1
|
Ecke M, Gerisch G. Chemotaxis of Large Multinucleate Cells of Dictyostelium Produced by Electric-Pulse Induced Fusion. Methods Mol Biol 2024; 2828:147-157. [PMID: 39147976 DOI: 10.1007/978-1-0716-4023-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Normal-sized cells of Dictyostelium build up a front-tail polarity when they respond to a gradient of chemoattractant. To challenge the polarity-generating system, cells are fused to study the chemotactic response of oversized cells that extend multiple fronts toward the source of attractant. An aspect that can be explored in these cells is the relationship of spontaneously generated actin waves to actin reorganization in response to chemoattractant.
Collapse
Affiliation(s)
- Mary Ecke
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | |
Collapse
|
2
|
Xu X, Pots H, Gilsbach BK, Parsons D, Veltman DM, Ramachandra SG, Li H, Kortholt A, Jin T. C2GAP2 is a common regulator of Ras signaling for chemotaxis, phagocytosis, and macropinocytosis. Front Immunol 2022; 13:1075386. [PMID: 36524124 PMCID: PMC9745196 DOI: 10.3389/fimmu.2022.1075386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Phagocytosis, macropinocytosis, and G protein coupled receptor-mediated chemotaxis are Ras-regulated and actin-driven processes. The common regulator for Ras activity in these three processes remains unknown. Here, we show that C2GAP2, a Ras GTPase activating protein, highly expressed in the vegetative growth state in model organism Dictyostelium. C2GAP2 localizes at the leading edge of chemotaxing cells, phagosomes during phagocytosis, and macropinosomes during micropinocytosis. c2gapB- cells lacking C2GAP2 displayed increased Ras activation upon folic acid stimulation and subsequent impaired chemotaxis in the folic acid gradient. In addition, c2gaB- cells have elevated phagocytosis and macropinocytosis, which subsequently results in faster cell growth. C2GAP2 binds multiple phospholipids on the plasma membrane and the membrane recruitment of C2GAP2 requires calcium. Taken together, we show a shared negative regulator of Ras signaling that mediates Ras signaling for chemotaxis, phagocytosis, and macropinocytosis.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States,*Correspondence: Xuehua Xu,
| | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Bernd K. Gilsbach
- Functional Neuroproteomics and Translational Biomarkers in Neurodegenerative Diseases German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dustin Parsons
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Douwe M. Veltman
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Sharmila G. Ramachandra
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Haoran Li
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Tian Jin
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
3
|
Schaap P. From environmental sensing to developmental control: cognitive evolution in dictyostelid social amoebas. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190756. [PMID: 33487113 PMCID: PMC7934950 DOI: 10.1098/rstb.2019.0756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dictyostelid social amoebas respond to starvation by self-organizing into multicellular slugs that migrate towards light to construct spore-bearing structures. These behaviours depend on excitable networks that enable amoebas to produce propagating waves of the chemoattractant cAMP, and to respond by directional movement. cAMP additionally regulates cell differentiation throughout development, with differentiation and cell movement being coordinated by interaction of the stalk inducer c-di-GMP with the adenylate cyclase that generates cAMP oscillations. Evolutionary studies indicate how the manifold roles of cAMP in multicellular development evolved from a role as intermediate for starvation-induced encystation in the unicellular ancestor. A merger of this stress response with the chemotaxis excitable networks yielded the developmental complexity and cognitive capabilities of extant Dictyostelia. This article is part of the theme issue ‘Basal cognition: conceptual tools and the view from the single cell’.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| |
Collapse
|
4
|
Abstract
The Ras oncogene is notoriously difficult to target with specific therapeutics. Consequently, there is interest to better understand the Ras signaling pathways to identify potential targetable effectors. Recently, the mechanistic target of rapamycin complex 2 (mTORC2) was identified as an evolutionarily conserved Ras effector. mTORC2 regulates essential cellular processes, including metabolism, survival, growth, proliferation and migration. Moreover, increasing evidence implicate mTORC2 in oncogenesis. Little is known about the regulation of mTORC2 activity, but proposed mechanisms include a role for phosphatidylinositol (3,4,5)-trisphosphate - which is produced by class I phosphatidylinositol 3-kinases (PI3Ks), well-characterized Ras effectors. Therefore, the relationship between Ras, PI3K and mTORC2, in both normal physiology and cancer is unclear; moreover, seemingly conflicting observations have been reported. Here, we review the evidence on potential links between Ras, PI3K and mTORC2. Interestingly, data suggest that Ras and PI3K are both direct regulators of mTORC2 but that they act on distinct pools of mTORC2: Ras activates mTORC2 at the plasma membrane, whereas PI3K activates mTORC2 at intracellular compartments. Consequently, we propose a model to explain how Ras and PI3K can differentially regulate mTORC2, and highlight the diversity in the mechanisms of mTORC2 regulation, which appear to be determined by the stimulus, cell type, and the molecularly and spatially distinct mTORC2 pools.
Collapse
|
5
|
Yamazaki SI, Hashimura H, Morimoto YV, Miyanaga Y, Matsuoka S, Kamimura Y, Ueda M. Talin B regulates collective cell migration via PI3K signaling in Dictyostelium discoideum mounds. Biochem Biophys Res Commun 2020; 525:372-377. [PMID: 32098673 DOI: 10.1016/j.bbrc.2020.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 01/23/2023]
Abstract
Collective cell migration is a key process during the development of multicellular organisms, in which the migrations of individual cells are coordinated through chemical guidance and physical contact between cells. Talin has been implicated in mechanical linkage between actin-based motile machinery and adhesion molecules, but how talin contributes to collective cell migration is unclear. Here we show that talin B is involved in chemical coordination between cells for collective cell migration at the multicellular mound stage in the development of Dictyostelium discoideum. From early aggregation to the mound formation, talB-null cells exhibited collective migration normally with cAMP relay. Subsequently, talB-null cells showed developmental arrest at the mound stage, and at the same time, they had impaired collective migration and cAMP relay, while wild-type cells exhibited rotational cell migration continuously in concert with cAMP relay during the mound stage. Genetic suppression of PI3K activity partially restored talB-null phenotypes in collective cell migration and cAMP relay. Overall, our observations suggest that talin B regulates chemical coordination via PI3K-mediated signaling in a stage-specific manner for the multicellular development of Dictyostelium cells.
Collapse
Affiliation(s)
- Shin-Ichi Yamazaki
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Hidenori Hashimura
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902, Tokyo, Japan
| | - Yusuke V Morimoto
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Yukihiro Miyanaga
- Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan.
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, BDR (Biosystems and Dynamics Research Center), RIKEN, Suita, Osaka, 565-0874, Japan; Laboratory of Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Rijal R, Consalvo KM, Lindsey CK, Gomer RH. An endogenous chemorepellent directs cell movement by inhibiting pseudopods at one side of cells. Mol Biol Cell 2018; 30:242-255. [PMID: 30462573 PMCID: PMC6589559 DOI: 10.1091/mbc.e18-09-0562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic chemoattraction signal transduction pathways, such as those used by Dictyostelium discoideum to move toward cAMP, use a G protein-coupled receptor to activate multiple conserved pathways such as PI3 kinase/Akt/PKB to induce actin polymerization and pseudopod formation at the front of a cell, and PTEN to localize myosin II to the rear of a cell. Relatively little is known about chemorepulsion. We previously found that AprA is a chemorepellent protein secreted by Dictyostelium cells. Here we used 29 cell lines with disruptions of cAMP and/or AprA signal transduction pathway components, and delineated the AprA chemorepulsion pathway. We find that AprA uses a subset of chemoattraction signal transduction pathways including Ras, protein kinase A, target of rapamycin (TOR), phospholipase A, and ERK1, but does not require the PI3 kinase/Akt/PKB and guanylyl cyclase pathways to induce chemorepulsion. Possibly as a result of not using the PI3 kinase/Akt/PKB pathway and guanylyl cyclases, AprA does not induce actin polymerization or increase the pseudopod formation rate, but rather appears to inhibit pseudopod formation at the side of cells closest to the source of AprA.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
7
|
Fold-change detection and scale invariance of cell-cell signaling in social amoeba. Proc Natl Acad Sci U S A 2017; 114:E4149-E4157. [PMID: 28495969 DOI: 10.1073/pnas.1702181114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.
Collapse
|
8
|
Adenylyl cyclase localization to the uropod of aggregating Dictyostelium cells requires RacC. Biochem Biophys Res Commun 2015; 465:613-9. [PMID: 26315268 DOI: 10.1016/j.bbrc.2015.08.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 11/21/2022]
Abstract
The localization of adenylyl cyclase A (ACA) to uropod of cells is required for the stream formation during Dictyostelium development. RacC is a Dictyostelium orthologue of Cdc42. We identified a streaming defect of racC(-) cells as they are clearly less polarized and form smaller and fragmented streams. ACA-YFP is mainly associated with intracellular vesicular structures, but not with the plasma membrane in racC(-) cells. racC(-) cells have a slightly higher number of vesicles than Ax3 cells, suggesting that the defect of ACA trafficking is not simply due to the lack of vesicle formation. While the ACA-YFP vesicles traveled with an average velocity of 9.1 μm/min in Ax3 cells, a slow and diffusional movement without direction with an average velocity of 4 μm/min was maintained in racC(-) cells. Images acquired by using total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) analysis revealed that a significantly decreased number of ACA-YFP vesicles appeared near the cell membrane, indicating a defect in ACA-YFP vesicle trafficking. These results suggest an important role of RacC in the rapid and directional movements of ACA vesicles on microtubules to the plasma membrane, especially to the back of polarized cell.
Collapse
|
9
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
10
|
Mohany M, El-Feki M, Refaat I, Garraud O, Badr G. Thymoquinone ameliorates the immunological and histological changes induced by exposure to imidacloprid insecticide. J Toxicol Sci 2012; 37:1-11. [PMID: 22293407 DOI: 10.2131/jts.37.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Previous studies have shown that thymoquinone (TQ) exerts protective effects in some models of pesticide-induced immunotoxicity. However, no data exist regarding its possible modulatory effect during imidacloprid (IC)-induced toxicity. Therefore, the aim of this study was to investigate the impact of TQ on IC-induced immunotoxicity. Sixty adult male albino rats were divided into three groups of twenty animals each. The control group was given distilled water orally, while the IC-treated group was orally administered 0.01 LD(50 )(0.21 mg/kg body weight) of IC insecticide daily for 28 days. The animals in the third group (IC/TQ group) received the same IC dose as the IC-treated group for 28 days in addition to an intraperitoneal (I.P.) injection of TQ (1 mg/kg) once every 7 days. We found that IC induced significant increases (P < 0.05) in total leukocyte counts, total immunoglobulins (Igs) (especially IgGs), the hemagglutination of antibodies, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and malondialdehyde (MDA) compared to the control group. In contrast, significant decreases (P < 0.05) in phagocytic activity, chemokine expression and chemotaxis were observed in the IC-treated group, as were severe histopathological lesions in the liver, spleen and thymus. Notably, TQ supplementation ameliorated the biochemical, histopathological, and immunological changes induced by IC by increasing phagocytic activity, chemokinesis, chemotaxis, immunoglobulin levels, and the hemagglutination of antibodies, as well as by decreasing hepatic enzymes and serum MDA levels. Taken together, our data reveal the benefits of TQ supplementation for ameliorating IC toxicity by decreasing oxidative stress and enhancing immune efficiency.
Collapse
Affiliation(s)
- Mohamed Mohany
- Zoology Department, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
11
|
Brzeska H, Guag J, Preston GM, Titus MA, Korn ED. Molecular basis of dynamic relocalization of Dictyostelium myosin IB. J Biol Chem 2012; 287:14923-36. [PMID: 22367211 DOI: 10.1074/jbc.m111.318667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Class I myosins have a single heavy chain comprising an N-terminal motor domain with actin-activated ATPase activity and a C-terminal globular tail with a basic region that binds to acidic phospholipids. These myosins contribute to the formation of actin-rich protrusions such as pseudopodia, but regulation of the dynamic localization to these structures is not understood. Previously, we found that Acanthamoeba myosin IC binds to acidic phospholipids in vitro through a short sequence of basic and hydrophobic amino acids, BH site, based on the charge density of the phospholipids. The tail of Dictyostelium myosin IB (DMIB) also contains a BH site. We now report that the BH site is essential for DMIB binding to the plasma membrane and describe the molecular basis of the dynamic relocalization of DMIB in live cells. Endogenous DMIB is localized uniformly on the plasma membrane of resting cells, at active protrusions and cell-cell contacts of randomly moving cells, and at the front of motile polarized cells. The BH site is required for association of DMIB with the plasma membrane at all stages where it colocalizes with phosphoinositide bisphosphate/phosphoinositide trisphosphate (PIP(2)/PIP(3)). The charge-based specificity of the BH site allows for in vivo specificity of DMIB for PIP(2)/PIP(3) similar to the PH domain-based specificity of other class I myosins. However, DMIB-head is required for relocalization of DMIB to the front of migrating cells. Motor activity is not essential, but the actin binding site in the head is important. Thus, dynamic relocalization of DMIB is determined principally by the local PIP(2)/PIP(3) concentration in the plasma membrane and cytoplasmic F-actin.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.
Collapse
Affiliation(s)
- Michael C Weiger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg.37/Rm2066, 20892-4256, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Shu S, Liu X, Kriebel PW, Daniels MP, Korn ED. Actin cross-linking proteins cortexillin I and II are required for cAMP signaling during Dictyostelium chemotaxis and development. Mol Biol Cell 2011; 23:390-400. [PMID: 22114350 PMCID: PMC3258182 DOI: 10.1091/mbc.e11-09-0764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Double deletion of actin-binding proteins cortexillin I and II alters the actin cytoskeleton (bundled actin filaments accumulate in the cell cortex) of Dictyostelium, substantially inhibits all molecular responses to extracellular cAMP, and completely blocks cell streaming and development of cells into mature fruiting bodies. Starvation induces Dictyostelium amoebae to secrete cAMP, toward which other amoebae stream, forming multicellular mounds that differentiate and develop into fruiting bodies containing spores. We find that the double deletion of cortexillin (ctx) I and II alters the actin cytoskeleton and substantially inhibits all molecular responses to extracellular cAMP. Synthesis of cAMP receptor and adenylyl cyclase A (ACA) is inhibited, and activation of ACA, RasC, and RasG, phosphorylation of extracellular signal regulated kinase 2, activation of TORC2, and stimulation of actin polymerization and myosin assembly are greatly reduced. As a consequence, cell streaming and development are completely blocked. Expression of ACA–yellow fluorescent protein in the ctxI/ctxII–null cells significantly rescues the wild-type phenotype, indicating that the primary chemotaxis and development defect is the inhibition of ACA synthesis and cAMP production. These results demonstrate the critical importance of a properly organized actin cytoskeleton for cAMP-signaling pathways, chemotaxis, and development in Dictyostelium.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
Cells recognize external chemical gradients and translate these environmental cues into amplified intracellular signaling that results in elongated cell shape, actin polymerization toward the leading edge, and movement along the gradient. Mechanisms underlying chemotaxis are conserved evolutionarily from Dictyostelium amoeba to mammalian neutrophils. Recent studies have uncovered several parallel intracellular signaling pathways that crosstalk in chemotaxing cells. Here, we review these signaling mechanisms in Dictyostelium discoideum.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
15
|
Tang M, Iijima M, Kamimura Y, Chen L, Long Y, Devreotes P. Disruption of PKB signaling restores polarity to cells lacking tumor suppressor PTEN. Mol Biol Cell 2011; 22:437-47. [PMID: 21169559 PMCID: PMC3038642 DOI: 10.1091/mbc.e10-06-0522] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/04/2010] [Accepted: 12/08/2010] [Indexed: 11/11/2022] Open
Abstract
By limiting phosphotidylinositol 3,4,5-triphosphate (PIP(3)) levels, tumor suppressor PTEN not only controls cell growth but also maintains cell polarity required for cytokinesis and chemotaxis. To identify the critical targets of PIP(3) that link it to the cytoskeleton, we deleted secondary genes to reverse the deficiencies of pten- cells in Dictyostelium. The polarity defects in pten- cells correlate with elevated phosphorylations of PKB substrates. Deletion of AKT orthologue, PkbA, or a subunit of its activator TORC2, reduced the phosphorylations and suppressed the cytokinesis and chemotaxis defects in pten- cells. In these double mutants, the excessive PIP(3) levels and, presumably, activation of other PIP(3)-binding proteins had little or no effect on the cytoskeleton. In bands with increased phosphorylation in pten- cells, we found PKB substrates, PI5K, GefS, GacG, and PakA. Disruption of PakA in pten- cells restored a large fraction of the cells to normal behavior. Consistently, expression of phosphomimetic PakA in pten- cells exacerbated the defects but nonphosphorylatable PakA had no effect. Thus, among many putative PTEN- and PIP(3)-dependent events, phosphorylation of PKB substrates is the key downstream regulator of cell polarity.
Collapse
Affiliation(s)
- Ming Tang
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Miho Iijima
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Yoichiro Kamimura
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Lingfeng Chen
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Yu Long
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Peter Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
16
|
Liu L, Das S, Losert W, Parent CA. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2010; 19:845-57. [PMID: 21145500 PMCID: PMC3071587 DOI: 10.1016/j.devcel.2010.11.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/16/2010] [Accepted: 11/03/2010] [Indexed: 11/22/2022]
Abstract
We studied the role of the target of rapamycin complex 2 (mTORC2) during neutrophil chemotaxis, a process that is mediated through the polarization of actin and myosin filament networks. We show that inhibition of mTORC2 activity, achieved via knock down (KD) of Rictor, severely inhibits neutrophil polarization and directed migration induced by chemoattractants, independently of Akt. Rictor KD also abolishes the ability of chemoattractants to induce cAMP production, a process mediated through the activation of the adenylyl cyclase 9 (AC9). Cells with either reduced or higher AC9 levels also exhibit specific and severe tail retraction defects that are mediated through RhoA. We further show that cAMP is excluded from extending pseudopods and remains restricted to the cell body of migrating neutrophils. We propose that the mTORC2-dependent regulation of MyoII occurs through a cAMP/RhoA-signaling axis, independently of actin reorganization during neutrophil chemotaxis.
Collapse
Affiliation(s)
- Lunhua Liu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892
| | - Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892
| | - Wolfgang Losert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892
| |
Collapse
|
17
|
Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 2010; 39:265-89. [PMID: 20192768 DOI: 10.1146/annurev.biophys.093008.131228] [Citation(s) in RCA: 373] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
18
|
Liao XH, Buggey J, Kimmel AR. Chemotactic activation of Dictyostelium AGC-family kinases AKT and PKBR1 requires separate but coordinated functions of PDK1 and TORC2. J Cell Sci 2010; 123:983-92. [PMID: 20200230 DOI: 10.1242/jcs.064022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Protein kinases AKT and PKBR1 of Dictyostelium belong to the AGC protein kinase superfamily. AKT and PKBR1 are phosphorylated at similar sites by phosphoinositide-dependent kinase 1 (PDK1) and TORC2 kinases; however, they have different subcellular localizing domains. AKT has a phosphoinositide 3-kinase (PI3K)/phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)]-regulated PH (pleckstrin homology) domain whereas PKBR1 is myristoylated and persistently membrane localized. Using strains defective for PI3K/PtdIns(3,4,5)P(3)-, PDK1- and TORC2-signaling or strains that express phospho-site mutants of AKT and PKBR1, we dissect the different roles of PI3K/PtdIns(3,4,5)P(3), PDK1 and TORC2. We show that activation of AKT and PKBR1 requires PDK1-site phosphorylation, but that phosphorylation by TORC2 is insufficient for AKT or PKBR1 activation. However, PDK1-site phosphorylation is dependent on phosphorylation by TORC2, which suggests that there is regulatory coordination among PDK1, TORC2 and their phospho-site targets. This defines a separate input for signaling in control of chemotaxis and dependency on PDK1 function. We also demonstrate that PDK1 in Dictyostelium functions independently of PI3K/PtdIns(3,4,5)P(3). Finally, we show that AKT and PKBR1 exhibit substrate selectivity and identify two novel lipid-interacting proteins preferentially phosphorylated by AKT. Despite certain similarities, AKT and PKBR1 have distinct regulatory paths that impact activation and effector targeting, with PDK1 serving a central role.
Collapse
Affiliation(s)
- Xin-Hua Liao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-8028, USA
| | | | | |
Collapse
|
19
|
Abstract
In the social amoebae Dictyostelium discoideum, periodic synthesis and release of extracellular cyclic adenosine 3',5'-monophosphate (cAMP) guide cell aggregation and commitment to form fruiting bodies. It is unclear whether these oscillations are an intrinsic property of individual cells or if they exist only as a population-level phenomenon. Here, we showed by live-cell imaging of intact cell populations that pulses originate from a discrete location despite constant exchange of cells to and from the region. In a perfusion chamber, both isolated single cells and cell populations switched from quiescence to rhythmic activity depending on the concentration of extracellular cAMP. A quantitative analysis showed that stochastic pulsing of individual cells below the threshold concentration of extracellular cAMP plays a critical role in the onset of collective behavior.
Collapse
Affiliation(s)
- Thomas Gregor
- Graduate School of Arts and Sciences, University of Tokyo, Japan
| | - Koichi Fujimoto
- ERATO Complex Systems Biology Project, JST, Tokyo 153-8902, Japan
| | - Noritaka Masaki
- ERATO Complex Systems Biology Project, JST, Tokyo 153-8902, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, University of Tokyo, Japan
- ERATO Complex Systems Biology Project, JST, Tokyo 153-8902, Japan
| |
Collapse
|
20
|
Breshears LM, Wessels D, Soll DR, Titus MA. An unconventional myosin required for cell polarization and chemotaxis. Proc Natl Acad Sci U S A 2010; 107:6918-23. [PMID: 20351273 PMCID: PMC2872422 DOI: 10.1073/pnas.0909796107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
MyTH/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) myosins have roles in cellular adhesion, extension of actin-filled projections such as filopodia and stereocilia, and directional migration. The amoeba Dictyostelium discoideum expresses a simple complement of MyTH/FERM myosins, a class VII (M7) myosin required for cell-substrate adhesion and a unique myosin named MyoG. Mutants lacking MyoG exhibit a wide range of normal actin-based behaviors, including chemotaxis to folic acid, but have a striking defect in polarization and chemotaxis to cAMP. Although the myoG mutants respond to cAMP stimulation by increasing persistence and weakly increasing levels of cortical F-actin, they do not polarize; instead, they maintain a round shape and move slowly and randomly when exposed to a chemotactic gradient. The mutants also fail to activate and localize PI3K to the membrane closest to the source of chemoattractant. These data reveal a role for a MyTH/FERM myosin in mediating early chemotactic signaling and suggest that MyTH/FERM proteins have conserved roles in signaling and the generation of cell polarity.
Collapse
Affiliation(s)
- Laura M. Breshears
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455; and
| | - Deborah Wessels
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242
| | - David R. Soll
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242
| | - Margaret A. Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
21
|
TORC2 and Chemotaxis in Dictyostelium discoideum. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1874-6047(10)28006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Garcia GL, Rericha EC, Heger CD, Goldsmith PK, Parent CA. The group migration of Dictyostelium cells is regulated by extracellular chemoattractant degradation. Mol Biol Cell 2009; 20:3295-304. [PMID: 19477920 DOI: 10.1091/mbc.e09-03-0223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA(-) cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA(-) cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact.
Collapse
Affiliation(s)
- Gene L Garcia
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
23
|
Kawabe Y, Morio T, James JL, Prescott AR, Tanaka Y, Schaap P. Activated cAMP receptors switch encystation into sporulation. Proc Natl Acad Sci U S A 2009; 106:7089-94. [PMID: 19369200 PMCID: PMC2678454 DOI: 10.1073/pnas.0901617106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Indexed: 11/18/2022] Open
Abstract
Metazoan embryogenesis is controlled by a limited number of signaling modules that are used repetitively at successive developmental stages. The development of social amoebas shows similar reiterated use of cAMP-mediated signaling. In the model Dictyostelium discoideum, secreted cAMP acting on 4 cAMP receptors (cARs1-4) coordinates cell movement during aggregation and fruiting body formation, and induces the expression of aggregation and sporulation genes at consecutive developmental stages. To identify hierarchy in the multiple roles of cAMP, we investigated cAR heterogeneity and function across the social amoeba phylogeny. The gene duplications that yielded cARs 2-4 occurred late in evolution. Many species have only a cAR1 ortholog that duplicated independently in the Polysphondylids and Acytostelids. Disruption of both cAR genes of Polysphondylium pallidum (Ppal) did not affect aggregation, but caused complete collapse of fruiting body morphogenesis. The stunted structures contained disorganized stalk cells, which supported a mass of cysts instead of spores; cAMP triggered spore gene expression in Ppal, but not in the cAR null mutant, explaining its sporulation defect. Encystation is the survival strategy of solitary amoebas, and lower taxa, like Ppal, can still encyst as single cells. Recent findings showed that intracellular cAMP accumulation suffices to trigger encystation, whereas it is a complementary requirement for sporulation. Combined, the data suggest that cAMP signaling in social amoebas evolved from cAMP-mediated encystation in solitary amoebas; cAMP secretion in aggregates prompted the starving cells to form spores and not cysts, and additionally organized fruiting body morphogenesis. cAMP-mediated aggregation was the most recent innovation.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- College of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, United Kingdom; and
| | - Takahiro Morio
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - John L. James
- College of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, United Kingdom; and
| | - Alan R. Prescott
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshimasa Tanaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, United Kingdom; and
| |
Collapse
|
24
|
Valeyev NV, Kim JS, Heslop-Harrison JSP, Postlethwaite I, Kotov NV, Bates DG. Computational modelling suggests dynamic interactions between Ca2+, IP3 and G protein-coupled modules are key to robust Dictyostelium aggregation. MOLECULAR BIOSYSTEMS 2009; 5:612-28. [PMID: 19462019 DOI: 10.1039/b822074c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Under conditions of starvation, Dictyostelium cells begin a programme of development during which they aggregate to form a multicellular structure by chemotaxis, guided by propagating waves of cyclic AMP that are relayed robustly from cell to cell. In this paper, we develop and analyse a new model for the intracellular and extracellular cAMP dependent processes that regulate Dictyostelium migration. The model allows, for the first time, a quantitative analysis of the dynamic interactions between calcium, IP(3) and G protein-dependent modules that are shown to be key to the generation of robust cAMP oscillations in Dictyostelium cells. The model provides a mechanistic explanation for the transient increase in cytosolic free Ca(2+) concentration seen in recent experiments with the application of the calmodulin inhibitor calmidazolium (R24571) to Dictyostelium cells, and also allows elucidation of the effects of varying both the conductivity of stretch-activated channels and the concentration of external phosphodiesterase on the oscillatory regime of an individual cell. A rigorous analysis of the robustness of the new model shows that interactions between the different modules significantly reduce the sensitivity of the resulting cAMP oscillations to variations in the kinetics of different Dictyostelium cells, an essential requirement for the generation of the spatially and temporally synchronised chemoattractant cAMP waves that guide Dictyostelium aggregation.
Collapse
Affiliation(s)
- Najl V Valeyev
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Kriebel PW, Barr VA, Rericha EC, Zhang G, Parent CA. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. ACTA ACUST UNITED AC 2008; 183:949-61. [PMID: 19047467 PMCID: PMC2592838 DOI: 10.1083/jcb.200808105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemoattractant signaling induces the polarization and directed movement of cells secondary to the activation of multiple effector pathways. In addition, chemotactic signals can be amplified and relayed to proximal cells via the synthesis and secretion of additional chemoattractant. The mechanisms underlying such remarkable features remain ill defined. We show that the asymmetrical distribution of adenylyl cyclase (ACA) at the back of Dictyostelium discoideum cells, an essential determinant of their ability to migrate in a head-to-tail fashion, requires vesicular trafficking. This trafficking results in a local accumulation of ACA-containing intracellular vesicles and involves intact actin, microtubule networks, and de novo protein synthesis. We also show that migrating cells leave behind ACA-containing vesicles, likely secreted as multivesicular bodies and presumably involved in the formation of head-to-tail arrays of migrating cells. We propose that similar compartmentalization and shedding mechanisms exist in mammalian cells during embryogenesis, wound healing, neuron growth, and metastasis.
Collapse
Affiliation(s)
- Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
26
|
Bosgraaf L, Keizer-Gunnink I, Van Haastert PJM. PI3-kinase signaling contributes to orientation in shallow gradients and enhances speed in steep chemoattractant gradients. J Cell Sci 2008; 121:3589-97. [PMID: 18840645 DOI: 10.1242/jcs.031781] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dictyostelium cells that chemotax towards cAMP produce phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] at the leading edge, which has been implicated in actin reorganization and pseudopod extension. However, in the absence of PtdIns(3,4,5)P(3) signaling, cells will chemotax via alternative pathways. Here we examined the potential contribution of PtdIns(3,4,5)P(3) to chemotaxis of wild-type cells. The results show that steep cAMP gradients (larger than 10% concentration difference across the cell) induce strong PtdIns(3,4,5)P(3) patches at the leading edge, which has little effect on the orientation but strongly enhances the speed of the cell. Using a new sensitive method for PtdIns(3,4,5)P(3) detection that corrects for the volume of cytosol in pixels at the boundary of the cell, we show that, in shallow cAMP gradient (less than 5% concentration difference across the cell), PtdIns(3,4,5)P(3) is still somewhat enriched at the leading edge. Cells lacking PI3-kinase (PI3K) activity exhibit poor chemotaxis in these shallow gradients. Owing to the reduced speed and diminished orientation of the cells in steep and shallow gradients, respectively, cells lacking PtdIns(3,4,5)P(3) signaling require two- to six-fold longer times to reach a point source of chemoattractant compared with wild-type cells. These results show that, although PI3K signaling is dispensable for chemotaxis, it gives the wild type an advantage over mutant cells.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN Haren, The Netherlands
| | | | | |
Collapse
|
27
|
An Elmo-like Protein Associated with Myosin II Restricts Spurious F-Actin Events to Coordinate Phagocytosis and Chemotaxis. Dev Cell 2008; 15:590-602. [DOI: 10.1016/j.devcel.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/07/2008] [Accepted: 08/20/2008] [Indexed: 11/19/2022]
|
28
|
Abstract
The ability of cells to migrate in response to external cues, a process known as chemotaxis, is a fundamental phenomenon in biology. It is exhibited by a wide variety of cell types in the context of embryogenesis, angiogenesis, inflammation, wound healing and many other complex physiological processes. Here, we discuss the signals that control the directed migration of the social amoebae Dictyostelium discoideum both as single cells and in the context of group migration. This multi-cellular organism has served as an excellent model system to decipher amoeboid-like leukocyte migration and has played a key role in establishing signalling paradigms in the chemotaxis field. We envision that Dictyostelium will continue to bring forward basic knowledge as we seek to understand the mechanisms regulating group cell migration.
Collapse
Affiliation(s)
- G L Garcia
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
29
|
A protein with similarity to PTEN regulates aggregation territory size by decreasing cyclic AMP pulse size during Dictyostelium discoideum development. EUKARYOTIC CELL 2008; 7:1758-70. [PMID: 18676953 DOI: 10.1128/ec.00210-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An interesting but largely unanswered biological question is how eukaryotic organisms regulate the size of multicellular tissues. During development, a lawn of Dictyostelium cells breaks up into territories, and within the territories the cells aggregate in dendritic streams to form groups of approximately 20,000 cells. Using random insertional mutagenesis to search for genes involved in group size regulation, we found that an insertion in the cnrN gene affects group size. Cells lacking CnrN (cnrN(-)) form abnormally small groups, which can be rescued by the expression of exogenous CnrN. Relayed pulses of extracellular cyclic AMP (cAMP) direct cells to aggregate by chemotaxis to form aggregation territories and streams. cnrN(-) cells overaccumulate cAMP during development and form small territories. Decreasing the cAMP pulse size by treating cnrN(-) cells with cAMP phosphodiesterase or starving cnrN(-) cells at a low density rescues the small-territory phenotype. The predicted CnrN sequence has similarity to phosphatase and tensin homolog (PTEN), which in Dictyostelium inhibits cAMP-stimulated phosphatidylinositol 3-kinase signaling pathways. CnrN inhibits cAMP-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation, Akt activation, actin polymerization, and cAMP production. Our results suggest that CnrN is a protein with some similarities to PTEN and that it regulates cAMP signal transduction to regulate territory size.
Collapse
|
30
|
McMains VC, Liao XH, Kimmel AR. Oscillatory signaling and network responses during the development of Dictyostelium discoideum. Ageing Res Rev 2008; 7:234-48. [PMID: 18657484 PMCID: PMC5155118 DOI: 10.1016/j.arr.2008.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 12/22/2022]
Abstract
Periodic biological variations reflect interactions among molecules and cells, or even organisms. The Dictyostelium cAMP oscillatory circuit is a highly robust example. cAMP oscillations in Dictyostelium arise intracellularly by a complex interplay of activating and inhibiting pathways, are transmitted extracellularly, and synchronize an entire local population. Once established, cAMP signal-relay persists stably for hours. On a two-dimensional surface, >100,000 cells may form a single coordinated territory. In suspension culture, >10(10) cells can oscillate in harmony. This review focuses on molecular mechanisms that cyclically activate and attenuate signal propagation and on chemotactic responses to oscillatory wave progression.
Collapse
Affiliation(s)
- Vanessa C McMains
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-8028, USA
| | | | | |
Collapse
|
31
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Fang J, Brzostowski JA, Ou S, Isik N, Nair V, Jin T. A vesicle surface tyrosine kinase regulates phagosome maturation. ACTA ACUST UNITED AC 2007; 178:411-23. [PMID: 17664333 PMCID: PMC2064856 DOI: 10.1083/jcb.200701023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phagocytosis is crucial for host defense against microbial pathogens and for obtaining nutrients in Dictyostelium discoideum. Phagocytosed particles are delivered via a complex route from phagosomes to lysosomes for degradation, but the molecular mechanisms involved in the phagosome maturation process are not well understood. Here, we identify a novel vesicle-associated receptor tyrosine kinase-like protein, VSK3, in D. discoideum. We demonstrate how VSK3 is involved in phagosome maturation. VSK3 resides on the membrane of late endosomes/lysosomes with its C-terminal kinase domain facing the cytoplasm. Inactivation of VSK3 by gene disruption reduces the rate of phagocytosis in cells, which is rescued by re-expression of VSK3. We found that the in vivo function of VSK3 depends on the presence of the kinase domain and vesicle localization. Furthermore, VSK3 is not essential for engulfment, but instead, is required for the fusion of phagosomes with late endosomes/lysosomes. Our findings suggest that localized tyrosine kinase signaling on the surface of endosome/lysosomes represents a control mechanism for phagosome maturation.
Collapse
Affiliation(s)
- Jun Fang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zhang M, Goswami M, Sawai S, Cox EC, Hereld D. Regulation of G protein-coupled cAMP receptor activation by a hydrophobic residue in transmembrane helix 3. Mol Microbiol 2007; 65:508-20. [PMID: 17630977 DOI: 10.1111/j.1365-2958.2007.05803.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cAR1, a G protein-coupled cAMP receptor, is essential for multicellular development of Dictyostelium. We previously identified a cAR1-Ile(104) mutant that appeared to be constitutively activated based on its constitutive phosphorylation, elevated affinity for cAMP, and dominant-negative effects on development as well as specific cAR1 pathways that are subject to adaptation. To investigate how Ile(104) might regulate cAR1 activation, we assessed the consequences of substituting it with all other amino acids. Constitutive phosphorylation of these Ile(104) mutants varied broadly, suggesting that they are activated to varying extents, and was correlated with polarity of the substituting amino acid residue. Remarkably, all Ile(104) substitutions, except for the most conservative, dramatically elevated the receptor's cAMP affinity. However, only a third of the mutants (those with the most polar substitutions) blocked development. These findings are consistent with a model in which polar Ile(104) substitutions perturb the equilibrium between inactive and active cAR1 conformations in favour of the latter. Based on homology with rhodopsin, Ile(104) is likely buried within inactive cAR1 and exposed to the cytoplasm upon activation. We propose that the hydrophobic effect normally promotes burial of Ile(104) and hence cAR1 inactivation, while polar substitution of Ile(104) mitigates this effect, resulting in activation.
Collapse
Affiliation(s)
- Minghang Zhang
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center Medical School, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
34
|
Xu X, Meier-Schellersheim M, Yan J, Jin T. Locally controlled inhibitory mechanisms are involved in eukaryotic GPCR-mediated chemosensing. ACTA ACUST UNITED AC 2007; 178:141-53. [PMID: 17606871 PMCID: PMC2064430 DOI: 10.1083/jcb.200611096] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gprotein-coupled receptor (GPCR) signaling mediates a balance of excitatory and inhibitory activities that regulate Dictyostelium chemosensing to cAMP. The molecular nature and kinetics of these inhibitors are unknown. We report that transient cAMP stimulations induce PIP3 responses without a refractory period, suggesting that GPCR-mediated inhibition accumulates and decays slowly. Moreover, exposure to cAMP gradients leads to asymmetric distribution of the inhibitory components. The gradients induce a stable accumulation of the PIP3 reporter PHCrac-GFP in the front of cells near the cAMP source. Rapid withdrawal of the gradient led to the reassociation of G protein subunits, and the return of the PIP3 phosphatase PTEN and PHCrac-GFP to their pre-stimulus distribution. Reapplication of cAMP stimulation produces a clear PHCrac-GFP translocation to the back but not to the front, indicating that a stronger inhibition is maintained in the front of a polarized cell. Our study demonstrates a novel spatiotemporal feature of currently unknown inhibitory mechanisms acting locally on the PI3K activation pathway.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
35
|
Sasaki AT, Janetopoulos C, Lee S, Charest PG, Takeda K, Sundheimer LW, Meili R, Devreotes PN, Firtel RA. G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol 2007; 178:185-91. [PMID: 17635933 PMCID: PMC2064438 DOI: 10.1083/jcb.200611138] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 06/14/2007] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K)gamma and Dictyostelium PI3K are activated via G protein-coupled receptors through binding to the Gbetagamma subunit and Ras. However, the mechanistic role(s) of Gbetagamma and Ras in PI3K activation remains elusive. Furthermore, the dynamics and function of PI3K activation in the absence of extracellular stimuli have not been fully investigated. We report that gbeta null cells display PI3K and Ras activation, as well as the reciprocal localization of PI3K and PTEN, which lead to local accumulation of PI(3,4,5)P(3). Simultaneous imaging analysis reveals that in the absence of extracellular stimuli, autonomous PI3K and Ras activation occur, concurrently, at the same sites where F-actin projection emerges. The loss of PI3K binding to Ras-guanosine triphosphate abolishes this PI3K activation, whereas prevention of PI3K activity suppresses autonomous Ras activation, suggesting that PI3K and Ras form a positive feedback circuit. This circuit is associated with both random cell migration and cytokinesis and may have initially evolved to control stochastic changes in the cytoskeleton.
Collapse
Affiliation(s)
- Atsuo T Sasaki
- Section of Cell and Developmental Biology, Division of Biological Sciences, and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Willard SS, Devreotes PN. Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum. Eur J Cell Biol 2007; 85:897-904. [PMID: 16962888 DOI: 10.1016/j.ejcb.2006.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils. In this review, we will discuss recent data on genes and pathways governing directional sensing and actin polymerization, with a particular emphasis on contributions from our laboratory.
Collapse
Affiliation(s)
- Stacey S Willard
- Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
37
|
Shpakov AO. Structure-functional organization of adenylyl cyclases of unicellular eukaryotes and molecular mechanisms of their regulation. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Takeda K, Sasaki AT, Ha H, Seung HA, Firtel RA. Role of Phosphatidylinositol 3-Kinases in Chemotaxis in Dictyostelium. J Biol Chem 2007; 282:11874-84. [PMID: 17331950 DOI: 10.1074/jbc.m610984200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Experiments in several cell types revealed that local accumulation of phosphatidylinositol 3,4,5-triphosphate mediates the ability of cells to migrate during gradient sensing. We took a systematic approach to characterize the functions of the six putative Class I phosphatidylinositol 3-kinases (PI3K1-6) in Dictyostelium by creating a series of gene knockouts. These studies revealed that PI3K1-PI3K3 are the major PI3Ks for chemoattractant-mediated phosphatidylinositol 3,4,5-triphosphate production. We studied chemotaxis of the pi3k1/2/3 triple knock-out strain (pi3k1/2/3 null cells) to cAMP under two distinct experimental conditions, an exponential gradient emitted from a micropipette and a shallow, linear gradient in a Dunn chamber, using four cAMP concentrations ranging over a factor of 10,000. Under all conditions tested pi3k1/2/3 null cells moved slower and had less polarity than wild-type cells. pi3k1/2/3 null cells moved toward a chemoattractant emitted by a micropipette, although persistence was lower than that of wild-type or pi3k1/2 null cells. In shallow linear gradients, pi3k1/2 null cells had greater directionality defects, especially at lower chemoattractant concentrations. Our studies suggest that although PI3K is not essential for directional movement under some chemoattractant conditions, it is a key component of the directional sensing pathway and plays a critical role in linear chemoattractant gradients, especially at low chemoattractant concentrations. The relative importance of PI3K in chemotaxis is also dependent on the developmental stage of the cells. Our data suggest that the output of other signaling pathways suffices to mediate directional sensing when cells perceive a strong signal, but PI3K signaling is crucial for detecting weaker signals.
Collapse
Affiliation(s)
- Kosuke Takeda
- Section of Cell and Developmental Biology, Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0380, USA
| | | | | | | | | |
Collapse
|
39
|
Alvarez-Curto E, Weening K, Schaap P. Pharmacological profiling of the Dictyostelium adenylate cyclases ACA, ACB and ACG. Biochem J 2007; 401:309-16. [PMID: 16952277 PMCID: PMC1698679 DOI: 10.1042/bj20060880] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/22/2006] [Accepted: 09/05/2006] [Indexed: 11/17/2022]
Abstract
Intracellular and secreted cAMPs play crucial roles in controlling cell movement and gene regulation throughout development of the social amoeba Dictyostelium discoideum. cAMP is produced by three structurally distinct ACs (adenylate cyclases), ACA, ACG and ACB, which have distinctive but overlapping patterns of expression and, as concluded from gene disruption studies, seemingly overlapping functions. In addition to gene disruption, acute pharmacological abrogation of protein activity can be a powerful tool to identify the protein's role in the biology of the organism. We analysed the effects of a range of compounds on the activity of ACA, ACB and ACG to identify enzyme-specific modulators. Caffeine, which was previously used to specifically block ACA function, also inhibited cAMP accumulation by ACB and ACG. IPA (2',3'-O-isopropylidene adenosine) specifically inhibits ACA when measured in intact cells, without affecting ACB or ACG. All three enzymes are inhibited by the P-site inhibitor DDA (2',5'-dideoxyadenosine) when assayed in cell lysates, but not in intact cells. Tyrphostin A25 [alpha-cyano-(3,4,5-trihydroxy)cinnamonitrile] and SQ22536 [9-(tetrahydro-2'-furyl)adenine] proved to be effective and specific inhibitors for ACG and ACA respectively. Both compounds acted directly on enzyme activity assayed in cell lysates, but only SQ22536 was also a specific inhibitor when added to intact cells.
Collapse
Key Words
- adenylate cyclase
- caffeine
- camp
- enzyme-specific inhibitor
- p-site inhibition
- dictyostelium discoideum
- ac, adenylate cyclase
- car1, camp receptor 1
- da, 2′-deoxyadenosine
- dcamp, 2′-deoxyadenosine 3′,5′-monophosphate
- dda, 2′,5′-dideoxyadenosine
- dtt, dithiothreitol
- gtp[s], guanosine 5′-[γ-thio]triphosphate
- ibmx, isobutylmethylxanthine
- ipa, 2′,3′-o-isopropylidene adenosine
- pde, phosphodiesterase
- pdee, phosphodiesterase e
- pdsa, phosphodiesterase a
- pka-r, protein kinase a regulatory subunit
- rdea, phospho-relay intermediate a
- rega, phosphodiesterase 2
Collapse
Affiliation(s)
| | - Karin E. Weening
- School of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, Scotland, U.K
| |
Collapse
|
40
|
Shu S, Mahadeo DC, Liu X, Liu W, Parent CA, Korn ED. S-adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration. Proc Natl Acad Sci U S A 2006; 103:19788-93. [PMID: 17172447 PMCID: PMC1750865 DOI: 10.1073/pnas.0609385103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Indexed: 11/18/2022] Open
Abstract
Chemotaxis of bacteria requires regulated methylation of chemoreceptors. However, despite considerable effort in the 1980s, transmethylation has never been established as a component of eukaryotic cell chemotaxis. S-adenosylhomocysteine (SAH), the product formed when the methyl group of the universal donor S-adenosylmethionine (SAM) is transferred to an acceptor molecule, is a potent inhibitor of all transmethylation reactions. In eukaryotic cells, this inhibition is relieved by hydrolysis of SAH to adenosine and homocysteine catalyzed by SAH hydrolase (SAHH). We now report that SAHH, which is diffuse in the cytoplasm of nonmotile Dictyostelium amoebae and human neutrophils, concentrates with F-actin in pseudopods at the front of motile, chemotaxing cells, but is not present in filopodia or at the very leading edge. Tubercidin, an inhibitor of SAHH, inhibits both chemotaxis and chemotaxis-dependent cell streaming of Dictyostelium, and chemotaxis of neutrophils at concentrations that have little effect on cell viability. Tubercidin does not inhibit starvation-induced expression of the cAMP receptor, cAR1, or G protein-mediated stimulation of adenylyl cyclase activity and actin polymerization in Dictyostelium. Tubercidin has no effect on either capping of Con A receptors or phagocytosis in Dictyostelium. These results add SAHH to the list of proteins that redistribute in response to chemotactic signals in Dictyostelium and neutrophils and strongly suggest a role for transmethylation in chemotaxis of eukaryotic cells.
Collapse
Affiliation(s)
- Shi Shu
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute and
| | - Dana C. Mahadeo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiong Liu
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute and
| | - Wenli Liu
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute and
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward D. Korn
- *Laboratory of Cell Biology, National Heart, Lung, and Blood Institute and
| |
Collapse
|
41
|
Mahadeo DC, Janka-Junttila M, Smoot RL, Roselova P, Parent CA. A chemoattractant-mediated Gi-coupled pathway activates adenylyl cyclase in human neutrophils. Mol Biol Cell 2006; 18:512-22. [PMID: 17135293 PMCID: PMC1783842 DOI: 10.1091/mbc.e06-05-0418] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neutrophils and Dictyostelium use conserved signal transduction pathways to decipher chemoattractant gradients and migrate directionally. In both cell types, addition of chemoattractants stimulates the production of cAMP, which has been suggested to regulate chemotaxis. We set out to define the mechanism by which chemoattractants increase cAMP levels in human neutrophils. We show that chemoattractants elicit a rapid and transient activation of adenylyl cyclase (AC). This activation is sensitive to pertussis toxin treatment but independent of phosphoinositide-3 kinase activity and an intact cytoskeleton. Remarkably, and in sharp contrast to Galpha(s)-mediated activation, chemoattractant-induced AC activation is lost in cell lysates. Of the nine, differentially regulated transmembrane AC isoforms in the human genome, we find that isoforms III, IV, VII, and IX are expressed in human neutrophils. We conclude that the signal transduction cascade used by chemoattractants to activate AC is conserved in Dictyostelium and human neutrophils and is markedly different from the canonical Galpha(s)-meditated pathway.
Collapse
Affiliation(s)
- Dana C. Mahadeo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Mirkka Janka-Junttila
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Rory L. Smoot
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Pavla Roselova
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256
| |
Collapse
|
42
|
Etzrodt M, Ishikawa HCF, Dalous J, Müller-Taubenberger A, Bretschneider T, Gerisch G. Time-resolved responses to chemoattractant, characteristic of the front and tail of Dictyostelium cells. FEBS Lett 2006; 580:6707-13. [PMID: 17126332 DOI: 10.1016/j.febslet.2006.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 11/06/2006] [Accepted: 11/13/2006] [Indexed: 11/26/2022]
Abstract
In a gradient of chemoattractant, Dictyostelium cells are orientated with their front directed toward the source and their tail pointing into the opposite direction. The front region is specified by the polymerization of actin and the tail by the recruitment of filamentous myosin-II. We have dissected these front and tail responses by exposing cells to an upshift of cyclic AMP. A sharp rise and fall of polymerized actin within 10s is accompanied by the recruitment of proteins involved in turning actin polymerization on or off. The cortical accumulation of myosin-II starts when the front response has declined, supporting the concept of divergent signal transmission and adaptation pathways.
Collapse
Affiliation(s)
- Martin Etzrodt
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Miyanaga Y, Matsuoka S, Yanagida T, Ueda M. Stochastic signal inputs for chemotactic response in Dictyostelium cells revealed by single molecule imaging techniques. Biosystems 2006; 88:251-60. [PMID: 17184903 DOI: 10.1016/j.biosystems.2006.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Accepted: 07/20/2006] [Indexed: 10/23/2022]
Abstract
Chemotactic cells can exhibit extreme sensitivity to chemical gradients. Theoretical estimations of the signal inputs required for chemotaxis suggest that the response can be achieved under the strong influence of stochastic input noise generated by the receptors during the transmembrane signaling. This arises a fundamental question regarding the mechanisms for directional sensing: how do cells obtain reliable information regarding gradient direction by using stochastically operating receptors and the downstream molecules? To address this question, we have developed single molecule imaging techniques to visualize signaling molecules responsible for chemotaxis in living Dictyostelium cells, allowing us to monitor the stochastic signaling processes directly. Single molecule imaging of a chemoattractant bound to a receptor demonstrates that signal inputs fluctuate with time and space. Downstream signaling molecules, such as PTEN and a PH domain-containing protein that are constituent parts of chemotactic signaling system, can also be followed at single molecule level in living cells, illuminating the stochastic nature of chemotactic signaling processes. In this report, we start with a brief introduction of chemotactic response of the eukaryotic cells, followed by an explanation for single molecule imaging techniques, and finally discuss these applications to chemotactic signaling system of Dictyostelium cells.
Collapse
Affiliation(s)
- Yukihiro Miyanaga
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
44
|
Liu AMF, Lo RKH, Wong CSS, Morris C, Wise H, Wong YH. Activation of STAT3 by Gαs Distinctively Requires Protein Kinase A, JNK, and Phosphatidylinositol 3-Kinase. J Biol Chem 2006; 281:35812-25. [PMID: 17008315 DOI: 10.1074/jbc.m605288200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) can be stimulated by several G(s)-coupled receptors, but the precise mechanism of action has not yet been elucidated. We therefore examined the ability of Galpha(s)Q226L (Galpha(s)QL), a constitutively active mutant of Galpha(s), to stimulate STAT3 Tyr705 and Ser727 phosphorylations in human embryonic kidney 293 cells. Apart from Galpha(s)QL, the stimulation of Galpha(s) by cholera toxin or beta2-adrenergic receptor and the activation of adenylyl cyclase by forskolin, (Sp)-cAMP, or dibutyryl-cAMP all promoted both STAT3 Tyr705 and Ser727 phosphorylations. Moreover, the removal of Galpha(s) by RNA interference significantly reduced the beta2-adrenergic receptor-mediated STAT3 phosphorylations, denoting its capacity to regulate STAT3 activation by a G protein-coupled receptor. The possible downstream signaling molecules involved were assessed by using specific inhibitors and dominant negative mutants. Induction of STAT3 Tyr705 and Ser727 phosphorylations by Galpha(s)QL was suppressed by inhibition of protein kinase A, Janus kinase 2/3, Rac1, c-Jun N-terminal kinase (JNK), or phosphatidylinositol 3-kinase, and a similar profile was observed in response to beta2-adrenergic receptor stimulation. In contrast to the Galpha16-mediated regulation of STAT3 in HEK 293 cells (Lo, R. K., Cheung, H., and Wong, Y. H. (2003) J. Biol. Chem. 278, 52154-52165), the Galpha(s)-mediated responses, including STAT3-driven luciferase activation, were resistant to inhibition of phospholipase Cbeta. Surprisingly, Galpha(s)-mediated phosphorylation at Tyr705, but not at Ser727, was resistant to inhibition of c-Src, Raf-1, and MEK1/2 as well as to the expression of dominant negative Ras. Therefore, as with other Galpha-mediated activations of STAT3, the stimulatory signal arising from Galpha(s) is transduced via multiple signaling pathways. However, unlike the mechanisms employed by Galpha(i) and Galpha(14/16), Galpha(s) distinctively requires protein kinase A, JNK, and phosphatidylinositol 3-kinase for STAT3 activation.
Collapse
Affiliation(s)
- Andrew M F Liu
- Department of Biochemistry, Molecular Neuroscience Center, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
45
|
Chen S, Segall JE. EppA, a putative substrate of DdERK2, regulates cyclic AMP relay and chemotaxis in Dictyostelium discoideum. EUKARYOTIC CELL 2006; 5:1136-46. [PMID: 16835457 PMCID: PMC1489283 DOI: 10.1128/ec.00383-05] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mitogen-activated protein kinase DdERK2 is critical for cyclic AMP (cAMP) relay and chemotaxis to cAMP and folate, but the details downstream of DdERK2 are unclear. To search for targets of DdERK2 in Dictyostelium discoideum, 32PO4(3-)-labeled protein samples from wild-type and Dderk2- cells were resolved by 2-dimensional electrophoresis. Mass spectrometry was used to identify a novel 45-kDa protein, named EppA (ERK2-dependent phosphoprotein A), as a substrate of DdERK2 in Dictyostelium. Mutation of potential DdERK2 phosphorylation sites demonstrated that phosphorylation on serine 250 of EppA is DdERK2 dependent. Changing serine 250 to alanine delayed development of Dictyostelium and reduced Dictyostelium chemotaxis to cAMP. Although overexpression of EppA had no significant effect on the development or chemotaxis of Dictyostelium, disruption of the eppA gene led to delayed development and reduced chemotactic responses to both cAMP and folate. Both eppA gene disruption and overexpression of EppA carrying the serine 250-to-alanine mutation led to inhibition of intracellular cAMP accumulation in response to chemoattractant cAMP, a pivotal process in Dictyostelium chemotaxis and development. Our studies indicate that EppA regulates extracellular cAMP-induced signal relay and chemotaxis of Dictyostelium.
Collapse
Affiliation(s)
- Songyang Chen
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York 10461, USA
| | | |
Collapse
|
46
|
Charest PG, Firtel RA. Feedback signaling controls leading-edge formation during chemotaxis. Curr Opin Genet Dev 2006; 16:339-47. [PMID: 16806895 DOI: 10.1016/j.gde.2006.06.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/09/2006] [Indexed: 01/17/2023]
Abstract
Chemotactic cells translate shallow chemoattractant gradients into a highly polarized intracellular response that includes the localized production of PI(3,4,5)P(3) on the side of the cell facing the highest chemoattractant concentration. Research over the past decade began to uncover the molecular mechanisms involved in this localized signal amplification controlling the leading edge of chemotaxing cells. These mechanisms have been shown to involve multiple positive feedback loops, in which the PI(3,4,5)P(3) signal amplifies itself independently of the original stimulus, as well as inhibitory signals that restrict PI(3,4,5)P(3) to the leading edge, thereby creating a steep intracellular PI(3,4,5)P(3) gradient. Molecules involved in positive feedback signaling at the leading edge include the small G-proteins Rac and Ras, phosphatidylinositol-3 kinase and F-actin, as part of interlinked feedback loops that lead to a robust production of PI(3,4,5)P(3).
Collapse
Affiliation(s)
- Pascale G Charest
- Division of Biological Sciences, and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|
47
|
Franca-Koh J, Kamimura Y, Devreotes P. Navigating signaling networks: chemotaxis in Dictyostelium discoideum. Curr Opin Genet Dev 2006; 16:333-8. [PMID: 16782326 DOI: 10.1016/j.gde.2006.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/08/2006] [Indexed: 01/21/2023]
Abstract
Studies of chemotaxis in the social amoeba Dictyostelium discoideum have revealed numerous conserved signaling networks that are activated by chemoattractants. In the presence of a uniformly distributed stimulus, these pathways are transiently activated, but in a gradient they are activated persistently and can be localized to either the front or the back of the cell. Recent studies have begun to elucidate how chemoattractant signaling regulates the three main components of chemotaxis: directional sensing, pseudopod extension, and polarization.
Collapse
Affiliation(s)
- Jonathan Franca-Koh
- Johns Hopkins University, School of Medicine, Department of Cell Biology, 725 North Wolfe Street, 114 WBSB, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
48
|
Sasaki AT, Firtel RA. Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur J Cell Biol 2006; 85:873-95. [PMID: 16740339 DOI: 10.1016/j.ejcb.2006.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Directed cell migration and cell polarity are crucial in many facets of biological processes. Cellular motility requires a complex array of signaling pathways, in which orchestrated cross-talk, a feedback loop, and multi-component signaling recur. Almost every signaling molecule requires several regulatory processes to be functionally activated, and a lack of a signaling molecule often leads to chemotaxis defects, suggesting an integral role for each component in the pathway. We outline our current understanding of the signaling event that regulates chemotaxis with an emphasis on recent findings associated with the Ras, PI3K, and target of rapamycin (TOR) pathways and the interplay of these pathways. Ras, PI3K, and TOR are known as key regulators of cellular growth. Deregulation of those pathways is associated with many human diseases, such as cancer, developmental disorders, and immunological deficiency. Recent studies in yeast, mammalian cells, and Dictyostelium discoideum reveal another critical role of Ras, PI3K, and TOR in regulating the actin cytoskeleton, cell polarity, and cellular movement. These findings shed light on the mechanism by which eukaryotic cells maintain cell polarity and directed cell movement, and also demonstrate that multiple steps in the signal transduction pathway coordinately regulate cell motility.
Collapse
Affiliation(s)
- Atsuo T Sasaki
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, Natural Sciences Building, Room 6316, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|
49
|
Abstract
The discovery in 1947 of directed cell movement in Dictyostelium discoideum quietly gave a birth to a new line of investigation into the molecular basis of chemotaxis. Some 60 years later, D. discoideum continues to be a key model system for the study of eukaryotic chemotaxis as well as an array of other important biological processes. As one of the most influential scientists, Guenther Gerisch has inspired several generations of researchers with his insightful and rigorous approaches applied to this model system. His studies have greatly contributed to current knowledge of many fundamental processes, such as cell-cell adhesion, phagocytosis, endocytosis, cytokinesis, cell signaling and chemotaxis. In this review, we wish to look back at the journey that has led to our current understanding of chemotaxis of eukaryotic cells.
Collapse
Affiliation(s)
- Tian Jin
- Chemotaxis Signal Section, Laboratories of Immunogenetics, NIAID, NIH, Rockville, MD 20852, USA.
| | | |
Collapse
|
50
|
Matsuoka S, Iijima M, Watanabe TM, Kuwayama H, Yanagida T, Devreotes PN, Ueda M. Single-molecule analysis of chemoattractant-stimulated membrane recruitment of a PH-domain-containing protein. J Cell Sci 2006; 119:1071-9. [PMID: 16507590 DOI: 10.1242/jcs.02824] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Molecular mechanisms of chemotactic response are highly conserved among many eukaryotic cells including human leukocytes and Dictyostelium discoideum cells. The cells can sense the differences in chemoattractant concentration across the cell body and respond by extending pseudopods from the cell side facing to a higher concentration. Pseudopod formation is regulated by binding of pleckstrin homology (PH)-domain-containing proteins to phosphatidylinositol 3,4,5-trisphosphates [PtdIns(3,4,5)P3] localized at the leading edge of chemotaxing cells. However, molecular mechanisms underlying dynamic features of a pseudopod have not been fully explained by the known properties of PH-domain-containing proteins. To investigate the mechanisms, we visualized single molecules of green fluorescent protein tagged to Crac (Crac-GFP), a PH-domain-containing protein in D. discoideum cells. Whereas populations of Crac molecules exhibited a stable steady-state localization at pseudopods, individual molecules bound transiently to PtdIns(3,4,5)P3 for approximately 120 milliseconds, indicating dynamic properties of the PH-domain-containing protein. Receptor stimulation did not alter the binding stability but regulated the number of bound PH-domain molecules by metabolism of PtdIns(3,4,5)P3. These results demonstrate that the steady-state localization of PH-domain-containing proteins at the leading edge of chemotaxing cells is dynamically maintained by rapid recycling of individual PH-domain-containing proteins. The short interaction between PH domains and PtdIns(3,4,5)P3 contributes to accurate and sensitive chemotactic movements through the dynamic redistributions. These dynamic properties might be a common feature of signaling components involved in chemotaxis.
Collapse
Affiliation(s)
- Satomi Matsuoka
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|