1
|
Kohli SK, Dhurve G, Mohammad KG, Khan TA, Yusuf M. The power of small RNAs: A comprehensive review on bacterial stress response and adaptation. Int J Biol Macromol 2025; 315:144411. [PMID: 40398788 DOI: 10.1016/j.ijbiomac.2025.144411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Bacteria employ a wide range of RNA-based regulatory systems to adapt to various environmental stressors. Among these, small non-coding RNAs (sRNAs) have emerged as critical regulators of gene expression. These compact RNA molecules modulate numerous cellular functions, including stress adaptation, biofilm development, and virulence. By acting primarily at the post-transcriptional level, sRNAs enable bacteria to swiftly adjust gene expression in response to external challenges. One key mechanism of sRNA action is translational repression, which includes the regulation of toxin-antitoxin systems pathways essential for bacterial persistence and antibiotic resistance. Additionally, sRNAs orchestrate the expression of genes involved in biofilm formation, enhancing surface adhesion, extracellular matrix production, and resistance to antimicrobial agents. Bacterial outer membrane vesicles (OMVs) also play a significant role in stress adaptation and intercellular communication. These vesicles transport a complex cargo of proteins, lipids, and nucleic acids, including sRNAs. The transfer of sRNAs through OMVs can modulate the physiology of neighboring bacterial cells as well as host cells, highlighting their role in cross-kingdom signaling. sRNAs serve as versatile and potent regulatory elements that support bacterial survival under hostile conditions. Advancing our understanding of sRNA-mediated networks offers promising avenues for uncovering bacterial pathogenesis and developing innovative antimicrobial therapies.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Earth and Climate Sciences (ECS), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Ganeshwari Dhurve
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Kashif Gulam Mohammad
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Tanveer Alam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Lobie TA, Krog CS, Skarstad K, Bjørås M, Booth JA. Escherichia coli type I toxin TisB exclusively controls proton depolarization following antibiotic induced DNA damage. Sci Rep 2025; 15:12774. [PMID: 40229382 PMCID: PMC11997105 DOI: 10.1038/s41598-025-96136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial toxin-antitoxin (TA) systems are genetic loci where the antitoxin gene product helps to control the expression or activity of the toxin gene product. Type I TA systems typically produce hydrophobic peptides that often localize to the inner membrane of bacteria. These amphipathic peptides can then potentially affect ion flows across the inner membrane. Here, we show that several type I toxins from Escherichia coli can affect depolarization, whereas tisB exclusively controls the depolarization of the proton gradient. tisB has been linked to persister cell formation following treatment with the antibiotic ciprofloxacin and tisB-istR has been implicated in the control of proton depolarization following treatment with ofloxacin. These results suggest that tisB could initiate the formation of persister cells by fully dissipating the proton gradient and that most of the electrical gradient greatly limiting ATP production following antibiotic-induced DNA damage.
Collapse
Affiliation(s)
- Tekle Airgecho Lobie
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway
| | - Charlotte Solum Krog
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kirsten Skarstad
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
- Centre for Embryology and Healthy Development, University of Oslo, 0373, Oslo, Norway.
| | - James Alexander Booth
- Department of Microbiology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
3
|
Kim KS, Cho H. ClsC protein encoded by a stress-responsive operon in Escherichia coli functions as a trans-acting activator of RNase III. Int J Biol Macromol 2025; 298:140090. [PMID: 39842605 DOI: 10.1016/j.ijbiomac.2025.140090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
RNase III, an endoribonuclease that cleaves double-stranded RNAs (dsRNAs), significantly impacts Escherichia coli (E. coli) adaptation by regulating global RNA gene expression. YmdB from E. coli was characterized as a trans-acting regulator of RNase III. However, no protein encoded in E. coli has been characterized as an activator of RNase III. This study reports the discovery of ClsC protein, a phospholipase D (PLD) superfamily enzyme previously known as the third cardiolipin synthase (Cls) and a biofilm inhibitor in E. coli, as a novel RNase III activator. Overexpression of clsC in vivo stimulated the cleavage of RNase III-targeted lacZ fusions and antagonized the inhibition of RNase III by YmdB. Additional in vitro cleavage assays of RNase III-targeted RNAs using RNase III and ClsC confirmed this activity. Moreover, we identified multiple RNAs targeted by RNase III that are regulated dependently on cellular ClsC levels. Mechanistic investigations revealed that ClsC interacts with RNase III. Moreover, the isoleucine residue at the 466th position from the N-terminus of ClsC was identified as crucial for ClsC function. This study is the first to demonstrate that the ymdAB-clsC operon serves as an unexpected source for RNase III regulation in E. coli.
Collapse
Affiliation(s)
- Kwang-Sun Kim
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyejin Cho
- Department of Chemistry and Chemistry, Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Ghandour R, Devlitsarov D, Popp P, Melamed S, Huber M, Siemers M, Krüger T, Kniemeyer O, Klingl A, Brakhage A, Erhardt M, Papenfort K. ProQ-associated small RNAs control motility in Vibrio cholerae. Nucleic Acids Res 2025; 53:gkae1283. [PMID: 39727155 PMCID: PMC11879080 DOI: 10.1093/nar/gkae1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Gene regulation at the post-transcriptional level is prevalent in all domains of life. In bacteria, ProQ-like proteins have emerged as important RNA chaperones facilitating RNA stability and RNA duplex formation. In the major human pathogen Vibrio cholerae, post-transcriptional gene regulation is key for virulence, biofilm formation, and antibiotic resistance, yet the role of ProQ has not been studied. Here, we show that ProQ interacts with hundreds of transcripts in V. cholerae, including the highly abundant FlaX small RNA (sRNA). Global analyses of RNA duplex formation using RIL-Seq (RNA interaction by ligation and sequencing) revealed a vast network of ProQ-assisted interactions and identified a role for FlaX in motility regulation. Specifically, FlaX base-pairs with multiple sites on the flaB flagellin mRNA, preventing 30S ribosome binding and translation initiation. V. cholerae cells lacking flaX display impaired motility gene expression, altered flagella composition and reduced swimming in liquid environments. Our results provide a global view on ProQ-associated RNA duplex formation and pinpoint the mechanistic and phenotypic consequences associated with ProQ-associated sRNAs in V. cholerae.
Collapse
Affiliation(s)
- Rabea Ghandour
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
| | - Daniel Devlitsarov
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
| | - Phillip Popp
- Humboldt-Universität zu Berlin, Institute for Biology, 10115 Berlin, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michaela Huber
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
| | - Malte Siemers
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Olaf Kniemeyer
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, 82152 Munich, Germany
| | - Andreas Klingl
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, 82152 Munich, Germany
| | - Axel A Brakhage
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Marc Erhardt
- Humboldt-Universität zu Berlin, Institute for Biology, 10115 Berlin, Germany
| | - Kai Papenfort
- Friedrich Schiller University, Institute of Microbiology, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
5
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
6
|
Mudgal S, Goyal N, Kasi M, Saginela R, Singhal A, Nandi S, Mahmud AKMF, Muniyappa K, Sinha KM. Cyclic di-AMP regulates genome stability and drug resistance in Mycobacterium through RecA-dependent and RecA-independent recombination. PNAS NEXUS 2024; 3:pgae555. [PMID: 39697181 PMCID: PMC11653572 DOI: 10.1093/pnasnexus/pgae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
In Escherichia coli, RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability. Along these lines, we previously demonstrated that the second messenger cyclic di-AMP (c-di-AMP) binds to mycobacterial RecA proteins, but not to E. coli RecA, and inhibits its DNA strand exchange activity in vitro via the disassembly of RecA nucleoprotein filaments. Herein, we demonstrate that Mycobacterium smegmatis ΔdisA cells, which lack c-di-AMP, exhibit increased DNA recombination, higher frequency of mutation, and gene duplications during RecA-dependent and RecA-independent DSB repair. We also found that c-di-AMP regulates SOS response by inhibiting RecA-mediated self-cleavage of LexA repressor and its absence enhances drug resistance in M. smegmatis ΔdisA cells. Together, our results uncover a role of c-di-AMP in the maintenance of genomic stability through modulation of DSB repair in M. smegmatis.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Nisha Goyal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Manikandan Kasi
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rahul Saginela
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Anusha Singhal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Soumyadeep Nandi
- Department of Plant Physiology, Umeå Plant Science Centre, Umea University, Umeå 901 87, Sweden
| | - A K M Firoj Mahmud
- CLINTEC, Karolinska Institutet, Alfred Nobels alle 8, 141 52 Huddinge, Stockholm, Sweden
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| |
Collapse
|
7
|
Leinberger FH, Cassidy L, Edelmann D, Schmid NE, Oberpaul M, Blumenkamp P, Schmidt S, Natriashvili A, Ulbrich MH, Tholey A, Koch HG, Berghoff BA. Protein aggregation is a consequence of the dormancy-inducing membrane toxin TisB in Escherichia coli. mSystems 2024; 9:e0106024. [PMID: 39377584 PMCID: PMC11575346 DOI: 10.1128/msystems.01060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial dormancy is a valuable strategy to survive stressful conditions. Toxins from chromosomal toxin-antitoxin systems have the potential to halt cell growth, induce dormancy, and eventually promote a stress-tolerant persister state. Due to their potential toxicity when overexpressed, sophisticated expression systems are needed when studying toxin genes. Here, we present a moderate expression system for toxin genes based on an artificial 5' untranslated region. We applied the system to induce expression of the toxin gene tisB from the chromosomal type I toxin-antitoxin system tisB/istR-1 in Escherichia coli. TisB is a small hydrophobic protein that targets the inner membrane, resulting in depolarization and ATP depletion. We analyzed TisB-producing cells by RNA-sequencing and revealed several genes with a role in recovery from TisB-induced dormancy, including the chaperone genes ibpAB and spy. The importance of chaperone genes suggested that TisB-producing cells are prone to protein aggregation, which was validated by an in vivo fluorescent reporter system. We moved on to show that TisB is an essential factor for protein aggregation upon DNA damage mediated by the fluoroquinolone antibiotic ciprofloxacin in E. coli wild-type cells. The occurrence of protein aggregates correlates with an extended dormancy duration, which underscores their importance for the life cycle of TisB-dependent persister cells. IMPORTANCE Protein aggregates occur in all living cells due to misfolding of proteins. In bacteria, protein aggregation is associated with cellular inactivity, which is related to dormancy and tolerance to stressful conditions, including exposure to antibiotics. In Escherichia coli, the membrane toxin TisB is an important factor for dormancy and antibiotic tolerance upon DNA damage mediated by the fluoroquinolone antibiotic ciprofloxacin. Here, we show that TisB provokes protein aggregation, which, in turn, promotes an extended state of cellular dormancy. Our study suggests that protein aggregation is a consequence of membrane toxins with the potential to affect the duration of dormancy and the outcome of antibiotic therapy.
Collapse
Affiliation(s)
- Florian H Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Nicole E Schmid
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Markus Oberpaul
- Branch for Bioresources of the Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Department of Insect Biotechnology, Justus-Liebig-Universität, Giessen, Germany
| | - Patrick Blumenkamp
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Sebastian Schmidt
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Ana Natriashvili
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Maximilian H Ulbrich
- Internal Medicine IV, Department of Medicine, University Medical Center, and Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität, Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
8
|
Kato F, Bandou R, Yamaguchi Y, Inouye K, Inouye M. Characterization of a membrane toxin-antitoxin system, tsaAT, from Staphylococcus aureus. FEBS J 2024; 291:5015-5036. [PMID: 39356479 DOI: 10.1111/febs.17289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Bacterial toxin-antitoxin (TA) systems consist of a toxin that inhibits essential cellular processes, such as DNA replication, transcription, translation, or ATP synthesis, and an antitoxin neutralizing their cognate toxin. These systems have roles in programmed cell death, defense against phage, and the formation of persister cells. Here, we characterized the previously identified Staphylococcus aureus TA system, tsaAT, which consists of two putative membrane proteins: TsaT and TsaA. Expression of the TsaT toxin caused cell death and disrupted membrane integrity, whereas TsaA did not show any toxicity and neutralized the toxicity of TsaT. Furthermore, subcellular fractionation analysis demonstrated that both TsaA and TsaT localized to the cytoplasmic membrane of S. aureus expressing either or both 3xFLAG-tagged TsaA and 3xFLAG-tagged TsaT. Taken together, these results demonstrate that the TsaAT TA system consists of two membrane proteins, TsaA and TsaT, where TsaT disrupts membrane integrity, ultimately leading to cell death. Although sequence analyses showed that the tsaA and tsaT genes were conserved among Staphylococcus species, amino acid substitutions between TsaT orthologs highlighted the critical role of the 6th residue for its toxicity. Further amino acid substitutions indicated that the glutamic acid residue at position 63 in the TsaA antitoxin and the cluster of five lysine residues in the TsaT toxin are involved in TsaA's neutralization reaction. This study is the first to describe a bacterial TA system wherein both toxin and antitoxin are membrane proteins. These findings contribute to our understanding of S. aureus TA systems and, more generally, give new insight into highly diverse bacterial TA systems.
Collapse
Affiliation(s)
- Fuminori Kato
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Risa Bandou
- Faculty of Dentistry, Hiroshima University, Japan
| | - Yoshihiro Yamaguchi
- Department of Biology, Graduate School of Sciences, Osaka Metropolitan University, Japan
| | - Keiko Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
9
|
Leinberger FH, Berghoff BA. Relevance of charged and polar amino acids for functionality of membrane toxin TisB. Sci Rep 2024; 14:22998. [PMID: 39362964 PMCID: PMC11449926 DOI: 10.1038/s41598-024-73879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Bacterial dormancy is marked by reduced cellular activity and the suspension of growth. It represents a valuable strategy to survive stressful conditions, as exemplified by the long-term tolerance towards antibiotics that is attributable to a fraction of dormant cells, so-called persisters. Here, we investigate the membrane toxin TisB (29 amino acids) from the chromosomal toxin-antitoxin system tisB/istR-1 in Escherichia coli. TisB depolarizes the inner membrane in response to DNA damage, which eventually promotes a stress-tolerant state of dormancy within a small fraction of the population. Using a plasmid-based system for moderate tisB expression and single amino acid substitutions, we dissect the importance of charged and polar amino acids. We observe that the central amino acids lysine 12 and glutamine 19 are of major importance for TisB functionality, which is further validated for lysine 12 in the native context upon treatment with the DNA-damaging antibiotic ciprofloxacin. Finally, we apply a library-based approach to test additional TisB variants in higher throughput, revealing that at least one positive charge at the C-terminus (either lysine 26 or 29) is mandatory for TisB-mediated dormancy. Our study provides insights into the molecular basis for TisB functionality and extends our understanding of bacterial membrane toxins.
Collapse
Affiliation(s)
- Florian H Leinberger
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, 89069, Ulm, Germany.
| |
Collapse
|
10
|
Brück M, Köbel TS, Dittmar S, Ramírez Rojas AA, Georg J, Berghoff BA, Schindler D. A library-based approach allows systematic and rapid evaluation of seed region length and reveals design rules for synthetic bacterial small RNAs. iScience 2024; 27:110774. [PMID: 39280619 PMCID: PMC11402225 DOI: 10.1016/j.isci.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
All organisms must respond to environmental changes. In bacteria, small RNAs (sRNAs) are an important aspect of the regulation network underlying the adaptation to such changes. sRNAs base-pair with their target mRNAs, allowing rapid modulation of the proteome. This post-transcriptional regulation is usually facilitated by RNA chaperones, such as Hfq. sRNAs have a potential as synthetic regulators that can be modulated by rational design. In this study, we use a library-based approach and oxacillin susceptibility assays to investigate the importance of the seed region length for synthetic sRNAs based on RybB and SgrS scaffolds in Escherichia coli. In the presence of Hfq we show that 12 nucleotides are sufficient for regulation. Furthermore, we observe a scaffold-specific Hfq-dependency and processing by RNase E. Our results provide information for design considerations of synthetic sRNAs in basic and applied research.
Collapse
Affiliation(s)
- Michel Brück
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Tania S Köbel
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Sophie Dittmar
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Adán A Ramírez Rojas
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
| | - Jens Georg
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Daniel Schindler
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany
| |
Collapse
|
11
|
Shore SFH, Ptacek M, Steen AD, Fozo EM. A simple BLASTn-based approach generates novel insights into the regulation and biological function of type I toxin-antitoxins. mSystems 2024; 9:e0120423. [PMID: 38856235 PMCID: PMC11264685 DOI: 10.1128/msystems.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
Bacterial chromosomal type I toxin-antitoxin systems consist of a small protein, typically under 60 amino acids, and a small RNA (sRNA) that represses toxin translation. These gene pairs have gained attention over the last decade for their contribution to antibiotic persistence and phage tolerance in bacteria. However, biological functions for many remain elusive as gene deletions often fail to produce an observable phenotype. For many pairs, it is still unknown when the toxin and/or antitoxin gene are natively expressed within the bacterium. We examined sequence conservation of three type I toxin-antitoxin systems, tisB/istR-1, shoB/ohsC, and zor/orz, in over 2,000 Escherichia coli strains, including pathogenic and commensal isolates. Using our custom database, we found that these gene pairs are widespread across E. coli and have expression potential via BLASTn. We identified an alternative, dominant sequence variant of TisB and confirmed that it is toxic upon overproduction. Additionally, analyses revealed a highly conserved sequence in the zorO mRNA untranslated region that is required for full toxicity. We further noted that over 30% of E. coli genomes contain an orz antitoxin gene only and confirmed its expression in a representative strain: the first confirmed report of a type I antitoxin without its cognate toxin. Our results add to our understanding of these systems, and our methodology is applicable for other type I loci to identify critical regulatory and functional features.IMPORTANCEChromosomal type I toxin-antitoxins are a class of genes that have gained increasing attention over the last decade for their roles in antibiotic persistence which may contribute to therapeutic failures. However, the control of many of these genes and when they function have remained elusive. We demonstrate that a simple genetic conservation-based approach utilizing free, publicly available data yields known and novel insights into the regulation and function of three chromosomal type I toxin-antitoxins in Escherichia coli. This study also provides a framework for how this approach could be applied to other genes of interest.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Michael Ptacek
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew D. Steen
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
12
|
Eleftheraki A, Holmqvist E. An RNA pseudoknot mediates toxin translation and antitoxin inhibition. Proc Natl Acad Sci U S A 2024; 121:e2403063121. [PMID: 38935561 PMCID: PMC11228461 DOI: 10.1073/pnas.2403063121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Type I toxin-antitoxin systems (T1TAs) are bipartite bacterial loci encoding a growth-inhibitory toxin and an antitoxin small RNA (sRNA). In many of these systems, the transcribed toxin mRNA is translationally inactive, but becomes translation-competent upon ribonucleolytic processing. The antitoxin sRNA targets the processed mRNA to inhibit its translation. This two-level control mechanism prevents cotranscriptional translation of the toxin and allows its synthesis only when the antitoxin is absent. Contrary to this, we found that the timP mRNA of the timPR T1TA locus does not undergo enzymatic processing. Instead, the full-length timP transcript is both translationally active and can be targeted by the antitoxin TimR. Thus, tight control in this system relies on a noncanonical mechanism. Based on the results from in vitro binding assays, RNA structure probing, and cell-free translation experiments, we suggest that timP mRNA adopts mutually exclusive structural conformations. The active form uniquely possesses an RNA pseudoknot structure which is essential for translation initiation. TimR preferentially binds to the active conformation, which leads to pseudoknot destabilization and inhibited translation. Based on this, we propose a model in which "structural processing" of timP mRNA enables tight inhibition by TimR in nonpermissive conditions, and TimP synthesis only upon TimR depletion.
Collapse
Affiliation(s)
- Athina Eleftheraki
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala75124, Sweden
- Uppsala Antibiotic Center, Uppsala University, Uppsala75123, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala75124, Sweden
- Uppsala Antibiotic Center, Uppsala University, Uppsala75123, Sweden
| |
Collapse
|
13
|
Bonabal S, Darfeuille F. Preventing toxicity in toxin-antitoxin systems: An overview of regulatory mechanisms. Biochimie 2024; 217:95-105. [PMID: 37473832 DOI: 10.1016/j.biochi.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Toxin-antitoxin systems (TAs) are generally two-component genetic modules present in almost every prokaryotic genome. The production of the free and active toxin is able to disrupt key cellular processes leading to the growth inhibition or death of its host organism in absence of its cognate antitoxin. The functions attributed to TAs rely on this lethal phenotype ranging from mobile genetic elements stabilization to phage defense. Their abundance in prokaryotic genomes as well as their lethal potential make them attractive targets for new antibacterial strategies. The hijacking of TAs requires a deep understanding of their regulation to be able to design such approach. In this review, we summarize the accumulated knowledge on how bacteria cope with these toxic genes in their genome. The characterized TAs can be grouped based on the way they prevent toxicity. Some systems rely on a tight control of the expression to prevent the production of the toxin while others control the activity of the toxin at the post-translational level.
Collapse
Affiliation(s)
- Simon Bonabal
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France
| | - Fabien Darfeuille
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, F-33000, Bordeaux, France.
| |
Collapse
|
14
|
Lejars M, Hajnsdorf E. Bacterial RNase III: Targets and physiology. Biochimie 2024; 217:54-65. [PMID: 37482092 DOI: 10.1016/j.biochi.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Bacteria can rapidly adapt to changes in their environment thanks to the innate flexibility of their genetic expression. The high turnover rate of RNAs, in particular messenger and regulatory RNAs, provides an important contribution to this dynamic adjustment. Recycling of RNAs is ensured by ribonucleases, among which RNase III is the focus of this review. RNase III enzymes are highly conserved from prokaryotes to eukaryotes and have the specific ability to cleave double-stranded RNAs. The role of RNase III in bacterial physiology has remained poorly explored for a long time. However, transcriptomic approaches recently uncovered a large impact of RNase III in gene expression in a wide range of bacteria, generating renewed interest in the physiological role of RNase III. In this review, we first describe the RNase III targets identified from global approaches in 8 bacterial species within 4 Phyla. We then present the conserved and unique functions of bacterial RNase III focusing on growth, resistance to stress, biofilm formation, motility and virulence. Altogether, this review highlights the underestimated impact of RNase III in bacterial adaptation.
Collapse
Affiliation(s)
- Maxence Lejars
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
15
|
Börner J, Friedrich T, Klug G. RNase III participates in control of quorum sensing, pigmentation and oxidative stress resistance in Rhodobacter sphaeroides. Mol Microbiol 2023; 120:874-892. [PMID: 37823424 DOI: 10.1111/mmi.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
RNase III is a dsRNA-specific endoribonuclease, highly conserved in bacteria and eukarya. In this study, we analysed the effects of inactivation of RNase III on the transcriptome and the phenotype of the facultative phototrophic α-proteobacterium Rhodobacter sphaeroides. RNA-seq revealed an unexpectedly high amount of genes with increased expression located directly downstream to the rRNA operons. Chromosomal insertion of additional transcription terminators restored wild type-like expression of the downstream genes, indicating that RNase III may modulate the rRNA transcription termination in R. sphaeroides. Furthermore, we identified RNase III as a major regulator of quorum-sensing autoinducer synthesis in R. sphaeroides. It negatively controls the expression of the autoinducer synthase CerI by reducing cerI mRNA stability. In addition, RNase III inactivation caused altered resistance against oxidative stress and impaired formation of photosynthetically active pigment-protein complexes. We also observed an increase in the CcsR small RNAs that were previously shown to promote resistance to oxidative stress. Taken together, our data present interesting insights into RNase III-mediated regulation and expand the knowledge on the function of this important enzyme in bacteria.
Collapse
Affiliation(s)
- Janek Börner
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Mattiello SP, Barth VC, Scaria J, Ferreira CAS, Oliveira SD. Fluoroquinolone and beta-lactam antimicrobials induce different transcriptome profiles in Salmonella enterica persister cells. Sci Rep 2023; 13:18696. [PMID: 37907566 PMCID: PMC10618250 DOI: 10.1038/s41598-023-46142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
Here, we investigate the transcriptome profiles of two S. Enteritidis and one S. Schwarzengrund isolates that present different persister levels when exposed to ciprofloxacin or ceftazidime. It was possible to note a distinct transcript profile among isolates, time of exposure, and treatment. We could not find a commonly expressed transcript profile that plays a role in persister formation after S. enterica exposure to beta-lactam or fluoroquinolone, as only three DEGs presented the same behavior under the conditions and isolates tested. It appears that the formation of persisters in S. enterica after exposure to ciprofloxacin is linked to the overexpression of genes involved in the SOS response (recA), cell division inhibitor (sulA), iron-sulfur metabolism (hscA and iscS), and type I TA system (tisB). On the other hand, most genes differentially expressed in S. enterica after exposure to ceftazidime appeared to be downregulated and were part of the flagellar assembly apparatus, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, carbon metabolism, bacterial secretion system, quorum sensing, pyruvate metabolism pathway, and biosynthesis of secondary metabolites. The different transcriptome profiles found in S. enterica persisters induced by ciprofloxacin and ceftazidime suggest that these cells modulate their response differently according to each stress.
Collapse
Affiliation(s)
- S P Mattiello
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- College of Mathematics and Science, The University of Tennessee Southern, UTS, Pulaski, TN, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, SDSU, Brookings, SD, USA
| | - V C Barth
- Laboratório de Imunoterapia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - J Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, SDSU, Brookings, SD, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, USA
| | - C A S Ferreira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - S D Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Av. Ipiranga, 6681, Porto Alegre, 90619-900, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
17
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Tashjian TF, Zeinert RD, Eyles SJ, Chien P. Proteomic survey of the DNA damage response in Caulobacter crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534141. [PMID: 36993274 PMCID: PMC10055390 DOI: 10.1101/2023.03.24.534141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The bacterial DNA damage response is a critical, coordinated response to endogenous and exogenous sources of DNA damage. Response dynamics are dependent on coordinated synthesis and loss of relevant proteins. While much is known about its global transcriptional control, changes in protein abundance that occur upon DNA damage are less well characterized at the system level. Here, we perform a proteome-wide survey of the DNA damage response in Caulobacter crescentus . We find that while most protein abundance changes upon DNA damage are readily explained by changes in transcription, there are exceptions. The survey also allowed us to identify the novel DNA damage response factor, YaaA, which has been overlooked by previously published, transcription- focused studies. A similar survey in a Δ lon strain was performed to explore lon's role in DNA damage survival. The Δ lon strain had a smaller dynamic range of protein abundance changes in general upon DNA damage compared to the wild type strain. This system-wide change to the dynamics of the response may explain this strain's sensitivity to DNA damage. Our proteome survey of the DNA damage response provides additional insight into the complex regulation of stress response and nominates a novel response factor that was overlooked in prior studies. IMPORTANCE The DNA damage response helps bacteria to react to and potentially survive DNA damage. The mutagenesis induced during this stress response contributes to the development of antibiotic resistance. Understanding how bacteria coordinate their response to DNA damage could help us to combat this growing threat to human health. While the transcriptional regulation of the bacterial DNA damage response has been characterized, this study is the first to our knowledge to assess the proteomic response to DNA damage in Caulobacter .
Collapse
Affiliation(s)
- Tommy F. Tashjian
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Stephen J. Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
19
|
FinO/ProQ-family proteins: an evolutionary perspective. Biosci Rep 2023; 43:232566. [PMID: 36787218 PMCID: PMC9977716 DOI: 10.1042/bsr20220313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins are key actors of post-transcriptional networks. Almost exclusively studied in the light of their interactions with RNA ligands and the associated functional events, they are still poorly understood as evolutionary units. In this review, we discuss the FinO/ProQ family of bacterial RNA chaperones, how they evolve and spread across bacterial populations and what properties and opportunities they provide to their host cells. We reflect on major conserved and divergent themes within the family, trying to understand how the same ancestral RNA-binding fold, augmented with additional structural elements, could yield either highly specialised proteins or, on the contrary, globally acting regulatory hubs with a pervasive impact on gene expression. We also consider dominant convergent evolutionary trends that shaped their RNA chaperone activity and recurrently implicated the FinO/ProQ-like proteins in bacterial DNA metabolism, translation and virulence. Finally, we offer a new perspective in which FinO/ProQ-family regulators emerge as active evolutionary players with both negative and positive roles, significantly impacting the evolutionary modes and trajectories of their bacterial hosts.
Collapse
|
20
|
Yee JX, Kim J, Yeom J. Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria. J Microbiol 2023; 61:331-341. [PMID: 36800168 DOI: 10.1007/s12275-023-00024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023]
Abstract
Antibiotic treatment failure threatens our ability to control bacterial infections that can cause chronic diseases. Persister bacteria are a subpopulation of physiological variants that becomes highly tolerant to antibiotics. Membrane proteins play crucial roles in all living organisms to regulate cellular physiology. Although a diverse membrane component involved in persistence can result in antibiotic treatment failure, the regulations of antibiotic persistence by membrane proteins has not been fully understood. In this review, we summarize the recent advances in our understanding with regards to membrane proteins in Gram-negative bacteria as a regulator for antibiotic persistence, highlighting various physiological mechanisms in bacteria.
Collapse
Affiliation(s)
- Jia Xin Yee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Juhyun Kim
- School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jinki Yeom
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
21
|
Bogati B, Shore SFH, Nipper TD, Stoiculescu O, Fozo EM. Charged Amino Acids Contribute to ZorO Toxicity. Toxins (Basel) 2022; 15:32. [PMID: 36668852 PMCID: PMC9860968 DOI: 10.3390/toxins15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Chromosomally encoded toxin-antitoxin systems have been increasingly identified and characterized across bacterial species over the past two decades. Overproduction of the toxin gene results in cell growth stasis or death for the producing cell, but co-expression of its antitoxin can repress the toxic effects. For the subcategory of type I toxin-antitoxin systems, many of the described toxin genes encode a small, hydrophobic protein with several charged residues distributed across the sequence of the toxic protein. Though these charged residues are hypothesized to be critical for the toxic effects of the protein, they have not been studied broadly across different type I toxins. Herein, we mutated codons encoding charged residues in the type I toxin zorO, from the zor-orz toxin-antitoxin system, to determine their impacts on growth inhibition, membrane depolarization, ATP depletion, and the localization of this small protein. The non-toxic variants of ZorO accumulated both in the membrane and cytoplasm, indicating that membrane localization alone is not sufficient for its toxicity. While mutation of a charged residue could result in altered toxicity, this was dependent not only on the position of the amino acid within the protein but also on the residue to which it was converted, suggesting a complex role of charged residues in ZorO-mediated toxicity. A previous study indicated that additional copies of the zor-orz system improved growth in aminoglycosides: within, we note that this improved growth is independent of ZorO toxicity. By increasing the copy number of the zorO gene fused with a FLAG-tag, we were able to detect the protein expressed from its native promoter elements: an important step for future studies of toxin expression and function.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
22
|
Abstract
Bacterial populations can survive exposure to antibiotics through transient phenotypic and gene expression changes. These changes can be attributed to a small subpopulation of bacteria, giving rise to antibiotic persistence. Although this phenomenon has been known for decades, much remains to be learned about the mechanisms that drive persister formation. The RNA-binding protein ProQ has recently emerged as a global regulator of gene expression. Here, we show that ProQ impacts persister formation in Salmonella. In vitro, ProQ contributes to growth arrest in a subset of cells that are able to survive treatment at high concentrations of different antibiotics. The underlying mechanism for ProQ-dependent persister formation involves the activation of metabolically costly processes, including the flagellar pathway and the type III protein secretion system encoded on Salmonella pathogenicity island 2. Importantly, we show that the ProQ-dependent phenotype is relevant during macrophage infection and allows Salmonella to survive the combined action of host immune defenses and antibiotics. Together, our data highlight the importance of ProQ in Salmonella persistence and pathogenesis. IMPORTANCE Bacteria can avoid eradication by antibiotics through a phenomenon known as persistence. Persister cells arise through phenotypic heterogeneity and constitute a small fraction of dormant cells within a population of actively growing bacteria, which is susceptible to antibiotic killing. In this study, we show that ProQ, an RNA-binding protein and global regulator of gene expression, promotes persisters in the human pathogen Salmonella enterica serovar Typhimurium. Bacteria lacking the proQ gene outcompete wild-type bacteria under laboratory conditions, are less prone to enter growth dormancy, and form fewer persister cells. The basis for these phenotypes lies in ProQ's ability to activate energy-consuming cellular processes, including flagellar motility and protein secretion. Importantly, we show that ProQ contributes to the persister phenotype during Salmonella infection of macrophages, indicating an important role of this global regulator in Salmonella pathogenesis.
Collapse
|
23
|
Köbel T, Melo Palhares R, Fromm C, Szymanski W, Angelidou G, Glatter T, Georg J, Berghoff BA, Schindler D. An Easy-to-Use Plasmid Toolset for Efficient Generation and Benchmarking of Synthetic Small RNAs in Bacteria. ACS Synth Biol 2022; 11:2989-3003. [PMID: 36044590 PMCID: PMC9486967 DOI: 10.1021/acssynbio.2c00164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthetic biology approaches life from the perspective of an engineer. Standardized and de novo design of genetic parts to subsequently build reproducible and controllable modules, for example, for circuit design, is a key element. To achieve this, natural systems and elements often serve as a blueprint for researchers. Regulation of protein abundance is controlled at DNA, mRNA, and protein levels. Many tools for the activation or repression of transcription or the destabilization of proteins are available, but easy-to-handle minimal regulatory elements on the mRNA level are preferable when translation needs to be modulated. Regulatory RNAs contribute considerably to regulatory networks in all domains of life. In particular, bacteria use small regulatory RNAs (sRNAs) to regulate mRNA translation. Slowly, sRNAs are attracting the interest of using them for broad applications in synthetic biology. Here, we promote a "plug and play" plasmid toolset to quickly and efficiently create synthetic sRNAs to study sRNA biology or their application in bacteria. We propose a simple benchmarking assay by targeting the acrA gene of Escherichia coli and rendering cells sensitive toward the β-lactam antibiotic oxacillin. We further highlight that it may be necessary to test multiple seed regions and sRNA scaffolds to achieve the desired regulatory effect. The described plasmid toolset allows quick construction and testing of various synthetic sRNAs based on the user's needs.
Collapse
Affiliation(s)
- Tania
S. Köbel
- RG
Schindler, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany,MaxGENESYS
Biofoundry, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany
| | - Rafael Melo Palhares
- RG
Schindler, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany,Institute
for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Christin Fromm
- Institute
for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Witold Szymanski
- Mass
Spectrometry and Proteomics Core Facility, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, 35043 Marburg, Germany
| | - Georgia Angelidou
- Mass
Spectrometry and Proteomics Core Facility, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, 35043 Marburg, Germany
| | - Timo Glatter
- Mass
Spectrometry and Proteomics Core Facility, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, 35043 Marburg, Germany
| | - Jens Georg
- Institut
für Biologie III, Albert-Ludwigs-Universität
Freiburg, Schänzlestraße
1, 79104 Freiburg, Germany
| | - Bork A. Berghoff
- Institute
for Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany,
| | - Daniel Schindler
- RG
Schindler, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany,MaxGENESYS
Biofoundry, Max-Planck-Institute for Terrestrial
Microbiology, Karl-von-Frisch-Street
10, 35043 Marburg, Germany,
| |
Collapse
|
24
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
25
|
Edelmann D, Berghoff BA. A Shift in Perspective: A Role for the Type I Toxin TisB as Persistence-Stabilizing Factor. Front Microbiol 2022; 13:871699. [PMID: 35369430 PMCID: PMC8969498 DOI: 10.3389/fmicb.2022.871699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial persistence is a phenomenon that is founded by the existence of a subpopulation of multidrug-tolerant cells. These so-called persister cells endure otherwise lethal stress situations and enable restoration of bacterial populations upon return to favorable conditions. Persisters are especially notorious for their ability to survive antibiotic treatments without conventional resistance genes and to cause infection relapse. The persister state is typically correlated with reduction or inhibition of cellular activity. Early on, chromosomal toxin-antitoxin (TA) systems were suspected to induce the persister state in response to environmental stress. However, this idea has been challenged during the last years. Especially the involvement of toxins from type II TA systems in persister formation is put into question. For toxins from type I TA systems the debate has just started. Here, we would like to summarize recent knowledge gained for the type I TA system tisB/istR-1 from Escherichia coli. TisB is a small, membrane-targeting toxin, which disrupts the proton motive force (PMF), leading to membrane depolarization. Based on experimental data, we hypothesize that TisB primarily stabilizes the persister state through depolarization and further, secondary effects. We will present a simple model that will provide a framework for future directions.
Collapse
|
26
|
Zou J, Peng B, Qu J, Zheng J. Are Bacterial Persisters Dormant Cells Only? Front Microbiol 2022; 12:708580. [PMID: 35185807 PMCID: PMC8847742 DOI: 10.3389/fmicb.2021.708580] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial persisters are a sub-population of phenotypic variants that tolerate high concentrations of antibiotics within the genetically homogeneous cells. They resume division upon the removal of drugs. Bacterial persistence is one of major causes of antibiotic treatment failure and recurrent infection. Cell dormancy, triggered by toxin/antitoxin pair, (p)ppGpp, SOS response and ATP levels, is known to be the mechanistic basis for persistence. However, recent studies have demonstrated that bacteria with active metabolism can maintain persistence by lowering intracellular antibiotic concentration via an efflux pump. Additionally, others and our work have showed that cell wall deficient bacteria (CWDB), including both L-form and spheroplasts that produced by β-lactam antibiotics, are associated with antibiotic persistence. They are not dormant cells as their cell walls have been completely damaged. In this review, we discuss the various types of persisters and highlight the contribution of non-walled bacteria on bacterial persistence.
Collapse
Affiliation(s)
- Jin Zou
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China.,Faculty of Health Sciences, University of Macau, Zhuhai, Macau SAR, China
| | - Bo Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Zhuhai, Macau SAR, China.,Institute of Translational Medicine, University of Macau, Zhuhai, Macau SAR, China
| |
Collapse
|
27
|
Yadavalli SS, Yuan J. Bacterial Small Membrane Proteins: the Swiss Army Knife of Regulators at the Lipid Bilayer. J Bacteriol 2022; 204:e0034421. [PMID: 34516282 PMCID: PMC8765417 DOI: 10.1128/jb.00344-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small membrane proteins represent a subset of recently discovered small proteins (≤100 amino acids), which are a ubiquitous class of emerging regulators underlying bacterial adaptation to environmental stressors. Until relatively recently, small open reading frames encoding these proteins were not designated genes in genome annotations. Therefore, our understanding of small protein biology was primarily limited to a few candidates associated with previously characterized larger partner proteins. Following the first systematic analyses of small proteins in Escherichia coli over a decade ago, numerous small proteins across different bacteria have been uncovered. An estimated one-third of these newly discovered proteins in E. coli are localized to the cell membrane, where they may interact with distinct groups of membrane proteins, such as signal receptors, transporters, and enzymes, and affect their activities. Recently, there has been considerable progress in functionally characterizing small membrane protein regulators aided by innovative tools adapted specifically to study small proteins. Our review covers prototypical proteins that modulate a broad range of cellular processes, such as transport, signal transduction, stress response, respiration, cell division, sporulation, and membrane stability. Thus, small membrane proteins represent a versatile group of physiology regulators at the membrane and the whole cell. Additionally, small membrane proteins have the potential for clinical applications, where some of the proteins may act as antibacterial agents themselves while others serve as alternative drug targets for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, USA
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
28
|
Abstract
Toxin-antitoxin systems are widespread in bacterial genomes. They are usually composed of two elements: a toxin that inhibits an essential cellular process and an antitoxin that counteracts its cognate toxin. In the past decade, a number of new toxin-antitoxin systems have been described, bringing new growth inhibition mechanisms to light as well as novel modes of antitoxicity. However, recent advances in the field profoundly questioned the role of these systems in bacterial physiology, stress response and antimicrobial persistence. This shifted the paradigm of the functions of toxin-antitoxin systems to roles related to interactions between hosts and their mobile genetic elements, such as viral defence or plasmid stability. In this Review, we summarize the recent progress in understanding the biology and evolution of these small genetic elements, and discuss how genomic conflicts could shape the diversification of toxin-antitoxin systems.
Collapse
|
29
|
Thompson MK, Nocedal I, Culviner PH, Zhang T, Gozzi KR, Laub MT. Escherichia coli SymE is a DNA-binding protein that can condense the nucleoid. Mol Microbiol 2021; 117:851-870. [PMID: 34964191 DOI: 10.1111/mmi.14877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Type I toxin-antitoxin (TA) systems typically consist of a protein toxin that imbeds in the inner membrane where it can oligomerize and form pores that change membrane permeability, and an RNA antitoxin that interacts directly with toxin mRNA to inhibit its translation. In Escherichia coli, symE/symR is annotated as a type I TA system with a non-canonical toxin. SymE was initially suggested to be an endoribonuclease, but has predicted structural similarity to DNA binding proteins. To better understand SymE function, we used RNA-seq to examine cells ectopically producing it. Although SymE drives major changes in gene expression, we do not find strong evidence of endoribonucleolytic activity. Instead, our biochemical and cell biological studies indicate that SymE binds DNA. We demonstrate that the toxicity of symE overexpression likely stems from its ability to drive severe nucleoid condensation, which disrupts DNA and RNA synthesis and leads to DNA damage, similar to the effects of overproducing the nucleoid-associated protein H-NS. Collectively, our results suggest that SymE represents a new class of nucleoid-associated proteins that is widely distributed in bacteria.
Collapse
Affiliation(s)
- Mary K Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Isabel Nocedal
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter H Culviner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin R Gozzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
30
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
31
|
Svensson SL, Sharma CM. RNase III-mediated processing of a trans-acting bacterial sRNA and its cis-encoded antagonist. eLife 2021; 10:69064. [PMID: 34843430 PMCID: PMC8687705 DOI: 10.7554/elife.69064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/28/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important post-transcriptional regulators in stress responses and virulence. They can be derived from an expanding list of genomic contexts, such as processing from parental transcripts by RNase E. The role of RNase III in sRNA biogenesis is less well understood despite its well-known roles in rRNA processing, RNA decay, and cleavage of sRNA-mRNA duplexes. Here, we show that RNase III processes a pair of cis-encoded sRNAs (CJnc190 and CJnc180) of the food-borne pathogen Campylobacter jejuni. While CJnc180 processing by RNase III requires CJnc190, RNase III processes CJnc190 independent of CJnc180 via cleavage of an intramolecular duplex. We also show that CJnc190 directly represses translation of the colonization factor PtmG by targeting a G-rich ribosome-binding site, and uncover that CJnc180 is a cis-acting antagonist of CJnc190, indirectly affecting ptmG regulation. Our study highlights a role for RNase III in sRNA biogenesis and adds cis-encoded RNAs to the expanding diversity of transcripts that can antagonize bacterial sRNAs.
Collapse
Affiliation(s)
- Sarah Lauren Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia Mira Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Apura P, Gonçalves LG, Viegas SC, Arraiano CM. The world of ribonucleases from pseudomonads: a short trip through the main features and singularities. Microb Biotechnol 2021; 14:2316-2333. [PMID: 34427985 PMCID: PMC8601179 DOI: 10.1111/1751-7915.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
The development of synthetic biology has brought an unprecedented increase in the number molecular tools applicable into a microbial chassis. The exploration of such tools into different bacteria revealed not only the challenges of context dependency of biological functions but also the complexity and diversity of regulatory layers in bacterial cells. Most of the standardized genetic tools and principles/functions have been mostly based on model microorganisms, namely Escherichia coli. In contrast, the non-model pseudomonads lack a deeper understanding of their regulatory layers and have limited molecular tools. They are resistant pathogens and promising alternative bacterial chassis, making them attractive targets for further studies. Ribonucleases (RNases) are key players in the post-transcriptional control of gene expression by degrading or processing the RNA molecules in the cell. These enzymes act according to the cellular requirements and can also be seen as the recyclers of ribonucleotides, allowing a continuous input of these cellular resources. This makes these post-transcriptional regulators perfect candidates to regulate microbial physiology. This review summarizes the current knowledge and unique properties of ribonucleases in the world of pseudomonads, taking into account genomic context analysis, biological function and strategies to use ribonucleases to improve biotechnological processes.
Collapse
Affiliation(s)
- Patrícia Apura
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Luis G. Gonçalves
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| |
Collapse
|
33
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
34
|
Lemma AS, Brynildsen MP. Toxin Induction or Inhibition of Transcription or Translation Posttreatment Increases Persistence to Fluoroquinolones. mBio 2021; 12:e0198321. [PMID: 34399616 PMCID: PMC8406316 DOI: 10.1128/mbio.01983-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 02/03/2023] Open
Abstract
Toxin-antitoxin modules are widespread in prokaryotes, and the capacity of toxin accumulation to increase the tolerances of bacteria to antibiotics has been well documented. The conventional model for this functionality implies that an overabundance of toxin arrests bacterial growth, which inhibits processes targeted by antibiotics and thereby limits their corruption and the lethal damage that would ensue. Implicit in this model is that toxins exert their influence on antibiotic lethality before and/or during treatment, even though they are also present and functional after treatment concludes. Given recent evidence establishing that the period following antibiotic treatment (recovery) is important for the survival of nongrowing bacterial populations treated with fluoroquinolones (FQs), we assayed to what extent toxins influence bacterial survival during the recovery period. With both LdrD and MazF, toxins of type I and II systems, respectively, controlling accumulation to occur only after FQ treatment of nongrowing cultures resulted in significant increases in persisters. Further genetic investigation revealed important roles for homologous recombination and nucleotide excision repair machinery. Focusing on the wild type, we did not observe any SOS-induced toxin functioning in this manner; however, an analogous phenomenon was observed for wild-type Escherichia coli as well as uropathogenic E. coli (UPEC) when transcription or translation was inhibited during the post-FQ recovery period. Collectively, these data reveal the capacity of toxins to thwart FQ killing even after the treatment has concluded and show that FQ treatment of nongrowing bacteria can be rendered largely ineffective if bacteria cannot readily resume translation and growth at the conclusion of treatment. IMPORTANCE Overabundances of toxins have been shown to increase the antibiotic tolerances of bacteria. Largely, these effects have been attributed to the abilities of toxins to inhibit bacterial growth before and during antibiotic exposure. In this study, we assessed to what extent toxins can influence bacterial survival following antibiotic treatment, rather than before or during. Using two mechanistically distinct toxins, we show that their accumulations after antibiotic exposure have the capacity to increase the abundances of fluoroquinolone persisters from nongrowing populations. Further, we show with wild-type and uropathogenic E. coli that chemical inhibition of growth, not just that induced by toxins, produces analogous results. These observations reveal another dimension of how toxins influence antibiotic tolerance and highlight the importance of postantibiotic physiology on bacterial survival.
Collapse
Affiliation(s)
- Annabel S. Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
35
|
Nonin-Lecomte S, Fermon L, Felden B, Pinel-Marie ML. Bacterial Type I Toxins: Folding and Membrane Interactions. Toxins (Basel) 2021; 13:toxins13070490. [PMID: 34357962 PMCID: PMC8309996 DOI: 10.3390/toxins13070490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial type I toxin-antitoxin systems are two-component genetic modules that encode a stable toxic protein whose ectopic overexpression can lead to growth arrest or cell death, and an unstable RNA antitoxin that inhibits toxin translation during growth. These systems are widely spread among bacterial species. Type I antitoxins are cis- or trans-encoded antisense small RNAs that interact with toxin-encoding mRNAs by pairing, thereby inhibiting toxin mRNA translation and/or inducing its degradation. Under environmental stress conditions, the up-regulation of the toxin and/or the antitoxin degradation by specific RNases promote toxin translation. Most type I toxins are small hydrophobic peptides with a predicted α-helical transmembrane domain that induces membrane depolarization and/or permeabilization followed by a decrease of intracellular ATP, leading to plasmid maintenance, growth adaptation to environmental stresses, or persister cell formation. In this review, we describe the current state of the art on the folding and the membrane interactions of these membrane-associated type I toxins from either Gram-negative or Gram-positive bacteria and establish a chronology of their toxic effects on the bacterial cell. This review also includes novel structural results obtained by NMR concerning the sprG1-encoded membrane peptides that belong to the sprG1/SprF1 type I TA system expressed in Staphylococcus aureus and discusses the putative membrane interactions allowing the lysis of competing bacteria and host cells.
Collapse
Affiliation(s)
| | - Laurence Fermon
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
| | - Brice Felden
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
| | - Marie-Laure Pinel-Marie
- BRM (Bacterial Regulatory RNAs and Medicine), Inserm, UMR_S 1230, Université de Rennes 1, 35000 Rennes, France; (L.F.); (B.F.)
- Correspondence:
| |
Collapse
|
36
|
Jones EC, Uphoff S. Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response. Nat Microbiol 2021; 6:981-990. [PMID: 34183814 PMCID: PMC7611437 DOI: 10.1038/s41564-021-00930-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 05/27/2021] [Indexed: 12/20/2022]
Abstract
The bacterial SOS response stands as a paradigm of gene networks controlled by a master transcriptional regulator. Self-cleavage of the SOS repressor, LexA, induces a wide range of cell functions that are critical for survival and adaptation when bacteria experience stress conditions1, including DNA repair2, mutagenesis3,4, horizontal gene transfer5–7, filamentous growth, and the induction of bacterial toxins8–12, toxin-antitoxin systems13, virulence factors6,14, and prophages15–17. SOS induction is also implicated in biofilm formation and antibiotic persistence11,18–20. Considering the fitness burden of these functions, it is surprising that the expression of LexA-regulated genes is highly variable across cells10,21–23 and that cell subpopulations induce the SOS response spontaneously even in the absence of stress exposure9,11,12,16,24,25. Whether this reflects a population survival strategy or a regulatory inaccuracy is unclear, as are the mechanisms underlying SOS heterogeneity. Here, we developed a single-molecule imaging approach based on a HaloTag fusion to directly monitor LexA inside live Escherichia coli cells, demonstrating the existence of 3 main states of LexA: DNA-bound stationary molecules, free LexA and degraded LexA species. These analyses elucidate the mechanisms by which DNA-binding and degradation of LexA regulate the SOS response in vivo. We show that self-cleavage of LexA occurs frequently throughout the population during unperturbed growth, rather than being restricted to a subpopulation of cells, which causes substantial cell-to-cell variation in LexA abundances. LexA variability underlies SOS gene expression heterogeneity and triggers spontaneous SOS pulses, which enhance bacterial survival in anticipation of stress.
Collapse
Affiliation(s)
- Emma C Jones
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
37
|
Sarpong DD, Murphy ER. RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:661026. [PMID: 34084755 PMCID: PMC8167048 DOI: 10.3389/fcimb.2021.661026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.
Collapse
Affiliation(s)
- David D. Sarpong
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Erin R. Murphy
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
38
|
Edelmann D, Leinberger FH, Schmid NE, Oberpaul M, Schäberle TF, Berghoff BA. Elevated Expression of Toxin TisB Protects Persister Cells against Ciprofloxacin but Enhances Susceptibility to Mitomycin C. Microorganisms 2021; 9:943. [PMID: 33925723 PMCID: PMC8145889 DOI: 10.3390/microorganisms9050943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
Bacterial chromosomes harbor toxin-antitoxin (TA) systems, some of which are implicated in the formation of multidrug-tolerant persister cells. In Escherichia coli, toxin TisB from the tisB/istR-1 TA system depolarizes the inner membrane and causes ATP depletion, which presumably favors persister formation. Transcription of tisB is induced upon DNA damage due to activation of the SOS response by LexA degradation. Transcriptional activation of tisB is counteracted on the post-transcriptional level by structural features of tisB mRNA and RNA antitoxin IstR-1. Deletion of the regulatory RNA elements (mutant Δ1-41 ΔistR) uncouples TisB expression from LexA-dependent SOS induction and causes a 'high persistence' (hip) phenotype upon treatment with different antibiotics. Here, we demonstrate by the use of fluorescent reporters that TisB overexpression in mutant Δ1-41 ΔistR inhibits cellular processes, including the expression of SOS genes. The failure in SOS gene expression does not affect the hip phenotype upon treatment with the fluoroquinolone ciprofloxacin, likely because ATP depletion avoids strong DNA damage. By contrast, Δ1-41 ΔistR cells are highly susceptible to the DNA cross-linker mitomycin C, likely because the expression of SOS-dependent repair systems is impeded. Hence, the hip phenotype of the mutant is conditional and strongly depends on the DNA-damaging agent.
Collapse
Affiliation(s)
- Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Nicole E. Schmid
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Markus Oberpaul
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany; (M.O.); (T.F.S.)
| | - Till F. Schäberle
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany; (M.O.); (T.F.S.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
- Partner Site Giessen-Marburg-Langen, German Center for Infection Research (DZIF), 35392 Giessen, Germany
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| |
Collapse
|
39
|
Mérida-Floriano A, Rowe WPM, Casadesús J. Genome-Wide Identification and Expression Analysis of SOS Response Genes in Salmonella enterica Serovar Typhimurium. Cells 2021; 10:cells10040943. [PMID: 33921732 PMCID: PMC8072944 DOI: 10.3390/cells10040943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
A bioinformatic search for LexA boxes, combined with transcriptomic detection of loci responsive to DNA damage, identified 48 members of the SOS regulon in the genome of Salmonella enterica serovar Typhimurium. Single cell analysis using fluorescent fusions revealed that heterogeneous expression is a common trait of SOS response genes, with formation of SOSOFF and SOSON subpopulations. Phenotypic cell variants formed in the absence of external DNA damage show gene expression patterns that are mainly determined by the position and the heterology index of the LexA box. SOS induction upon DNA damage produces SOSOFF and SOSON subpopulations that contain live and dead cells. The nature and concentration of the DNA damaging agent and the time of exposure are major factors that influence the population structure upon SOS induction. An analogy can thus be drawn between the SOS response and other bacterial stress responses that produce phenotypic cell variants.
Collapse
Affiliation(s)
- Angela Mérida-Floriano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
| | - Will P. M. Rowe
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK;
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain;
- Correspondence: ; Tel.: +34-95-455-7105
| |
Collapse
|
40
|
Edelmann D, Oberpaul M, Schäberle TF, Berghoff BA. Post-transcriptional deregulation of the tisB/istR-1 toxin-antitoxin system promotes SOS-independent persister formation in Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:159-168. [PMID: 33350069 DOI: 10.1111/1758-2229.12919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Bacterial dormancy is a valuable strategy to endure unfavourable conditions. The term 'persister' has been coined for cells that tolerate antibiotic treatments due to reduced cellular activity. The type I toxin-antitoxin system tisB/istR-1 is linked to persistence in Escherichia coli, because toxin TisB depolarizes the inner membrane and causes ATP depletion. Transcription of tisB is induced upon activation of the SOS response by DNA-damaging drugs. However, translation is repressed both by a 5' structure within the tisB mRNA and by RNA antitoxin IstR-1. This tight regulation limits TisB production to SOS conditions. Deletion of both regulatory RNA elements produced a 'high persistence' mutant, which was previously assumed to depend on stochastic SOS induction and concomitant TisB production. Here, we demonstrate that the mutant generates a subpopulation of growth-retarded cells during late stationary phase, likely due to SOS-independent TisB accumulation. Cell sorting experiments revealed that the stationary phase-derived subpopulation contains most of the persister cells. Collectively our data show that deletion of the regulatory RNA elements uncouples the persister formation process from the intended stress situation and enables the formation of TisB-dependent persisters in an SOS-independent manner.
Collapse
Affiliation(s)
- Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Markus Oberpaul
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, 35392, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, 35392, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, 35392, Germany
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, 35392, Germany
| | - Bork A Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, Giessen, 35392, Germany
| |
Collapse
|
41
|
Jia J, Li J, Qi L, Li L, Yue L, Dong X. Post-transcriptional regulation is involved in the cold-active methanol-based methanogenic pathway of a psychrophilic methanogen. Environ Microbiol 2021; 23:3773-3788. [PMID: 33538379 DOI: 10.1111/1462-2920.15420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/31/2021] [Indexed: 11/30/2022]
Abstract
The methanol-derived methanogenetic pathway contributes to bulk methane production in cold regions, but the cold adaptation mechanisms are obscure. This work investigated the mechanisms using a psychrophilic methylotrophic methanogen Methanolobus psychrophilus R15. R15 possesses two mtaCB operon paralogues-encoding methanol:corrinoid methyltransferase that is key to methanol-based methanogenesis. Molecular combined methanogenic assays determined that MtaC1 is important in methanogenesis at the optimal temperature of 18°C, but MtaC2 can be a cold-adaptive paralogue by highly upregulated at 8°C. The 5'P-seq and 5'RACE all assayed that processing occurred at the 5' untranslated region (5'-UTR) of mtaC2; reporter genes detected higher protein expression, and RNA half-life experiments assayed prolonged lifespan of the processed transcript. Therefore, mtaC2 5'-UTR processing to move the bulged structure elevated both the translation efficiency and transcript stability. 5'P-seq, quantitative RT-PCR and northern blot all identified enhanced mtaC2 5'-UTR processing at 8°C, which could contribute to the upregulation of mtaC2 at cold. The R15 cell extract contains an endoribonuclease cleaving an identified 10 nt-processing motif and the native mtaC2 5'-UTR particularly folded at 8°C. Therefore, this study revealed a 5'-UTR processing mediated post-transcriptional regulation mechanism controlling the cold-adaptive methanol-supported methanogenetic pathway, which may be used by other methylotrophic methanogens.
Collapse
Affiliation(s)
- Jia Jia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lei Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingyan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
42
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
43
|
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep 2020; 21:e51034. [PMID: 33400359 PMCID: PMC7726816 DOI: 10.15252/embr.202051034] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) and persistence are associated with an elevated risk of treatment failure and relapsing infections. They are thus important drivers of increased morbidity and mortality rates resulting in growing healthcare costs. Antibiotic resistance is readily identifiable with standard microbiological assays, and the threat imposed by antibiotic resistance has been well recognized. Measures aiming to reduce resistance development and spreading of resistant bacteria are being enforced. However, the phenomenon of bacteria surviving antibiotic exposure despite being fully susceptible, so-called antibiotic persistence, is still largely underestimated. In contrast to antibiotic resistance, antibiotic persistence is difficult to measure and therefore often missed, potentially leading to treatment failures. In this review, we focus on bacterial mechanisms allowing evasion of antibiotic killing and discuss their implications on human health. We describe the relationship between antibiotic persistence and bacterial heterogeneity and discuss recent studies that link bacterial persistence and tolerance with the evolution of antibiotic resistance. Finally, we review persister detection methods, novel strategies aiming at eradicating bacterial persisters and the latest advances in the development of new antibiotics.
Collapse
Affiliation(s)
- Markus Huemer
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| |
Collapse
|
44
|
Romilly C, Lippegaus A, Wagner E. An RNA pseudoknot is essential for standby-mediated translation of the tisB toxin mRNA in Escherichia coli. Nucleic Acids Res 2020; 48:12336-12347. [PMID: 33231643 PMCID: PMC7708055 DOI: 10.1093/nar/gkaa1139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 01/20/2023] Open
Abstract
In response to DNA damage, Escherichia coli cells activate the expression of the toxin gene tisB of the toxin-antitoxin system tisB-istR1. Of three isoforms, only the processed, highly structured +42 tisB mRNA is active. Translation requires a standby site, composed of two essential elements: a single-stranded region located 100 nucleotides upstream of the sequestered RBS, and a structure near the 5'-end of the active mRNA. Here, we propose that this 5'-structure is an RNA pseudoknot which is required for 30S and protein S1-alone binding to the mRNA. Point mutations that prevent formation of this pseudoknot inhibit formation of translation initiation complexes, impair S1 and 30S binding to the mRNA, and render the tisB mRNA non-toxic in vivo. A set of mutations created in either the left or right arm of stem 2 of the pseudoknot entailed loss of toxicity upon overexpression of the corresponding mRNA variants. Combining the matching right-left arm mutations entirely restored toxicity levels to that of the wild-type, active mRNA. Finally, since many pseudoknots have high affinity for S1, we predicted similar pseudoknots in non-homologous type I toxin-antitoxin systems that exhibit features similar to that of tisB-IstR1, suggesting a shared requirement for standby acting at great distances.
Collapse
MESH Headings
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Base Pairing
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Nucleic Acid Conformation
- Point Mutation
- Protein Binding
- Protein Biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
- Toxin-Antitoxin Systems/genetics
Collapse
Affiliation(s)
- Cédric Romilly
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - Anne Lippegaus
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala S-75124, Sweden
| |
Collapse
|
45
|
The Small Toxic Salmonella Protein TimP Targets the Cytoplasmic Membrane and Is Repressed by the Small RNA TimR. mBio 2020; 11:mBio.01659-20. [PMID: 33172998 PMCID: PMC7667032 DOI: 10.1128/mbio.01659-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) has enabled the revelation of a vast number of genomes from organisms spanning all domains of life. To reduce complexity when new genome sequences are annotated, open reading frames (ORFs) shorter than 50 codons in length are generally omitted. However, it has recently become evident that this procedure sorts away ORFs encoding small proteins of high biological significance. For instance, tailored small protein identification approaches have shown that bacteria encode numerous small proteins with important physiological functions. As the number of predicted small ORFs increase, it becomes important to characterize the corresponding proteins. In this study, we discovered a conserved but previously overlooked small enterobacterial protein. We show that this protein, which we dubbed TimP, is a potent toxin that inhibits bacterial growth by targeting the cell membrane. Toxicity is relieved by a small regulatory RNA, which binds the toxin mRNA to inhibit toxin synthesis. Small proteins are gaining increased attention due to their important functions in major biological processes throughout the domains of life. However, their small size and low sequence conservation make them difficult to identify. It is therefore not surprising that enterobacterial ryfA has escaped identification as a small protein coding gene for nearly 2 decades. Since its identification in 2001, ryfA has been thought to encode a noncoding RNA and has been implicated in biofilm formation in Escherichia coli and pathogenesis in Shigella dysenteriae. Although a recent ribosome profiling study suggested ryfA to be translated, the corresponding protein product was not detected. In this study, we provide evidence that ryfA encodes a small toxic inner membrane protein, TimP, overexpression of which causes cytoplasmic membrane leakage. TimP carries an N-terminal signal sequence, indicating that its membrane localization is Sec-dependent. Expression of TimP is repressed by the small RNA (sRNA) TimR, which base pairs with the timP mRNA to inhibit its translation. In contrast to overexpression, endogenous expression of TimP upon timR deletion permits cell growth, possibly indicating a toxicity-independent function in the bacterial membrane.
Collapse
|
46
|
Memar MY, Yekani M, Celenza G, Poortahmasebi V, Naghili B, Bellio P, Baghi HB. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci 2020; 262:118562. [PMID: 33038378 DOI: 10.1016/j.lfs.2020.118562] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023]
Abstract
Bacteria have a considerable ability and potential to acquire resistance against antimicrobial agents by acting diverse mechanisms such as target modification or overexpression, multidrug transporter systems, and acquisition of drug hydrolyzing enzymes. Studying the mechanisms of bacterial cell physiology is mandatory for the development of novel strategies to control the antimicrobial resistance phenomenon, as well as for the control of infections in clinics. The SOS response is a cellular DNA repair mechanism that has an essential role in the bacterial biologic process involved in resistance to antibiotics. The activation of the SOS network increases the resistance and tolerance of bacteria to stress and, as a consequence, to antimicrobial agents. Therefore, SOS can be an applicable target for the discovery of new antimicrobial drugs. In the present review, we focus on the central role of SOS response in bacterial resistance mechanisms and its potential as a new target for control of resistant pathogens.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Huang X, Chen R, Sun M, Peng Y, Pu Q, Yuan Y, Chen G, Dong J, Du F, Cui X, Tang Z. Frame-shifted proteins of a given gene retain the same function. Nucleic Acids Res 2020; 48:4396-4404. [PMID: 32187359 PMCID: PMC7192591 DOI: 10.1093/nar/gkaa169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/21/2023] Open
Abstract
Frameshift mutations are generally considered to be lethal because it could result in radical changes of the protein sequence behind. However, the protein of frameshift mutants of a type I toxin (ibsc) was found to be still toxic to bacteria, retaining the similar function as wild-type protein to arrest the cellular growth by impairing the membrane's integrity. Additionally, we have verified that this observation is not an individual event as the same phenomenon had been found in other toxins subsequently. After analyzing the coding sequence of these genes, we proposed a hypothesis to search this kind of hidden gene, through which a dihydrofolate reductase-encoding gene (dfrB3) was found out. Like the wild-type reductase, both +1 and -1 frame-shifted proteins of dfrB3 gene were also proved to catalyze the reduction of dihydrofolate to tetrahydrofolate by using NADPH.
Collapse
Affiliation(s)
- Xin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Rong Chen
- Ethnomedicine College, Chengdu University of Traditional Chinese Medicine, Chengdu 610041, P. R. China
| | - Meiling Sun
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Yan Peng
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Qinlin Pu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P. R. China
| |
Collapse
|
48
|
Garai P, Blanc‐Potard A. Uncovering small membrane proteins in pathogenic bacteria: Regulatory functions and therapeutic potential. Mol Microbiol 2020; 114:710-720. [DOI: 10.1111/mmi.14564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Preeti Garai
- Laboratory of Pathogen‐Host Interactions Université de MontpellierCNRS‐UMR5235 Montpellier France
| | - Anne Blanc‐Potard
- Laboratory of Pathogen‐Host Interactions Université de MontpellierCNRS‐UMR5235 Montpellier France
| |
Collapse
|
49
|
Romilly C, Hoekzema M, Holmqvist E, Wagner EGH. Small RNAs OmrA and OmrB promote class III flagellar gene expression by inhibiting the synthesis of anti-Sigma factor FlgM. RNA Biol 2020; 17:872-880. [PMID: 32133913 PMCID: PMC7549644 DOI: 10.1080/15476286.2020.1733801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacteria can move by a variety of mechanisms, the best understood being flagella-mediated motility. Flagellar genes are organized in a three-tiered cascade allowing for temporally regulated expression that involves both transcriptional and post-transcriptional control. The class I operon encodes the master regulator FlhDC that drives class II gene transcription. Class II genes include fliA and flgM, which encode the Sigma factor σ28, required for class III transcription, and the anti-Sigma factor FlgM, which inhibits σ28 activity, respectively. The flhDC mRNA is regulated by several small regulatory RNAs (sRNAs). Two of these, the sequence-related OmrA and OmrB RNAs, inhibit FlhD synthesis. Here, we report on a second layer of sRNA-mediated control downstream of FhlDC in the flagella pathway. By mutational analysis, we confirm that a predicted interaction between the conserved 5ʹ seed sequences of OmrA/B and the early coding sequence in flgM mRNA reduces FlgM expression. Regulation is dependent on the global RNA-binding protein Hfq. In vitro experiments support a canonical mechanism: binding of OmrA/B prevents ribosome loading and decreases FlgM protein synthesis. Simultaneous inhibition of both FlhD and FlgM synthesis by OmrA/B complicated an assessment of how regulation of FlgM alone impacts class III gene transcription. Using a combinatorial mutation strategy, we were able to uncouple these two targets and demonstrate that OmrA/B-dependent inhibition of FlgM synthesis liberates σ28 to ultimately promote higher expression of the class III flagellin gene fliC.
Collapse
Affiliation(s)
- Cédric Romilly
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - Mirthe Hoekzema
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| |
Collapse
|
50
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|