MT dynamics. A comprehensive understanding of the process by which CLIP-170 tracks MT plus ends would provide insight into its function. However, the precise molecular mechanism of CLIP-170 +TIP behavior is unknown, and many potential models have been presented. Here, by separating the two CLIP-170 CAP-Gly domains and their adjacent serine-rich regions into fragments of varied size, we have characterized the minimal plus-end tracking unit of CLIP-170 in vivo. Each CLIP-170 fragment was also characterized for its tubulin polymerization activity in vitro. We found that the two CAP-Gly domains have different activities, whereas CAP-Gly-1 appears incompetent to mediate either +TIP behavior or MT nucleation, a CLIP-170 fragment consisting of the second CAP-Gly domain and its adjacent serine-rich region can both track MT plus ends in vivo and induce tubulin polymerization in vitro. These observations complement recent work on CLIP-170 fragments, demonstrate that CAP-Gly motifs do not require dimerization for +TIP and polymerization-promoting activities, and provide insight into CLIP-170 function and mechanism.
Collapse
Affiliation(s)
- Kamlesh K Gupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | |
Collapse
|
48
|
McIntosh JR, Grishchuk EL, Morphew MK, Efremov AK, Zhudenkov K, Volkov VA, Cheeseman IM, Desai A, Mastronarde DN, Ataullakhanov FI. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 2008; 135:322-33. [PMID: 18957206 PMCID: PMC2746696 DOI: 10.1016/j.cell.2008.08.038] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 06/16/2008] [Accepted: 08/26/2008] [Indexed: 12/01/2022]
Abstract
Kinetochores of mitotic chromosomes are coupled to spindle microtubules in ways that allow the energy from tubulin dynamics to drive chromosome motion. Most kinetochore-associated microtubule ends display curving "protofilaments," strands of tubulin dimers that bend away from the microtubule axis. Both a kinetochore "plate" and an encircling, ring-shaped protein complex have been proposed to link protofilament bending to poleward chromosome motion. Here we show by electron tomography that slender fibrils connect curved protofilaments directly to the inner kinetochore. Fibril-protofilament associations correlate with a local straightening of the flared protofilaments. Theoretical analysis reveals that protofilament-fibril connections would be efficient couplers for chromosome motion, and experimental work on two very different kinetochore components suggests that filamentous proteins can couple shortening microtubules to cargo movements. These analyses define a ring-independent mechanism for harnessing microtubule dynamics directly to chromosome movement.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of M.C.D. Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Capturing protein tails by CAP-Gly domains. Trends Biochem Sci 2008; 33:535-45. [PMID: 18835717 DOI: 10.1016/j.tibs.2008.08.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 12/29/2022]
Abstract
Cytoskeleton-associated protein-glycine-rich (CAP-Gly) domains are protein-interaction modules implicated in important cellular processes and in hereditary human diseases. A prominent function of CAP-Gly domains is to bind to C-terminal EEY/F-COO(-) sequence motifs present in alpha-tubulin and in some microtubule-associated protein tails; however, CAP-Gly domains also interact with other structural elements including end-binding homology domains, zinc-finger motifs and proline-rich sequences. Recent findings unravelled the link between tubulin tyrosination and CAP-Gly-protein recruitment to microtubules. They further provided a molecular basis for understanding the role of CAP-Gly domains in controlling dynamic cellular processes including the tracking and regulation of microtubule ends. It is becoming increasingly clear that CAP-Gly domains are also involved in coordinating complex and diverse aspects of cell architecture and signalling.
Collapse
|
50
|
EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 2008; 10:415-21. [PMID: 18364701 DOI: 10.1038/ncb1703] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/25/2008] [Indexed: 11/08/2022]
Abstract
End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.
Collapse
|