1
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
2
|
Li Q, Wang X, Liu J, Wu L, Xu S. POT1 involved in telomeric DNA damage repair and genomic stability of cervical cancer cells in response to radiation. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503670. [PMID: 37770150 DOI: 10.1016/j.mrgentox.2023.503670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023]
Abstract
Though telomeres play a crucial role in maintaining genomic stability in cancer cells and have emerged as attractive therapeutic targets in anticancer therapy, the relationship between telomere dysfunction and genomic instability induced by irradiation is still unclear. In this study, we identified that protection of telomeres 1 (POT1), a single-stranded DNA (ssDNA)-binding protein, was upregulated in γ-irradiated HeLa cells and in cancer patients who exhibit radiation tolerance. Knockdown of POT1 delayed the repair of radiation-induced telomeric DNA damage which was associated with enhanced H3K9 trimethylation and enhanced the radiosensitivity of HeLa cells. The depletion of POT1 also resulted in significant genomic instability, by showing a significant increase in end-to-end chromosomal fusions, and the formation of anaphase bridges and micronuclei. Furthermore, knockdown of POT1 disturbed telomerase recruitment to telomere, and POT1 could interact with phosphorylated ATM (p-ATM) and POT1 depletion decreased the levels of p-ATM induced by irradiation, suggesting that POT1 could regulate the telomerase recruitment to telomeres to repair irradiation-induced telomeric DNA damage of HeLa cells through interactions with p-ATM. The enhancement of radiosensitivity in cancer cells can be achieved through the combination of POT1 and telomerase inhibitors, presenting a potential approach for radiotherapy in cancer treatment.
Collapse
Affiliation(s)
- Qian Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Jie Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
3
|
Ueno M. Exploring Genetic Interactions with Telomere Protection Gene pot1 in Fission Yeast. Biomolecules 2023; 13:biom13020370. [PMID: 36830739 PMCID: PMC9953254 DOI: 10.3390/biom13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The regulation of telomere length has a significant impact on cancer risk and aging in humans. Circular chromosomes are found in humans and are often unstable during mitosis, resulting in genome instability. Some types of cancer have a high frequency of a circular chromosome. Fission yeast is a good model for studying the formation and stability of circular chromosomes as deletion of pot1 (encoding a telomere protection protein) results in rapid telomere degradation and chromosome fusion. Pot1 binds to single-stranded telomere DNA and is conserved from fission yeast to humans. Loss of pot1 leads to viable strains in which all three fission yeast chromosomes become circular. In this review, I will introduce pot1 genetic interactions as these inform on processes such as the degradation of uncapped telomeres, chromosome fusion, and maintenance of circular chromosomes. Therefore, exploring genes that genetically interact with pot1 contributes to finding new genes and/or new functions of genes related to the maintenance of telomeres and/or circular chromosomes.
Collapse
Affiliation(s)
- Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; ; Tel.: +81-82-424-7768
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
4
|
Konstantinidou F, Budani MC, Marconi GD, Gonnella F, Sarra A, Trubiani O, Stuppia L, Tiboni GM, Gatta V. The Aftermath of Long-Term Cigarette Smoking on Telomere Length and Mitochondrial DNA Copy Number in Human Cumulus Cells Prior to In Vitro Fertilization-A Pilot Study. Antioxidants (Basel) 2022; 11:antiox11091841. [PMID: 36139914 PMCID: PMC9495883 DOI: 10.3390/antiox11091841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoking among women of reproductive age is known to take a toll on systemic health and fertility potential by severely impacting ovarian tissues and cells, such as granulosa and cumulus cells (CCs). The purpose of this study was to determine the potential damage caused by tobacco smoke at a molecular level in the CCs of females who had undergone in vitro fertilization. The level of intracellular damage was determined by estimating the average telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN), as well as the expression profile of telomere maintenance genes TERF1, TERF2, POT1 and microRNAs miR-155, miR-23a and miR-185. Western blotting analysis was performed to detect consequent protein levels of TERF1, TERF2 and POT1. Our results evidenced significantly lower relative TL and mtDNA-CN and a down-regulation pattern for all three described genes and corresponding proteins in the CCs of smokers compared with controls (p < 0.05). No significant differences were found in the miRNAs’ modulation. Combined, our data add another piece to the puzzle of the complex regulatory molecular networks controlling the general effects of tobacco smoke in CCs. This pilot study extends the until now modest number of studies simultaneously investigating the mtDNA-CN and TL pathways in the human CCs of smoking women.
Collapse
Affiliation(s)
- Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Faculty of Bioscience, Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Maria Cristina Budani
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesca Gonnella
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Faculty of Bioscience, Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annalina Sarra
- Department of Philosophical, Pedagogical and Quantitative Economic Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gian Mario Tiboni
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
5
|
Guo JT, Malik F. Single-Stranded DNA Binding Proteins and Their Identification Using Machine Learning-Based Approaches. Biomolecules 2022; 12:biom12091187. [PMID: 36139026 PMCID: PMC9496475 DOI: 10.3390/biom12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA (ssDNA) binding proteins (SSBs) are critical in maintaining genome stability by protecting the transient existence of ssDNA from damage during essential biological processes, such as DNA replication and gene transcription. The single-stranded region of telomeres also requires protection by ssDNA binding proteins from being attacked in case it is wrongly recognized as an anomaly. In addition to their critical roles in genome stability and integrity, it has been demonstrated that ssDNA and SSB-ssDNA interactions play critical roles in transcriptional regulation in all three domains of life and viruses. In this review, we present our current knowledge of the structure and function of SSBs and the structural features for SSB binding specificity. We then discuss the machine learning-based approaches that have been developed for the prediction of SSBs from double-stranded DNA (dsDNA) binding proteins (DSBs).
Collapse
|
6
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
7
|
Replication stress conferred by POT1 dysfunction promotes telomere relocalization to the nuclear pore. Genes Dev 2020; 34:1619-1636. [PMID: 33122293 PMCID: PMC7706707 DOI: 10.1101/gad.337287.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
In this study, Pinzaru et al. set out to uncover the pathways that enable the proliferation of cells expressing cancer-associated POT1 mutations. Using complementary genetic and proteomic approaches, the authors identify a conserved function for the NPC in resolving replication defects at telomere loci. Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.
Collapse
|
8
|
MiR-185 targets POT1 to induce telomere dysfunction and cellular senescence. Aging (Albany NY) 2020; 12:14791-14807. [PMID: 32687062 PMCID: PMC7425516 DOI: 10.18632/aging.103541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Protection of telomere 1 (POT1), the telomeric single-stranded DNA (ssDNA)-binding protein in the shelterin complex, has been implicated in the DNA damage response, tumorigenesis and aging. Telomere dysfunction induced by telomere deprotection could accelerate cellular senescence in primary human cells. While previous work demonstrated the biological mechanism of POT1 in aging and cancer, how POT1 is posttranscriptionally regulated remains largely unknown. To better understand the POT1 regulatory axis, we performed bioinformatic prediction, and selected candidates were further confirmed by dual-luciferase reporter assay. Collectively, our results revealed that miR-185 can significantly reduce POT1 mRNA and protein levels by directly targeting the POT1 3’-untranslated region (3’-UTR). Overexpression of miR-185 increased telomere dysfunction-induced foci (TIF) signals in both cancer cells and primary human fibroblasts. Elevated miR-185 led to telomere elongation in the telomerase-positive cell line HTC75, which was phenotypically consistent with POT1 knocking down. Moreover, miR-185 accelerated the replicative senescence process in primary human fibroblasts in a POT1-dependent manner. Interestingly, increased serum miR-185 could represent a potential aging-related biomarker. Taken together, our findings reveal miR-185 as a novel aging-related miRNA that targets POT1 and provide insight into the telomere and senescence regulatory network at both the intracellular and extracellular levels.
Collapse
|
9
|
Gong Y, Stock AJ, Liu Y. The enigma of excessively long telomeres in cancer: lessons learned from rare human POT1 variants. Curr Opin Genet Dev 2020; 60:48-55. [PMID: 32155570 DOI: 10.1016/j.gde.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 01/10/2023]
Abstract
The discovery that rare POT1 variants are associated with extremely long telomeres and increased cancer predisposition has provided a framework to revisit the relationship between telomere length and cancer development. Telomere shortening is linked with increased risk for cancer. However, over the past decade, there is increasing evidence to show that extremely long telomeres caused by mutations in shelterin components (POT1, TPP1, and RAP1) also display an increased risk of cancer. Here, we will review current knowledge on germline mutations of POT1 identified from cancer-prone families. In particular, we will discuss some common features presented by the mutations through structure-function studies. We will further provide an overview of how POT1 mutations affect telomere length regulation and tumorigenesis.
Collapse
Affiliation(s)
- Yi Gong
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA.
| | - Amanda J Stock
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA
| | - Yie Liu
- Biomedical Research Center, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA.
| |
Collapse
|
10
|
Jamroskovic J, Doimo M, Chand K, Obi I, Kumar R, Brännström K, Hedenström M, Nath Das R, Akhunzianov A, Deiana M, Kasho K, Sulis Sato S, Pourbozorgi PL, Mason JE, Medini P, Öhlund D, Wanrooij S, Chorell E, Sabouri N. Quinazoline Ligands Induce Cancer Cell Death through Selective STAT3 Inhibition and G-Quadruplex Stabilization. J Am Chem Soc 2020; 142:2876-2888. [PMID: 31990532 PMCID: PMC7307907 DOI: 10.1021/jacs.9b11232] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The signal transducer
and activator of transcription 3 (STAT3)
protein is a master regulator of most key hallmarks and enablers of
cancer, including cell proliferation and the response to DNA damage.
G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures
enriched at telomeres and oncogenes’ promoters. In cancer cells,
stabilization of G4 DNAs leads to replication stress and DNA damage
accumulation and is therefore considered a promising target for oncotherapy.
Here, we designed and synthesized novel quinazoline-based compounds
that simultaneously and selectively affect these two well-recognized
cancer targets, G4 DNA structures and the STAT3 protein. Using a combination
of in vitro assays, NMR, and molecular dynamics simulations, we show
that these small, uncharged compounds not only bind to the STAT3 protein
but also stabilize G4 structures. In human cultured cells, the compounds
inhibit phosphorylation-dependent activation of STAT3 without affecting
the antiapoptotic factor STAT1 and cause increased formation of G4
structures, as revealed by the use of a G4 DNA-specific antibody.
As a result, treated cells show slower DNA replication, DNA damage
checkpoint activation, and an increased apoptotic rate. Importantly,
cancer cells are more sensitive to these molecules compared to noncancerous
cell lines. This is the first report of a promising class of compounds
that not only targets the DNA damage cancer response machinery but
also simultaneously inhibits the STAT3-induced cancer cell proliferation,
demonstrating a novel approach in cancer therapy.
Collapse
Affiliation(s)
- Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Mara Doimo
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Karam Chand
- Department of Chemistry , Umeå University , Umeå 90736 , Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Rajendra Kumar
- Department of Chemistry , Umeå University , Umeå 90736 , Sweden
| | - Kristoffer Brännström
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | | | | | - Almaz Akhunzianov
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden.,Institute of Fundamental Medicine and Biology , Kazan Federal University , Kazan 420008 , Russia
| | - Marco Deiana
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Sebastian Sulis Sato
- Department of Integrative Medical Biology , Umeå University , Umeå 90736 , Sweden
| | - Parham L Pourbozorgi
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - James E Mason
- Department of Radiation Sciences , Umeå University , Umeå 90736 , Sweden
| | - Paolo Medini
- Department of Integrative Medical Biology , Umeå University , Umeå 90736 , Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences , Umeå University , Umeå 90736 , Sweden
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| | - Erik Chorell
- Department of Chemistry , Umeå University , Umeå 90736 , Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics , Umeå University , Umeå 90736 , Sweden
| |
Collapse
|
11
|
Zheng GQ, Zhang GH, Wu HT, Tu YT, Tian W, Fang Y, Lu Y, Gong SY, Zhang YN, Yu LB, Zhang H, Shao H, Brandt-Rauf P, Xia ZL. Relative telomere length and gene expression of shelterin complex proteins among vinyl chloride monomer-exposed workers in China. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:361-367. [PMID: 30578676 DOI: 10.1002/em.22270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Vinyl chloride monomer (VCM) is a confirmed carcinogen. The effects of VCM on telomeres and the gene expression of telomere complex proteins, shelterin, have not been well studied but could be of potential relevance to the carcinogenic mechanism of VCM and the health surveillance of VCM-exposed workers. A group of 241 VCM-exposed workers and 101 internal controls from the same plant in Shandong, China were recruited and quantitative polymerase chain reaction was preformed to measure relative telomere length (RTL) and gene expression of shelterin proteins. VCM cumulative exposure dose (CED) was estimated for the exposed workers. The differences in RTL and gene expression between groups were compared by Wald test fitted with robust regression. Shorter RTL was observed in VCM-exposed workers than in the controls (P < 0.001) and was related to CED of VCM. Shortened RTL was also significantly related to increasing age (P = 0.012) and high blood pressure (P = 0.056). Levels of gene expression of shelterin components in exposed workers were all lower than in controls except increased TIN2 expression, and the gene expression differences in TIN2 and POT1 among exposed and control groups were significant (P = 0.014 for TIN2 and P < 0.001 for POT1, respectively). VCM exposure is found associated with altered telomere length and gene expression of shelterin components. This provides new insights into the potential carcinogenic mechanisms of VCM and could be helpful for the health surveillance for VCM-exposed workers. Environ. Mol. Mutagen. 60:361-367, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guo-Qiao Zheng
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Guang-Hui Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
- School of Public Health, He'nan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan, China
| | - Han-Tian Wu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yu-Ting Tu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Wei Tian
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yan Fang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Ye Lu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Shi-Yang Gong
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Ya-Nan Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Li-Bo Yu
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Hong Zhang
- Institute of Occupational Health and Occupational Diseases, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Hua Shao
- Institute of Occupational Health and Occupational Diseases, Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Paul Brandt-Rauf
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 718, Philadelphia, Pennsylvania
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
12
|
Time-Dependent Effects of POT1 Knockdown on Proliferation, Tumorigenicity, and HDACi Response of SK-OV3 Ovarian Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7184253. [PMID: 29546066 PMCID: PMC5818924 DOI: 10.1155/2018/7184253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The roles of protection of telomeres 1 (POT1) in human ovarian cancer have not been fully elucidated. Here, we investigated the impact of POT1 knockdown (POT1-KD) on in vitro cell proliferation, tumorigenesis, and histone deacetylase inhibitor (HDACi) response in human ovarian cancer-derived SK-OV3 cells. The POT1 gene was knocked down by infection with POT1 lenti-shRNA. POT1, c-Myc, and hTERT mRNA levels and relative telomere length were determined by qRT-PCR; POT1 protein levels were determined by western blot. The relative telomerase activity levels were detected using qTRAP; cell proliferation was assessed using cumulative population doubling (cPD) experiments. Cell tumorigenicity was evaluated by anchorage-independent cell growth assays, and cell response to HDACi was determined by luminescence cell viability assays. Results indicate that lenti-shRNA-mediated POT1-KD significantly reduced POT1 mRNA and protein expression. POT1-KD immediately downregulated c-Myc expression, which led to the inhibition of cell proliferation, tumorigenesis, and HDACi response. However, after brief suppression, c-Myc expression increased in the medium term, which resulted in enhanced cell proliferation, tumorigenesis, and HDACi response in the POT1-KD cells. Furthermore, we discovered that c-Myc regulated cell proliferation and tumorigenesis via hTERT/telomerase/telomere pathway.
Collapse
|
13
|
Zeng L, Wang YL, Wang F, Cui SQ, Hu L, Huang DN, Hou G. Construction of the POT1 promoter report gene vector, and the effect and underlying mechanism of the POT1 promoter in regulating telomerase and telomere length. Oncol Lett 2018; 14:7232-7240. [PMID: 29344158 PMCID: PMC5754914 DOI: 10.3892/ol.2017.7127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
By using human genomic DNA as a template to clone protection of telomere 1 (POT1) promoter gene segments and construct the POT1 promoter luciferase report gene vector (pGL3-Control-POT1-promoter), the association between POT1, and the regulation of telomerase and telomere length was investigated. In the present study, two recombinant luciferase report gene vectors were constructed, which included different regions of the POT1 promoter. The plasmids were transformed into DH5α and the positive clones were obtained. The two plasmids termed as pGL3-Control-POT1-promoter-1 and pGL3-Control-POT1-promoter-2, were confirmed using restriction enzyme analysis and sequencing. They were separately and transiently transfected into four types of human tumor cells (A549, H460, HepG2 and HeLa). The transcriptional activities of the POT1 promoter were verified using the dual-luciferase assay. The relative expression of POT1 and human telomerase reverse transcriptase (hTERT), and telomere length were analyzed using quantitative polymerase chain reaction in the four types of non-transfected tumor cells. Using SPSS software, correlations between POT1 promoter activity, and POT1 expression, hTERT expression and telomere length were analyzed. Two POT1 promoter fragments (POT1-promoter-1 and -2) were successfully constructed into the pGL3-Control luciferase report gene vector. POT1-promoter-1 exhibited significantly stronger transcription activity compared with POT1-promoter-2. The results of the partial correlation and linear regression analyses were similar: POT1 promoter activity was identified to be significantly and positively correlated with POT1 expression and telomere length (partial correlation coefficients, both P<0.05; linear regression, both P<0.01). However, POT1 promoter activity and hTERT expression were significantly negatively correlated (both P<0.05). The results obtained in the present study suggest that the POT1 promoter influences telomere length. Furthermore, these data indicated that POT1 promoter activity and POT1, as well as telomere length, may be a useful biomarker for tumor detection and future patient prognosis.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yue-Li Wang
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Fa Wang
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Shi-Quan Cui
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liang Hu
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Di-Nan Huang
- Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Gan Hou
- Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
14
|
Zhou G, Liu X, Li Y, Xu S, Ma C, Wu X, Cheng Y, Yu Z, Zhao G, Chen Y. Telomere targeting with a novel G-quadruplex-interactive ligand BRACO-19 induces T-loop disassembly and telomerase displacement in human glioblastoma cells. Oncotarget 2017; 7:14925-39. [PMID: 26908447 PMCID: PMC4924762 DOI: 10.18632/oncotarget.7483] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
Interference with telomerase and telomere maintenance is emerging as an attractive target for anticancer therapies. Ligand-induced stabilization of G-quadruplex formation by the telomeric DNA 3'-overhang inhibits telomerase from catalyzing telomeric DNA synthesis and from capping telomeric ends, making these ligands good candidates for chemotherapeutic purposes. BRACO-19 is one of the most effective and specific ligand for telomeric G4. It is shown here that BRACO-19 suppresses proliferation and reduces telomerase activity in human glioblastoma cells, paralleled by the displacement of telomerase from nuclear to cytoplasm. Meanwhile, BRACO-19 triggers extensive DNA damage response at telomere, which may result from uncapping and disassembly of telomeric T-loop structure, characterized by the formation of anaphase bridge and telomere fusion, as well as the release of telomere-binding protein from telomere. The resulting dysfunctional telomere ultimately provokes p53 and p21-mediated cell cycle arrest, apoptosis and senescence. Notably, normal primary astrocytes do not respond to the treatment of BRACO-19, suggesting the agent's good selectivity for cancer cells. These results reinforce the notion that G-quadruplex binding compounds can act as broad inhibitors of telomere-related processes and have potential as selective antineoplastic drugs for various tumors including malignant gliomas.
Collapse
Affiliation(s)
- Guangtong Zhou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xinrui Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Chengyuan Ma
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xinmin Wu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Ye Cheng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Zhiyun Yu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Zhang B, Zhang Y, Zou X, Chan AW, Zhang R, Lee TKW, Liu H, Lau EYT, Ho NPY, Lai PB, Cheung YS, To KF, Wong HK, Choy KW, Keng VW, Chow LM, Chan KK, Cheng AS, Ko BC. The CCCTC-binding factor (CTCF)-forkhead box protein M1 axis regulates tumour growth and metastasis in hepatocellular carcinoma. J Pathol 2017; 243:418-430. [PMID: 28862757 PMCID: PMC5725705 DOI: 10.1002/path.4976] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/16/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
CCCTC‐binding factor (CTCF) is a DNA‐binding protein that interacts with a large number of highly divergent target sequences throughout the genome. It is implicated in a variety of functions, including chromatin organization and transcriptional control. The functional role of CTCF in tumour pathogenesis remains elusive. We showed that CTCF is frequently upregulated in a subset of primary hepatocellular carcinomas (HCCs) as compared with non‐tumoural liver. Overexpression of CTCF was associated with shorter disease‐free survival of patients. Short hairpin RNA (shRNA)‐mediated suppression of CTCF inhibited cell proliferation, motility and invasiveness in HCC cell lines; these effects were correlated with prominent reductions in the expression of telomerase reverse transcriptase (TERT), the shelterin complex member telomerase repeat‐binding factor 1, and forkhead box protein M1 (FOXM1). In contrast, upregulation of CTCF was positively correlated with FOXM1 and TERT expression in clinical HCC biopsies. Depletion of CTCF resulted in reduced motility and invasiveness in HCC cells that could be reversed by ectopic expression of FOXM1, suggesting that FOXM1 is one of the important downstream effectors of CTCF in HCC. Reporter gene analysis suggested that depletion of CTCF is associated with reduced FOXM1 and TERT promoter activity. Chromatin immunoprecipitation (ChIP)–polymerase chain reaction (PCR) analysis further revealed occupancy of the FOXM1 promoter by CTCF in vivo. Importantly, depletion of CTCF by shRNA significantly inhibited tumour progression and metastasis in HCC mouse models. Our work uncovered a novel functional role of CTCF in HCC pathogenesis, which suggests that targeting CTCF could be further explored as a potential therapeutic strategy for HCC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, PR China
| | - Yajing Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China.,State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, PR China
| | - Anthony Wh Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Rui Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China.,State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Terence Kin-Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China.,State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Hang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Eunice Yuen-Ting Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Nicole Pui-Yu Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Paul Bs Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Yue-Sun Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Hoi Kin Wong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Vincent W Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Larry Mc Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China.,State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Kenrick Ky Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| | - Alfred S Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | - Ben Cb Ko
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China.,State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hong Kong, SAR, PR China
| |
Collapse
|
16
|
Rice C, Shastrula PK, Kossenkov AV, Hills R, Baird DM, Showe LC, Doukov T, Janicki S, Skordalakes E. Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat Commun 2017; 8:14928. [PMID: 28393830 PMCID: PMC5394233 DOI: 10.1038/ncomms14928] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
POT1 and TPP1 are part of the shelterin complex and are essential for telomere length regulation and maintenance. Naturally occurring mutations of the telomeric POT1-TPP1 complex are implicated in familial glioma, melanoma and chronic lymphocytic leukaemia. Here we report the atomic structure of the interacting portion of the human telomeric POT1-TPP1 complex and suggest how several of these mutations contribute to malignant cancer. The POT1 C-terminus (POT1C) forms a bilobal structure consisting of an OB-fold and a holiday junction resolvase domain. TPP1 consists of several loops and helices involved in extensive interactions with POT1C. Biochemical data shows that several of the cancer-associated mutations, partially disrupt the POT1-TPP1 complex, which affects its ability to bind telomeric DNA efficiently. A defective POT1-TPP1 complex leads to longer and fragile telomeres, which in turn promotes genomic instability and cancer.
Collapse
Affiliation(s)
- Cory Rice
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | - Robert Hills
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
| | - Duncan M. Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF10 3AT, UK
| | - Louise C. Showe
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Susan Janicki
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
| | - Emmanuel Skordalakes
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
17
|
Pandita TK. Critical role of the POT1 OB domain in maintaining genomic stability. Oncogene 2016; 36:1908-1910. [PMID: 27869169 DOI: 10.1038/onc.2016.365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 01/14/2023]
Abstract
Oligonucleotide/oligosaccharide-binding (OB) domain-containing proteins have been identified as critical for telomere maintenance, DNA repair, transcription and other DNA metabolism processes. Protection of telomere 1 (POT1), a telomere binding protein, has an OB domain like single-strand binding protein (SSB1). In this issue of Oncogene, Gu et al. present evidence that POT1, like SSB1, is required to maintain genomic stability. This work, in conjunction with results from previous investigators, highlights the importance of POT1 in telomere metabolism. Inactivation of POT1 telomere protective functions in mouse models lacking p53 expression in the breast epithelium unleashes a torrent of DNA damage responses (DDRs) at the telomeres, culminating in karyotypic alterations with massive arrays of telomere fusions. Therefore, POT1 is not only required to promote telomere homeostasis, but also plays an essential role in maintaining a stable genome.
Collapse
Affiliation(s)
- T K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
18
|
Yin S, Huang Y, Zhangfang Y, Zhong X, Li P, Huang J, Liu D, Songyang Z. SmedOB1 is Required for Planarian Homeostasis and Regeneration. Sci Rep 2016; 6:34013. [PMID: 27654173 PMCID: PMC5032016 DOI: 10.1038/srep34013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
The planarian flatworm is an emerging model that is useful for studying homeostasis and regeneration due to its unique adult stem cells (ASCs). Previously, planaria were found to share mammalian TTAGGG chromosome ends and telomerases; however, their telomere protection proteins have not yet been identified. In Schmidtea mediterranea, we identified a homologue of the human protection of telomeres 1 (POT1) with an OB-fold (SmedOB1). SmedOB1 is evolutionarily conserved among species and is ubiquitously expressed throughout the whole body. Feeding with SmedOB1 double-stranded RNAs (dsRNAs) led to homeostasis abnormalities in the head and pharynx. Furthermore, several ASC progeny markers were downregulated, and regeneration was impaired. Here we found that SmedOB1 is required for telomeric DNA-protein complex formation and it associates with the telomere TTAGGG sequence in vitro. Moreover, DNA damage and apoptosis signals in planarian were significantly affected by SmedOB1 RNAi. We also confirmed these phenotypes in Dugesia japonica, another flatworm species. Our work identified a novel telomere-associated protein SmedOB1 in planarian, which is required for planarian homeostasis and regeneration. The phylogenetic and functional conservations of SmedOB1 provide one mechanism by which planarians maintain telomere and genome stability to ensure their immortality and shed light on the regeneration medicine of humans.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingnan Zhangfang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqin Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengqing Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| |
Collapse
|
19
|
Kwon M, Min J, Jeon H, Hwang K, Kim C, Lee J, Joung J, Park W, Lee H. Paradoxical delay of senescence upon depletion of BRCA2 in telomerase-deficient worms. FEBS Open Bio 2016; 6:1016-1024. [PMID: 27761361 PMCID: PMC5055038 DOI: 10.1002/2211-5463.12109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 11/07/2022] Open
Abstract
BRCA2 is a multifunctional tumor suppressor involved in homologous recombination (HR), mitotic checkpoint regulation, and telomere homeostasis. Absence of Brca2 in mice results in progressive shortening of telomeres and senescence, yet cells are prone to neoplastic transformation with elongated telomeres, suggesting that BRCA2 has positive and negative effects on telomere length regulation along the path to tumorigenesis. Using Caenorhabditis elegans as a model, we show here that depletion of BRC‐2, an ortholog of BRCA2, paradoxically delays senescence in telomerase‐deficient mutant worms. Telomerase‐deficient worms (trt‐1) exhibit early replication senescence due to short telomeres. It should be noted that worms mutated in brc‐2 are not viable as well due to massive genotoxic insults. However, when BRC‐2 is depleted by RNA interference in trt‐1 mutant worms, the number of generations is unexpectedly increased with telomere length maintained, compared to telomerase mutants. Interestingly, depletion of other HR genes such as rad‐51 and rad‐54 exhibited similar effects. In worms doubly deficient of telomerase and brc‐2, rad‐51, or rad‐54, extra telomeric C‐circles were generated, suggesting that abrogation of HR induces an alteration in telomere environment favorable to illegitimate telomere maintenance when telomerase is absent. Collectively, absence of BRC‐2 in telomerase‐deficient background first leads to telomere shortening, followed by an induction of an as‐yet‐unknown telomere maintenance pathway, resulting in delay of senescence. The results have implications in the understanding of dysfunctional BRCA2‐associated tumorigenesis.
Collapse
Affiliation(s)
- Mi‐Sun Kwon
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG)Seoul National UniversityGwanak‐GuSeoulKorea
| | - Jaewon Min
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG)Seoul National UniversityGwanak‐GuSeoulKorea
| | - Hee‐Yeon Jeon
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG)Seoul National UniversityGwanak‐GuSeoulKorea
| | - Kwangwoo Hwang
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG)Seoul National UniversityGwanak‐GuSeoulKorea
| | - Chuna Kim
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG)Seoul National UniversityGwanak‐GuSeoulKorea
| | - Junho Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG)Seoul National UniversityGwanak‐GuSeoulKorea
| | - Je‐Gun Joung
- Samsung Genome InstituteSamsung Medical CenterSeoulKorea
| | | | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG)Seoul National UniversityGwanak‐GuSeoulKorea
| |
Collapse
|
20
|
Patel TN, Vasan R, Gupta D, Patel J, Trivedi M. Shelterin proteins and cancer. Asian Pac J Cancer Prev 2016; 16:3085-90. [PMID: 25921101 DOI: 10.7314/apjcp.2015.16.8.3085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The telomeric end structures of the DNA are known to contain tandem repeats of TTAGGG sequence bound with specialised protein complex called the "shelterin complex". It comprises six proteins, namely TRF1, TRF2, TIN2, POT1, TPP1 and RAP1. All of these assemble together to form a complex with double strand and single strand DNA repeats at the telomere. Such an association contributes to telomere stability and its protection from undesirable DNA damage control-specific responses. However, any alteration in the structure and function of any of these proteins may lead to undesirable DNA damage responses and thus cellular senescence and death. In our review, we throw light on how mutations in the proteins belonging to the shelterin complex may lead to various malfunctions and ultimately have a role in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Trupti Nv Patel
- Department of Medical Biotechnology, Vellore Institute of Technology, Vellore, Tamilnadu, India E-mail : ,
| | | | | | | | | |
Collapse
|
21
|
Tong AS, Stern JL, Sfeir A, Kartawinata M, de Lange T, Zhu XD, Bryan TM. ATM and ATR Signaling Regulate the Recruitment of Human Telomerase to Telomeres. Cell Rep 2015; 13:1633-46. [PMID: 26586433 DOI: 10.1016/j.celrep.2015.10.041] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/14/2015] [Accepted: 10/16/2015] [Indexed: 01/06/2023] Open
Abstract
The yeast homologs of the ATM and ATR DNA damage response kinases play key roles in telomerase-mediated telomere maintenance, but the role of ATM/ATR in the mammalian telomerase pathway has been less clear. Here, we demonstrate the requirement for ATM and ATR in the localization of telomerase to telomeres and telomere elongation in immortal human cells. Stalled replication forks increased telomerase recruitment in an ATR-dependent manner. Furthermore, increased telomerase recruitment was observed upon phosphorylation of the shelterin component TRF1 at an ATM/ATR target site (S367). This phosphorylation leads to loss of TRF1 from telomeres and may therefore increase replication fork stalling. ATM and ATR depletion reduced assembly of the telomerase complex, and ATM was required for telomere elongation in cells expressing POT1ΔOB, an allele of POT1 that disrupts telomere-length homeostasis. These data establish that human telomerase recruitment and telomere elongation are modulated by DNA-damage-transducing kinases.
Collapse
Affiliation(s)
- Adrian S Tong
- Cell Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - J Lewis Stern
- Cell Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Agnel Sfeir
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Kartawinata
- Cell Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tracy M Bryan
- Cell Biology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
22
|
Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae. Genetics 2015; 201:573-86. [PMID: 26294668 PMCID: PMC4596670 DOI: 10.1534/genetics.115.177899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022] Open
Abstract
The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation.
Collapse
|
23
|
Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2015; 464:140-6. [PMID: 26093291 DOI: 10.1016/j.bbrc.2015.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/13/2015] [Indexed: 11/23/2022]
Abstract
Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1(+) or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant and suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ.
Collapse
|
24
|
Choi KH, Lakamp-Hawley AS, Kolar C, Yan Y, Borgstahl GEO, Ouellette MM. The OB-fold domain 1 of human POT1 recognizes both telomeric and non-telomeric DNA motifs. Biochimie 2015; 115:17-27. [PMID: 25934589 DOI: 10.1016/j.biochi.2015.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
The POT1 protein plays a critical role in telomere protection and telomerase regulation. POT1 binds single-stranded 5'-TTAGGGTTAG-3' and forms a dimer with the TPP1 protein. The dimer is recruited to telomeres, either directly or as part of the Shelterin complex. Human POT1 contains two Oligonucleotide/Oligosaccharide Binding (OB) fold domains, OB1 and OB2, which make physical contact with the DNA. OB1 recognizes 5'-TTAGGG whereas OB2 binds to the downstream TTAG-3'. Studies of POT1 proteins from other species have shown that some of these proteins are able to recognize a broader variety of DNA ligands than expected. To explore this possibility in humans, we have used SELEX to reexamine the sequence-specificity of the protein. Using human POT1 as a selection matrix, high-affinity DNA ligands were selected from a pool of randomized single-stranded oligonucleotides. After six successive rounds of selection, two classes of high-affinity targets were obtained. The first class was composed of oligonucleotides containing a cognate POT1 binding sites (5'-TTAGGGTTAG-3'). The second and more abundant class was made of molecules that carried a novel non-telomeric consensus: 5'-TNCANNAGKKKTTAGG-3' (where K = G/T and N = any base). Binding studies showed that these non-telomeric sites were made of an OB1-binding motif (TTAGG) and a non-telomeric motif (NT motif), with the two motifs recognized by distinct regions of the OB1 domain. POT1 interacted with these non-telomeric binding sites with high affinity and specificity, even when bound to its dimerization partner TPP1. This intrinsic ability of POT1 to recognize NT motifs raises the possibility that the protein may fulfill additional functions at certain non-telomeric locations of the genome, in perhaps gene transcription, replication, or repair.
Collapse
Affiliation(s)
- Kyung H Choi
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Amanda S Lakamp-Hawley
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Carol Kolar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Gloria E O Borgstahl
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Michel M Ouellette
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
25
|
Weiner-Gorzel K, Dempsey E, Milewska M, McGoldrick A, Toh V, Walsh A, Lindsay S, Gubbins L, Cannon A, Sharpe D, O'Sullivan J, Murphy M, Madden SF, Kell M, McCann A, Furlong F. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med 2015; 4:745-58. [PMID: 25684390 PMCID: PMC4430267 DOI: 10.1002/cam4.409] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/07/2014] [Accepted: 12/12/2014] [Indexed: 12/18/2022] Open
Abstract
Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in β-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.
Collapse
Affiliation(s)
- Karolina Weiner-Gorzel
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Eugene Dempsey
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | - Aloysius McGoldrick
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Valerie Toh
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Aoibheann Walsh
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Sinead Lindsay
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Luke Gubbins
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Aoife Cannon
- Molecular Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Daniel Sharpe
- School of Pharmacy, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Jacintha O'Sullivan
- Molecular Department of Surgery, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Madeline Murphy
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Stephen F Madden
- Molecular Therapeutics for Cancer Ireland, National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Malcolm Kell
- Department of Surgery, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Amanda McCann
- UCD School of Medicine and Medical Science (SMMS), UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Fiona Furlong
- School of Pharmacy, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
26
|
|
27
|
Theruvathu JA, Darwanto A, Hsu CW, Sowers LC. The effect of Pot1 binding on the repair of thymine analogs in a telomeric DNA sequence. Nucleic Acids Res 2014; 42:9063-73. [PMID: 25053838 PMCID: PMC4132724 DOI: 10.1093/nar/gku602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/05/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022] Open
Abstract
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA-protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.
Collapse
Affiliation(s)
- Jacob A Theruvathu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Agus Darwanto
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Chia Wei Hsu
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 3.330 Basic Science Building, 301 University Blvd, Galveston, TX 77555-0617, USA
| |
Collapse
|
28
|
Rajavel M, Mullins MR, Taylor DJ. Multiple facets of TPP1 in telomere maintenance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1550-9. [PMID: 24780581 DOI: 10.1016/j.bbapap.2014.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/01/2014] [Accepted: 04/18/2014] [Indexed: 11/30/2022]
Abstract
Telomeres are nucleoprotein complexes that cap the ends of all linear chromosomes and function to prevent aberrant repair and end-to-end chromosome fusions. In somatic cells, telomere shortening is a natural part of the aging process as it occurs with each round of cell division. In germ and stem cells, however, the enzyme telomerase synthesizes telomere DNA to counter-balance telomere shortening and help maintain cellular proliferation. Of the primary telomere end-binding proteins, TPP1 has recently emerged as a primary contributor in protecting telomere DNA and in recruiting telomerase to the telomere ends. In this review, we summarize the current knowledge regarding the role of TPP1 in telomere maintenance.
Collapse
Affiliation(s)
- Malligarjunan Rajavel
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland OH 44106, USA
| | - Michael R Mullins
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland OH 44106, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland OH 44106, USA; Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland OH 44106, USA.
| |
Collapse
|
29
|
Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00002-7. [PMID: 24486376 PMCID: PMC4119099 DOI: 10.1016/j.mrrev.2014.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.
Collapse
|
30
|
Wang J, Chen Y, Ren J, Zhao C, Qu X. G-Quadruplex binding enantiomers show chiral selective interactions with human telomere. Nucleic Acids Res 2014; 42:3792-802. [PMID: 24413564 PMCID: PMC3973297 DOI: 10.1093/nar/gkt1354] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chiral recognition of DNA molecules is important because DNA chiral transition and its different conformations are involved in a series of important life events. Among them, polymorphic human telomere DNA has attracted great interests in recent years because of its important roles in chromosome structural integrity. In this report, we examine the short-term effect of chiral metallo-supramolecular complex enantiomers treatment on tumor cells, and find that a zinc-finger-like alpha helical chiral metallo-supramolecular complex, [Ni2L3]4+-P enantiomer (NiP), can selectively provoke the rapid telomere uncapping, trigger DNA damage responses at telomere and degradation of G-overhang and the delocalization of telomeric protein from telomeres. Further studies indicate that NiP can induce an acute cellular apoptosis and senescence in cancer cells rather than normal cells. These results are further evidenced by the upregulation of p21 and p16 proteins. Moreover, NiP can cause translocation of hTERT from nuclear to cytoplasm through Tyr 707 phosphorylation. While its enantiomer, [Ni2L3]4+-M (NiM), has no such mentioned effects, these results clearly demonstrate the compound’s chiral selectivity in cancer cells. Our work will shed light on design of chiral anticancer drugs targeting G-quadruplex DNA, and developing telomere and telomerase modulation agents.
Collapse
Affiliation(s)
- Jiasi Wang
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China and Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | | | | | | | | |
Collapse
|
31
|
Jun HI, Liu J, Jeong H, Kim JK, Qiao F. Tpz1 controls a telomerase-nonextendible telomeric state and coordinates switching to an extendible state via Ccq1. Genes Dev 2013; 27:1917-31. [PMID: 24013504 PMCID: PMC3778244 DOI: 10.1101/gad.219485.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A binary switch between telomerase-extendible and telomerase-nonextendible states determines telomere length homeostasis. Here, Qiao and coworkers address how shelterin complex component Tpz1 regulates telomere length in fission yeast. Separation-of-function mutant analyses indicate that Tpz1-mediated linkage within the shelterin complex defines the telomerase-nonextendible state. Interestingly, the authors show that Tpz1 also plays a role in the activation of telomeres to the extendible state via its interaction with shelterin component Ccq1. Thus, this study suggests that Tpz1 coordinates both positive and negative regulators of telomere length homeostasis. Telomeres are nucleoprotein complexes comprising telomeric DNA repeats bound by the multiprotein shelterin complex. A dynamic binary switch between telomerase-extendible and telomerase-nonextendible telomeric states determines telomere length homeostasis. However, the molecular nature of the nonextendible state is largely unknown. Here, we show that, in fission yeast, Tpz1 (the ortholog of human TPP1)-mediated complete linkage within the shelterin complex, bridging telomeric dsDNA to ssDNA, controls the telomerase-nonextendible state. Disruption of this linkage leads to unregulated telomere elongation while still retaining the shelterin components on telomeres. Therefore, the linkage within the shelterin components, rather than the individual shelterin components per se, defines the telomerase-nonextendible state. Furthermore, epistasis analyses reveal that Tpz1 also participates in the activation of telomeres to the extendible state via its interaction with Ccq1. Our results suggest critical regulatory roles of Tpz1 in the telomere binary switch.
Collapse
Affiliation(s)
- Hyun-Ik Jun
- Department of Biological Chemistry, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
32
|
Singh U, Maturi V, Jones RE, Paulsson Y, Baird DM, Westermark B. CGGBP1 phosphorylation constitutes a telomere-protection signal. Cell Cycle 2013; 13:96-105. [PMID: 24196442 PMCID: PMC3925742 DOI: 10.4161/cc.26813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The shelterin proteins are required for telomere integrity. Shelterin dysfunction can lead to initiation of unwarranted DNA damage and repair pathways at chromosomal termini. Interestingly, many shelterin accessory proteins are involved in DNA damage signaling and repair. We demonstrate here that in normal human fibroblasts, telomeric ends are protected by phosphorylation of CGG triplet repeat-binding protein 1 (CGGBP1) at serine 164 (S164). We show that serine 164 is a major phosphorylation site on CGGBP1 with important functions. We provide evidence that one of the kinases that can phosphorylate S164 CGGBP1 is ATR. Overexpression of S164A phospho-deficient CGGBP1 exerted a dominant-negative effect, causing telomeric dysfunction, accelerated telomere shortening, enhanced fusion of telomeres, and crisis. However, overexpression of wild-type or phospho-mimicking S164E CGGBP1 did not cause these effects. This telomere damage was associated with reduced binding of the shelterin protein POT1 to telomeric DNA. Our results suggest that CGGBP1 phosphorylation at S164 is a novel telomere protection signal, which can affect telomere-protective function of the shelterin complex.
Collapse
Affiliation(s)
- Umashankar Singh
- Department of Immunology, Genetics, and Pathology; Uppsala University; Tumor Biology; Rudbeck Laboratory; Uppsala, Sweden
| | - Varun Maturi
- Department of Immunology, Genetics, and Pathology; Uppsala University; Tumor Biology; Rudbeck Laboratory; Uppsala, Sweden; Ludwig Institute for Cancer Research; Science for Life Laboratory; Uppsala University; Biomedical Center; Uppsala, Sweden
| | - Rhiannon E Jones
- Department of Pathology; School of Medicine; Cardiff University; Cardiff, UK
| | - Ylva Paulsson
- Department of Immunology, Genetics, and Pathology; Uppsala University; Tumor Biology; Rudbeck Laboratory; Uppsala, Sweden
| | - Duncan M Baird
- Department of Pathology; School of Medicine; Cardiff University; Cardiff, UK
| | - Bengt Westermark
- Department of Immunology, Genetics, and Pathology; Uppsala University; Tumor Biology; Rudbeck Laboratory; Uppsala, Sweden
| |
Collapse
|
33
|
Shtessel L, Lowden MR, Cheng C, Simon M, Wang K, Ahmed S. Caenorhabditis elegans POT-1 and POT-2 repress telomere maintenance pathways. G3 (BETHESDA, MD.) 2013; 3:305-13. [PMID: 23390606 PMCID: PMC3564990 DOI: 10.1534/g3.112.004440] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022]
Abstract
Telomeres are composed of simple tandem DNA repeats that protect the ends of linear chromosomes from replicative erosion or inappropriate DNA damage response mechanisms. The mammalian Protection Of Telomeres (POT1) protein interacts with single-stranded telomeric DNA and can exert positive and negative effects on telomere length. Of four distinct POT1 homologs in the roundworm Caenorhabditis elegans, deficiency for POT-1 or POT-2 resulted in progressive telomere elongation that occurred because both proteins negatively regulate telomerase. We created a POT-1::mCherry fusion protein that forms discrete foci at C. elegans telomeres, independent of POT-2, allowing for live analysis of telomere dynamics. Transgenic pot-1::mCherry repressed telomerase in pot-1 mutants. Animals deficient for pot-1, but not pot-2, displayed mildly enhanced telomere erosion rates in the absence of the telomerase reverse transcriptase, trt-1. However, trt-1; pot-1 double mutants exhibited delayed senescence in comparison to trt-1 animals, and senescence was further delayed in trt-1; pot-2; pot-1 triple mutants, some of which survived robustly in the absence of telomerase. Our results indicate that POT-1 and POT-2 play independent roles in suppressing a telomerase-independent telomere maintenance pathway but may function together to repress telomerase.
Collapse
Affiliation(s)
- Ludmila Shtessel
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Mia Rochelle Lowden
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Chen Cheng
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Matt Simon
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Kyle Wang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
34
|
Altschuler SE, Croy JE, Wuttke DS. A small molecule inhibitor of Pot1 binding to telomeric DNA. Biochemistry 2012; 51:7833-45. [PMID: 22978652 DOI: 10.1021/bi300365k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chromosome ends are complex structures, consisting of repetitive DNA sequence terminating in an ssDNA overhang with many associated proteins. Because alteration of the regulation of these ends is a hallmark of cancer, telomeres and telomere maintenance have been prime drug targets. The universally conserved ssDNA overhang is sequence-specifically bound and regulated by Pot1 (protection of telomeres 1), and perturbation of Pot1 function has deleterious effects for proliferating cells. The specificity of the Pot1/ssDNA interaction and the key involvement of this protein in telomere maintenance have suggested directed inhibition of Pot1/ssDNA binding as an efficient means of disrupting telomere function. To explore this idea, we developed a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) screen for inhibitors of Pot1/ssDNA interaction. We conducted this screen with the DNA-binding subdomain of Schizosaccharomyces pombe Pot1 (Pot1pN), which confers the vast majority of Pot1 sequence-specificity and is highly similar to the first domain of human Pot1 (hPOT1). Screening a library of ∼20 000 compounds yielded a single inhibitor, which we found interacted tightly with sub-micromolar affinity. Furthermore, this compound, subsequently identified as the bis-azo dye Congo red (CR), was able to competitively inhibit hPOT1 binding to telomeric DNA. Isothermal titration calorimetry and NMR chemical shift analysis suggest that CR interacts specifically with the ssDNA-binding cleft of Pot1, and that alteration of this surface disrupts CR binding. The identification of a specific inhibitor of ssDNA interaction establishes a new pathway for targeted telomere disruption.
Collapse
Affiliation(s)
- Sarah E Altschuler
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
35
|
Hwang H, Buncher N, Opresko PL, Myong S. POT1-TPP1 regulates telomeric overhang structural dynamics. Structure 2012; 20:1872-80. [PMID: 22981946 DOI: 10.1016/j.str.2012.08.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
Human telomeres possess a single-stranded DNA (ssDNA) overhang of TTAGGG repeats, which can self-fold into a G-quadruplex structure. POT1 binds specifically to the telomeric overhang and partners with TPP1 to regulate telomere lengthening and capping, although the mechanism remains elusive. Here, we show that POT1 binds stably to folded telomeric G-quadruplex DNA in a sequential manner, one oligonucleotide/oligosaccharide binding fold at a time. POT1 binds from 3' to 5', thereby unfolding the G-quadruplex in a stepwise manner. In contrast, the POT1-TPP1 complex induces a continuous folding and unfolding of the G-quadruplex. We demonstrate that POT1-TPP1 slides back and forth on telomeric DNA and also on a mutant telomeric DNA to which POT1 cannot bind alone. The sliding motion is specific to POT1-TPP1, as POT1 and ssDNA binding protein gp32 cannot recapitulate this activity. Our results reveal fundamental molecular steps and dynamics involved in telomere structure regulation.
Collapse
Affiliation(s)
- Helen Hwang
- Bioengineering Department, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
36
|
Interaction of Berberine derivative with protein POT1 affect telomere function in cancer cells. Biochem Biophys Res Commun 2012; 419:567-72. [DOI: 10.1016/j.bbrc.2012.02.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 12/27/2022]
|
37
|
Stewart JA, Chaiken MF, Wang F, Price CM. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res 2012; 730:12-9. [PMID: 21945241 PMCID: PMC3256267 DOI: 10.1016/j.mrfmmm.2011.08.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
Abstract
Chromosome end protection is essential to protect genome integrity. Telomeres, tracts of repetitive DNA sequence and associated proteins located at the chromosomal terminus, serve to safeguard the ends from degradation and unwanted double strand break repair. Due to the essential nature of telomeres in protecting the genome, a number of unique proteins have evolved to ensure that telomere length and structure are preserved. The inability to properly maintain telomeres can lead to diseases such as dyskeratosis congenita, pulmonary fibrosis and cancer. In this review, we will discuss the known functions of mammalian telomere-associated proteins, their role in telomere replication and length regulation and how these processes relate to genome instability and human disease.
Collapse
Affiliation(s)
- Jason A. Stewart
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Mary F. Chaiken
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Feng Wang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Carolyn M. Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| |
Collapse
|
38
|
Shtessel L, Ahmed S. Telomere dysfunction in human bone marrow failure syndromes. Nucleus 2012; 2:24-9. [PMID: 21647296 DOI: 10.4161/nucl.2.1.13993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/25/2022] Open
Abstract
Approximately 90% of all human cancers, in which some deregulation of cell cycle arrest or programmed cell death has occurred, express telomerase, a ribonucleoprotein whose activity is normally turned off in healthy somatic tissues. Additionally, small populations of self-renewing stem cells, such as hematopoietic stem cells, skin and hair follicle basal layer cells and intestinal basal crypt cells, have been shown to retain telomerase activity. Conversely, hereditary defects that result in shortened telomeres in humans have been shown to manifest most often as bone marrow failure or pulmonary fibrosis, along with a myriad of other symptoms, likely due to the loss of the stem and/or progenitor cells of affected tissues. The aim of this review is to highlight our knowledge of the mechanisms of telomere maintenance that contribute to the pathology of human disease caused by dysfunctional telomere homeostasis. Specifically, a new role for the SNM1B/Apollo nuclease in the pathologies of Hoyeraal-Hreidarsson syndrome will be discussed.
Collapse
Affiliation(s)
- Ludmila Shtessel
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | | |
Collapse
|
39
|
Choi KH, Farrell AS, Lakamp AS, Ouellette MM. Characterization of the DNA binding specificity of Shelterin complexes. Nucleic Acids Res 2011; 39:9206-23. [PMID: 21852327 PMCID: PMC3241663 DOI: 10.1093/nar/gkr665] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/03/2022] Open
Abstract
The Shelterin complex associates with telomeres and plays an essential role in telomere protection and telomerase regulation. In its most abundant form, the complex is composed of six core components: TRF1, TRF2, POT1, TIN2, TPP1 and RAP1. Of these subunits, three can interact directly with either single-stranded (POT1) or double-stranded (TRF1, TRF2) telomeric DNA. In this report, we have developed assays to measure the DNA binding activity of Shelterin complexes in human cell extracts. With these assays, we have characterized the composition and DNA binding specificity of two Shelterin complexes: a 6-member complex that contains all six core components and a second complex that lacks TRF1. Our results show that both of these complexes bind with high affinity (K(D) = 1.3-1.5 × 10(-9) M) and selectively to ds/ss-DNA junctions that carry both a binding site for POT1 (ss-TTAGGGTTAG) and a binding site for the SANT/Myb domain of TRF1 or TRF2 (ds-TTAGGGTTA). This DNA binding specificity suggests the preferential recruitment of these complexes to areas of the telomere where ss- and ds-DNA are in close proximity, such as the 3'-telomeric overhang, telomeric DNA bubbles and the D-loop at the base of T-loops.
Collapse
Affiliation(s)
- Kyung H. Choi
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239 and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amy S. Farrell
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239 and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda S. Lakamp
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239 and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michel M. Ouellette
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239 and Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
40
|
Teo CH, Ma L, Kapusi E, Hensel G, Kumlehn J, Schubert I, Houben A, Mette MF. Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:28-39. [PMID: 21745249 DOI: 10.1111/j.1365-313x.2011.04662.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Minichromosomes possess functional centromeres and telomeres and thus should be stably inherited. They offer an enormous opportunity to plant biotechnology as they have the potential to simultaneously transfer and stably express multiple genes. Segregating independently of host chromosomes, they provide a platform for accelerating plant breeding. Following a top-down approach, we truncated endogenous chromosomes in Arabidopsis thaliana by Agrobacterium-mediated transfer of T-DNA constructs containing telomere sequences. Blocks of A. thaliana telomeric repeats were inserted into a binary vector suitable for stable transformation. After transfer of these constructs into the natural tetraploid A. thaliana accession Wa-1, chromosome truncation by T-DNA-induced de novo formation of telomeres could be confirmed by DNA gel blot analysis, PCR (polymerase chain reaction), and fluorescence in situ hybridisation. The addition of new telomere repeats in this process could start alternatively from within the T-DNA-derived telomere repeats or from adjacent sequences close to the right border of the T-DNA. Truncated chromosomes were transmissible in sexual reproduction, but were inherited at rates lower than expected according to Mendelian rules.
Collapse
Affiliation(s)
- Chee How Teo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Separation of telomerase functions by reverse genetics. Proc Natl Acad Sci U S A 2011; 108:E1363-71. [PMID: 21949400 DOI: 10.1073/pnas.1112414108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The canonical function of the human telomerase protein (hTERT) is to synthesize telomeric DNA, but it has other biological activities, including enhancing cell proliferation, decreasing apoptosis, regulating DNA damage responses, and increasing cellular proliferative lifespan. The mechanistic relationships among these activities are not understood. We previously demonstrated that ectopic hTERT expression in primary human mammary epithelial cells diminishes their requirement for exogenous mitogens, thus giving them a proliferative advantage in a mitogen-depleted environment. Here, we show that this phenotype is caused by a combination of increased cell division and decreased apoptosis. In addition, we use a panel of hTERT mutants to demonstrate that this enhanced cell proliferation can be uncoupled not only from telomere elongation, but also from other telomerase activities, including cellular lifespan extension and regulation of DNA damage responses. We also find that the proliferative function of hTERT, which requires hTERT catalytic activity, is not caused by increased Wnt signaling, but is accompanied by alterations in key cell cycle regulators and is linked to an hTERT-catalyzed decrease in the levels of the RNA component of mitochondrial RNA processing endoribonuclease. Thus, enhanced cell proliferation is an independent function of hTERT that could provide a new target for the development of anti-telomerase cancer therapeutic agents.
Collapse
|
42
|
Altschuler SE, Dickey TH, Wuttke DS. Schizosaccharomyces pombe protection of telomeres 1 utilizes alternate binding modes to accommodate different telomeric sequences. Biochemistry 2011; 50:7503-13. [PMID: 21815629 DOI: 10.1021/bi200826a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ends of eukaryotic chromosomes consist of long tracts of repetitive GT-rich DNA with variable sequence homogeneity between and within organisms. Telomeres terminate in a conserved 3'-ssDNA overhang that, regardless of sequence variability, is specifically and tightly bound by proteins of the telomere-end protection family. The high affinity ssDNA-binding activity of S. pombe Pot1 protein (SpPot1) is conferred by a DNA-binding domain consisting of two subdomains, Pot1pN and Pot1pC. Previous work has shown that Pot1pN binds a single repeat of the core telomere sequence (GGTTAC) with exquisite specificity, while Pot1pC binds an extended sequence of nine nucleotides (GGTTACGGT) with modest specificity requirements. We find that full-length SpPot1 binds the composite 15mer, (GGTTAC)(2)GGT, and a shorter two-repeat 12mer, (GGTTAC)(2), with equally high affinity (<3 pM), but with substantially different kinetic and thermodynamic properties. The binding mode of the SpPot1/15mer complex is more stable than that of the 12mer complex, with a 2-fold longer half-life and increased tolerance to nucleotide and amino acid substitutions. Our data suggest that SpPot1 protection of heterogeneous telomeres is mediated through 5'-sequence recognition and the use of alternate binding modes to maintain high affinity interaction with the G-strand, while simultaneously discriminating against the complementary strand.
Collapse
Affiliation(s)
- Sarah E Altschuler
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | | | | |
Collapse
|
43
|
Wan SM, Tie J, Zhang YF, Guo J, Yang LQ, Wang J, Xia SH, Yang SM, Wang RQ, Fang DC. Silencing of the hPOT1 gene by RNA inference promotes apoptosis and inhibits proliferation and aggressive phenotype of gastric cancer cells, likely through up-regulating PinX1 expression. J Clin Pathol 2011; 64:1051-7. [PMID: 21778296 DOI: 10.1136/jclinpath-2011-200211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The human protection of telomeres 1 (hPOT1) protein, a single-strand telomeric DNA binding protein, plays an important role in telomere protection and telomere length regulation. However, its effect on invasion of gastric cancer remains unclear. AIMS To explore the role of hPOT1 in the proliferation and invasion of gastric cancer cells. METHODS The gastric expression of hPOT1 was examined in normal gastric mucosa (n=25), intestinal metaplasia (n=20), gastric dysplasia (n=20) and gastric cancer (n=150) by immunohistochemistry. The mean optical density (MOD) of the immunostaining was determined by semi-quantitative image analysis. The role of hPOT1 in the cell proliferation, apoptosis and invasion of gastric cancer 7901 cells was determined by means of the RNA interference (RNAi) of hPOT1 mRNA. The effects of hPOT1 RNAi on the expression of hPinX1 and hTERT were detected with western blotting. RESULTS The hPOT1 MOD was progressively increased from the normal mucosa to intestinal metaplasia, dysplasia, and gastric cancer. An increased hPOT1 expression significantly correlated with tumour serosal invasion, node metastasis and advanced stage. Transfection of hPOT1 siRNA into SGC-7901 cells led to a decrease in cell proliferation, colony formation and invasion, and also an increase of apoptosis. An up-regulation of hPinX1 and down-regulation of hTERT were found in gastric cancer cells with hPOT1 siRNA. CONCLUSIONS Increased hPOT1 expression is associated with an advanced tumour stage. hPOT1 RNAi inhibits proliferation and invasion, and induces apoptosis of gastric cancer cells. The effects of hPOT1 RNAi seem to be functionally linked to up-regulation of PinX1 and down-regulation of hTERT.
Collapse
Affiliation(s)
- Shun-Mei Wan
- Department of Gastroenterology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen J, Zhang B, Wong N, Lo AWI, To KF, Chan AWH, Ng MHL, Ho CYS, Cheng SH, Lai PBS, Yu J, Ng HK, Ling MT, Huang AL, Cai XF, Ko BCB. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res 2011; 71:4138-49. [PMID: 21527554 DOI: 10.1158/0008-5472.can-10-4274] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with a poor prognosis. Treatment of HCC is complicated by the fact that the disease is often diagnosed at an advanced stage when it is no longer amenable to curative surgery, and current systemic chemotherapeutics are mostly inefficacious. Sirtuin 1 (SIRT1) is a class III histone deacetylase that is implicated in gene regulations and stress resistance. In this study, we found that SIRT1 is essential for the tumorigenesis of HCC. We showed that although SIRT1 was expressed at very low levels in normal livers, it was overexpressed in HCC cell lines and in a subset of HCC. Tissue microarray analysis of HCC and adjacent nontumoral liver tissues revealed a positive correlation between the expression levels of SIRT1 and advancement in tumor grades. Downregulation of SIRT1 consistently suppressed the proliferation of HCC cells via the induction of cellular senescence or apoptosis. SIRT1 silencing also caused telomere dysfunction-induced foci and nuclear abnormality that were clearly associated with reduced expressions of telomerase reverse transcriptase (TERT), and PTOP, which is a member of the shelter in complex. Ectopic expression of either TERT or PTOP in SIRT1-depleted cells significantly restored cell proliferation. There was also a positive correlation between the level of induction of SIRT1 and TERT [corrected] in human HCC. Finally, SIRT1-silencing sensitized HCC cells to doxorubicin treatment. Together, our findings reveal a novel function for SIRT1 in telomere maintenance of HCC, and they rationalize the clinical exploration of SIRT1 inhibitors for HCC therapy.
Collapse
Affiliation(s)
- Juan Chen
- The State Key Laboratory in Oncology in South China, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The telomere binding protein TRF2 induces chromatin compaction. PLoS One 2011; 6:e19124. [PMID: 21526145 PMCID: PMC3079743 DOI: 10.1371/journal.pone.0019124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/27/2011] [Indexed: 12/15/2022] Open
Abstract
Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.
Collapse
|
46
|
Fission yeast Pot1 and RecQ helicase are required for efficient chromosome segregation. Mol Cell Biol 2010; 31:495-506. [PMID: 21098121 DOI: 10.1128/mcb.00613-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.
Collapse
|
47
|
POT1 deficiency alters telomere length and telomere-associated gene expression in human gastric cancer cells. Eur J Cancer Prev 2010; 19:345-51. [PMID: 20517159 DOI: 10.1097/cej.0b013e32833b4812] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Telomeres are the end structures of linear chromosomes in eukaryotic cells. The integrity of a telomere is essential for the overall stability of the chromosome. The human protection of telomeres 1 (hPOT1) protein, a single-stranded telomeric DNA binding protein, plays an important role in telomere protection and telomere length regulation. Here, we show that the loss of hPOT1 by RNA interference in BGC823 (poorly differentiated human gastric adenocarcinoma) cells leads to an increase in multinucleated giant cells, a decrease in cell proliferation and colony formation, induction of senescence and apoptosis, shortened telomere length, upregulation of the TRF1 gene and downregulation of the TRF2, tankyrase1 and hTERT genes. These results suggest that the loss of hPOT1 results in a decrease in the viability of BGC823 cells; hPOT1 regulates telomere length positively and has an influence on the expression of other telomere-associated genes in the cells.
Collapse
|
48
|
Zhou FX, Xiong J, Luo ZG, Dai J, Yu HJ, Liao ZK, Lei H, Xie CH, Zhou YF. cDNA Expression Analysis of a Human Radiosensitive-Radioresistant Cell Line Model Identifies Telomere Function as a Hallmark of Radioresistance. Radiat Res 2010; 174:550-7. [DOI: 10.1667/rr1657.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Wong LH. Epigenetic regulation of telomere chromatin integrity in pluripotent embryonic stem cells. Epigenomics 2010; 2:639-55. [DOI: 10.2217/epi.10.49] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Telomeres are protective chromosomal structures highly conserved from primitive organisms to humans. The evolutionary conservation of telomere DNA implicates the importance of telomeric structure for basic cellular functions. Loss of telomere function causes chromosomal fusion, activation of DNA damage checkpoint responses, genome instability and impaired stem cell function. In human cells, the telomeric chromatin consists of TTAGGG repeats associated with a complex of proteins known as Shelterin. It is also organized in nucleosomes enriched with epigenetic modifications of ‘closed’ or ‘silenced’ chromatin states, including DNA hypermethylation and trimethylation of H3K9 and H4K20. These heterochromatin marks serve as a higher-order level of control of telomere length and structural integrity. Recent studies have shown that the telomere nucleosome in pluripotent embryonic stem cells is characterized by a more ‘open’ chromatin state that switches to become more repressive during differentiation. Conversely, the reprogramming of adult somatic cells into induced pluripotent cells results in the switch in telomeric chromatin from a repressive to a more open embryonic stem cell-like state, coupled with the restoration of telomere length. These findings indicate that telomeric chromatin is dynamic and reprogrammable, and has a fundamental role in the maintenance of embryonic stem cell pluripotency.
Collapse
Affiliation(s)
- Lee H Wong
- Chromosome & Chromatin Research, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
50
|
Abstract
Proteins that specifically bind the single-stranded overhang at the ends of telomeres have been identified in a wide range of eukaryotes and play pivotal roles in chromosome end protection and telomere length regulation. Here we summarize recent findings regarding the functions of POT1 proteins in vertebrates and discuss the functional evolution of POT1 proteins following gene duplication in protozoa, plants, nematodes and mice.
Collapse
Affiliation(s)
- Peter Baumann
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, KS 66160, U.S.A
| | - Carolyn Price
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| |
Collapse
|