1
|
Nagar S, Mehta R, Kaur P, Sadia FZ, Reddy S, Olorunnimbe OR, Vancurova I, Vancura A. The yeast checkpoint kinase Dun1p represses transcription of RNR genes independently of catalytic activity or Rad53p during respiratory growth. J Biol Chem 2025; 301:108232. [PMID: 39880091 PMCID: PMC11914510 DOI: 10.1016/j.jbc.2025.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
One of the key events in DNA damage response is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs) required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid and glyoxylate cycles and gluconeogenesis. Dun1p, independently of its kinase activity or signaling from the upstream checkpoint kinase Rad53p, represses RNR2, RNR3, and RNR4 genes by maintaining Crt1p occupancy in the corresponding promoters. Consistently with the role of dNTPs in the regulation of mitochondrial DNA copy number, DUN1 inactivation elevates mitochondrial DNA copy number in acetate-grown cells. Together, our data reveal an unexpected role for Dun1p in transcriptional regulation of RNR2-4 and metabolic genes during growth on nonfermentable carbon source and suggest that Dun1p contributes to transcription regulation independently of its kinase activity as a structural component by binding to protein(s) involved in gene regulation.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Fatema Zohra Sadia
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Suprataptha Reddy
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | | | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
2
|
Siler J, Guo N, Liu Z, Qin Y, Bi X. γH2A/γH2AX Mediates DNA Damage-Specific Control of Checkpoint Signaling in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:2462. [PMID: 38473708 DOI: 10.3390/ijms25052462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
DNA lesions trigger DNA damage checkpoint (DDC) signaling which arrests cell cycle progression and promotes DNA damage repair. In Saccharomyces cerevisiae, phosphorylation of histone H2A (γH2A, equivalent to γH2AX in mammals) is an early chromatin mark induced by DNA damage that is recognized by a group of DDC and DNA repair factors. We find that γH2A negatively regulates the G2/M checkpoint in response to the genotoxin camptothecin, which is a DNA topoisomerase I poison. γH2A also suppresses DDC signaling induced by the DNA alkylating agent methyl methanesulfonate. These results differ from prior findings, which demonstrate positive or no roles of γH2A in DDC in response to other DNA damaging agents such as phleomycin and ionizing radiation, which suggest that γH2A has DNA damage-specific effects on DDC signaling. We also find evidence supporting the notion that γH2A regulates DDC signaling by mediating the competitive recruitment of the DDC mediator Rad9 and the DNA repair factor Rtt107 to DNA lesions. We propose that γH2A/γH2AX serves to create a dynamic balance between DDC and DNA repair that is influenced by the nature of DNA damage.
Collapse
Affiliation(s)
- Jasmine Siler
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Na Guo
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
- College of Food Science and Engineering, Jilin University, Changchun 130012, China
| | - Zhengfeng Liu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Yuhua Qin
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Xin Bi
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
3
|
Panessa GM, Tassoni-Tsuchida E, Pires MR, Felix RR, Jekabson R, de Souza-Pinto NC, da Cunha FM, Brandman O, Cussiol JRR. Opi1-mediated transcriptional modulation orchestrates genotoxic stress response in budding yeast. Genetics 2023; 225:iyad130. [PMID: 37440469 PMCID: PMC10691878 DOI: 10.1093/genetics/iyad130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
In budding yeast, the transcriptional repressor Opi1 regulates phospholipid biosynthesis by repressing expression of genes containing inositol-sensitive upstream activation sequences. Upon genotoxic stress, cells activate the DNA damage response to coordinate a complex network of signaling pathways aimed at preserving genomic integrity. Here, we reveal that Opi1 is important to modulate transcription in response to genotoxic stress. We find that cells lacking Opi1 exhibit hypersensitivity to genotoxins, along with a delayed G1-to-S-phase transition and decreased gamma-H2A levels. Transcriptome analysis using RNA sequencing reveals that Opi1 plays a central role in modulating essential biological processes during methyl methanesulfonate (MMS)-associated stress, including repression of phospholipid biosynthesis and transduction of mating signaling. Moreover, Opi1 induces sulfate assimilation and amino acid metabolic processes, such as arginine and histidine biosynthesis and glycine catabolism. Furthermore, we observe increased mitochondrial DNA instability in opi1Δ cells upon MMS treatment. Notably, we show that constitutive activation of the transcription factor Ino2-Ino4 is responsible for genotoxin sensitivity in Opi1-deficient cells, and the production of inositol pyrophosphates by Kcs1 counteracts Opi1 function specifically during MMS-induced stress. Overall, our findings highlight Opi1 as a critical sensor of genotoxic stress in budding yeast, orchestrating gene expression to facilitate appropriate stress responses.
Collapse
Affiliation(s)
- Giovanna Marques Panessa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Eduardo Tassoni-Tsuchida
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Marina Rodrigues Pires
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Rodrigo Rodrigues Felix
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Rafaella Jekabson
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | | | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - José Renato Rosa Cussiol
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900, Brazil
| |
Collapse
|
4
|
Nagar S, Mehta R, Kaur P, Liliah RT, Vancura A. Tolerance to replication stress requires Dun1p kinase and activation of the electron transport chain. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119382. [PMID: 36283478 PMCID: PMC10329874 DOI: 10.1016/j.bbamcr.2022.119382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
One of the key outcomes of activation of DNA replication checkpoint (DRC) or DNA damage checkpoint (DDC) is the increased synthesis of the deoxyribonucleoside triphosphates (dNTPs), which is a prerequisite for normal progression through the S phase and for effective DNA repair. We have recently shown that DDC increases aerobic metabolism and activates the electron transport chain (ETC) to elevate ATP production and dNTP synthesis by repressing transcription of histone genes, leading to globally altered chromatin architecture and increased transcription of genes encoding enzymes of tricarboxylic acid (TCA) cycle and the ETC. The aim of this study was to determine whether DRC activates ETC. We show here that DRC activates ETC by a checkpoint kinase Dun1p-dependent mechanism. DRC induces transcription of RNR1-4 genes and elevates mtDNA copy number. Inactivation of RRM3 or SGS1, two DNA helicases important for DNA replication, activates DRC but does not render cells dependent on ETC. However, fitness of rrm3Δ and sgs1Δ cells requires Dun1p. The slow growth of rrm3Δdun1Δ and sgs1Δdun1Δ cells can be suppressed by introducing sml1Δ mutation, indicating that the slow growth is due to low levels of dNTPs. Interestingly, inactivation of ETC in dun1Δ cells results in a synthetic growth defect that can be suppressed by sml1Δ mutation, suggesting that ETC is important for dNTP synthesis in the absence of Dun1p function. Together, our results reveal an unexpected connection between ETC, replication stress, and Dun1p kinase.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Roshini T Liliah
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
5
|
Meessen S, Najjar G, Azoitei A, Iben S, Bolenz C, Günes C. A Comparative Assessment of Replication Stress Markers in the Context of Telomerase. Cancers (Basel) 2022; 14:cancers14092205. [PMID: 35565334 PMCID: PMC9103842 DOI: 10.3390/cancers14092205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Genetic alterations such as oncogenic- or aneuploidy-inducing mutations can induce replication stress as a tumor protection mechansim. Previous data indicated that telomerase may ameliorate the cellular responses that induce replication stress. However, the mechanisms how this may occur are still unclear. In order to address this question, the accurate evaluation of replication stress in the presence and absence of telomerase is crucial. Therefore, we used telomerase negative normal human fibroblasts, as well as their telomerase positive counterparts to compare the suitability of three protein markers (pRPA2, γ-H2AX and 53BP1), which were previously reported to accumulate in response to harmful conditions leading to replication stress in cells. In summary, we find that pRPA2 is the most consistent and reliable marker for the detection of replication stress. Further, we demonstrated that the inhibition of the DNA-damage activated ATM and ATR kinases by specific small compounds impaired the accumulation of pRPA2 foci in the absence of telomerase. These data suggest that telomerase rescues the cells from replication stress upon supression of DNA damage induction by modulating the ATM and ATR signaling pathways, and may therefore support tumor formation of genetically unstable cells. Abstract Aberrant replication stress (RS) is a source of genome instability and has serious implications for cell survival and tumourigenesis. Therefore, the detection of RS and the identification of the underlying molecular mechanisms are crucial for the understanding of tumourigenesis. Currently, three protein markers—p33-phosphorylated replication protein A2 (pRPA2), γ-phosphorylated H2AX (γ-H2AX), and Tumor Protein P53 Binding Protein 1 (53BP1)—are frequently used to detect RS. However, to our knowledge, there is no report that compares their suitability for the detection of different sources of RS. Therefore, in this study, we evaluate the suitability of pRPA2, γ-H2AX, and 53BP1 for the detection of RS caused by different sources of RS. In addition, we examine their suitability as markers of the telomerase-mediated alleviation of RS. For these purposes, we use here telomerase-negative human fibroblasts (BJ) and their telomerase-immortalized counterparts (BJ-hTERT). Replication stress was induced by the ectopic expression of the oncogenic RAS mutant RASG12V (OI-RS), by the knockdown of ploidy-control genes ORP3 or MAD2 (AI-RS), and by treatment with hydrogen peroxide (ROS-induced RS). The level of RS was determined by immunofluorescence staining for pRPA2, γ-H2AX, and 53BP1. Evaluation of the staining results revealed that pRPA2- and γ-H2AX provide a significant and reliable assessment of OI-RS and AI-RS compared to 53BP1. On the other hand, 53BP1 and pRPA2 proved to be superior to γ-H2AX for the evaluation of ROS-induced RS. Moreover, the data showed that among the tested markers, pRPA2 is best suited to evaluate the telomerase-mediated suppression of all three types of RS. In summary, the data indicate that the choice of marker is important for the evaluation of RS activated through different conditions.
Collapse
Affiliation(s)
- Sabine Meessen
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
| | - Gregoire Najjar
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
| | - Sebastian Iben
- Department of Dermatology, Ulm University Hospital, 89081 Ulm, Germany;
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (S.M.); (G.N.); (A.A.); (C.B.)
- Correspondence: ; Tel.: +49-(0)731-500-58019; Fax: +49-(0)731-500-58093
| |
Collapse
|
6
|
Usui T, Shinohara A. Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to Spo11-Induced Double-Strand Breaks During Meiosis. Front Cell Dev Biol 2021; 9:635383. [PMID: 33842461 PMCID: PMC8027355 DOI: 10.3389/fcell.2021.635383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/04/2022] Open
Abstract
Exogenous double-strand breaks (DSBs) induce a DNA damage response during mitosis as well as meiosis. The DNA damage response is mediated by a cascade involving Mec1/Tel1 (ATR/ATM) and Rad53 (Chk2) kinases. Meiotic cells are programmed to form DSBs for the initiation of meiotic recombination. In budding yeast, Spo11-mediated meiotic DSBs activate Mec1/Tel1, but not Rad53; however, the mechanism underlying the insensitivity of Rad53 to meiotic DSBs remains largely unknown. In this study, we found that meiotic cells activate Rad53 in response to exogenous DSBs and that this activation is dependent on an epigenetic marker, Dot1-dependent histone H3K79 methylation, which becomes a scaffold of an Rad53 mediator, Rad9, an ortholog of 53BP1. In contrast, Rad9 is insensitive to meiotic programmed DSBs. This insensitiveness of Rad9 derives from its inability to bind to the DSBs. Indeed, artificial tethering of Rad9 to the meiotic DSBs activated Rad53. The artificial activation of Rad53 kinase in meiosis decreases the repair of meiotic DSBs. These results suggest that the suppression of Rad53 activation is a key event in initiating a meiotic program that repairs programmed DSBs.
Collapse
Affiliation(s)
- Takehiko Usui
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Abstract
Cell cycle checkpoints and DNA repair pathways contribute to maintaining genome integrity and are thought to be evolutionarily ancient and broadly conserved. For example, in the yeast Saccharomyces cerevisiae and humans, DNA damage induces activation of a checkpoint effector kinase, Rad53p (human homolog Chk2), to promote cell cycle arrest and transcription of DNA repair genes. Cell cycle checkpoints and DNA repair pathways contribute to maintaining genome integrity and are thought to be evolutionarily ancient and broadly conserved. For example, in the yeast Saccharomyces cerevisiae and humans, DNA damage induces activation of a checkpoint effector kinase, Rad53p (human homolog Chk2), to promote cell cycle arrest and transcription of DNA repair genes. However, recent studies have revealed variation in the DNA damage response networks of some fungi. For example, Shor et al. (mBio 11:e03044-20, 2020, https://doi.org/10.1128/mBio.03044-20) demonstrate that in comparison to S. cerevisiae, the fungal pathogen Candida glabrata has reduced activation of Rad53p in response to DNA damage. Consequently, some downstream targets that contribute to S. cerevisiae genome maintenance, such as DNA polymerases, are transcriptionally downregulated in C. glabrata. Downregulation of genome maintenance genes likely contributes to higher rates of mitotic failure and cell death in C. glabrata. This and other recent findings highlight evolutionary diversity in eukaryotic DNA damage responses.
Collapse
|
8
|
Shor E, Perlin DS. DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity. Curr Genet 2021; 67:439-445. [PMID: 33620543 DOI: 10.1007/s00294-021-01162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
How cells respond to DNA damage is key to maintaining genome integrity or facilitating genetic change. In fungi, DNA damage responses have been extensively characterized in the model budding yeast Saccharomyces cerevisiae, which is generally not pathogenic. However, it is not clear how closely these responses resemble those in fungal pathogens, in which genetic change plays an important role in the evolutionary arms race between pathogen and host and the evolution of antifungal drug resistance. A close relative of S. cerevisiae, Candida glabrata, is an opportunistic pathogen that displays high variability in chromosome structure among clinical isolates and rapidly evolves antifungal drug resistance. The mechanisms facilitating such genomic flexibility and evolvability in this organism are unknown. Recently we characterized the DNA damage response of C. glabrata and identified several features that distinguish it from the well characterized DNA damage response of S. cerevisiae. First, we discovered that, in contrast to the established paradigm, C. glabrata effector kinase Rad53 is not hyperphosphorylated upon DNA damage. We also uncovered evidence of an attenuated DNA damage checkpoint response, wherein in the presence of DNA damage C. glabrata cells did not accumulate in S-phase and proceeded with cell division, leading to aberrant mitoses and cell death. Finally, we identified evidence of transcriptional rewiring of the DNA damage response of C. glabrata relative to S. cerevisiae, including an upregulation of genes involved in mating and meiosis-processes that have not been reported in C. glabrata. Together, these results open new possibilities and raise tantalizing questions of how this major fungal pathogen facilitates genetic change.
Collapse
Affiliation(s)
- Erika Shor
- Center for Discovery and Innovation, Nutley, NJ, 07110, USA. .,Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Nutley, NJ, 07110, USA.,Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.,Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA
| |
Collapse
|
9
|
Abstract
In order to preserve genome integrity, all cells must mount appropriate responses to DNA damage, including slowing down or arresting the cell cycle to give the cells time to repair the damage and changing gene expression, for example to induce genes involved in DNA repair. The Rad53 protein kinase is a conserved central mediator of these responses in eukaryotic cells, and its extensive phosphorylation upon DNA damage is necessary for its activation and subsequent activity. DNA damage checkpoints are key guardians of genome integrity. Eukaryotic cells respond to DNA damage by triggering extensive phosphorylation of Rad53/CHK2 effector kinase, whereupon activated Rad53/CHK2 mediates further aspects of checkpoint activation, including cell cycle arrest and transcriptional changes. Budding yeast Candida glabrata, closely related to model eukaryote Saccharomyces cerevisiae, is an opportunistic pathogen characterized by high genetic diversity and rapid emergence of drug-resistant mutants. However, the mechanisms underlying this genetic variability are unclear. We used Western blotting and mass spectrometry to show that, unlike S. cerevisiae, C. glabrata cells exposed to DNA damage did not induce C. glabrata Rad53 (CgRad53) phosphorylation. Furthermore, flow cytometry analysis showed that, unlike S. cerevisiae, C. glabrata cells did not accumulate in S phase upon DNA damage. Consistent with these observations, time-lapse microscopy showed C. glabrata cells continuing to divide in the presence of DNA damage, resulting in mitotic errors and cell death. Finally, transcriptome sequencing (RNAseq) analysis revealed transcriptional rewiring of the DNA damage response in C. glabrata and identified several key protectors of genome stability upregulated by DNA damage in S. cerevisiae but downregulated in C. glabrata, including proliferating cell nuclear antigen (PCNA). Together, our results reveal a noncanonical fungal DNA damage response in C. glabrata, which may contribute to rapidly generating genetic change and drug resistance.
Collapse
|
10
|
Morafraile EC, Bugallo A, Carreira R, Fernández M, Martín-Castellanos C, Blanco MG, Segurado M. Exo1 phosphorylation inhibits exonuclease activity and prevents fork collapse in rad53 mutants independently of the 14-3-3 proteins. Nucleic Acids Res 2020; 48:3053-3070. [PMID: 32020204 PMCID: PMC7102976 DOI: 10.1093/nar/gkaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023] Open
Abstract
The S phase checkpoint is crucial to maintain genome stability under conditions that threaten DNA replication. One of its critical functions is to prevent Exo1-dependent fork degradation, and Exo1 is phosphorylated in response to different genotoxic agents. Exo1 seemed to be regulated by several post-translational modifications in the presence of replicative stress, but the specific contribution of checkpoint-dependent phosphorylation to Exo1 control and fork stability is not clear. We show here that Exo1 phosphorylation is Dun1-independent and Rad53-dependent in response to DNA damage or dNTP depletion, and in both situations Exo1 is similarly phosphorylated at multiple sites. To investigate the correlation between Exo1 phosphorylation and fork stability, we have generated phospho-mimic exo1 alleles that rescue fork collapse in rad53 mutants as efficiently as exo1-nuclease dead mutants or the absence of Exo1, arguing that Rad53-dependent phosphorylation is the mayor requirement to preserve fork stability. We have also shown that this rescue is Bmh1–2 independent, arguing that the 14-3-3 proteins are dispensable for fork stabilization, at least when Exo1 is downregulated. Importantly, our results indicated that phosphorylation specifically inhibits the 5' to 3'exo-nuclease activity, suggesting that this activity of Exo1 and not the flap-endonuclease, is the enzymatic activity responsible of the collapse of stalled replication forks in checkpoint mutants.
Collapse
Affiliation(s)
- Esther C Morafraile
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Raquel Carreira
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Fernández
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | | | - Miguel G Blanco
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.,Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
11
|
Villoria MT, Gutiérrez-Escribano P, Alonso-Rodríguez E, Ramos F, Merino E, Campos A, Montoya A, Kramer H, Aragón L, Clemente-Blanco A. PP4 phosphatase cooperates in recombinational DNA repair by enhancing double-strand break end resection. Nucleic Acids Res 2020; 47:10706-10727. [PMID: 31544936 PMCID: PMC6846210 DOI: 10.1093/nar/gkz794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
The role of Rad53 in response to a DNA lesion is central for the accurate orchestration of the DNA damage response. Rad53 activation relies on its phosphorylation by Mec1 and its own autophosphorylation in a manner dependent on the adaptor Rad9. While the mechanism behind Rad53 activation has been well documented, less is known about the processes that counteract its activity along the repair of a DNA adduct. Here, we describe that PP4 phosphatase is required to avoid Rad53 hyper-phosphorylation during the repair of a double-strand break, a process that impacts on the phosphorylation status of multiple factors involved in the DNA damage response. PP4-dependent Rad53 dephosphorylation stimulates DNA end resection by relieving the negative effect that Rad9 exerts over the Sgs1/Dna2 exonuclease complex. Consequently, elimination of PP4 activity affects resection and repair by single-strand annealing, defects that are bypassed by reducing Rad53 hyperphosphorylation. These results confirm that Rad53 phosphorylation is controlled by PP4 during the repair of a DNA lesion and demonstrate that the attenuation of its kinase activity during the initial steps of the repair process is essential to efficiently enhance recombinational DNA repair pathways that depend on long-range resection for their success.
Collapse
Affiliation(s)
- María Teresa Villoria
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Pilar Gutiérrez-Escribano
- Cell Cycle Group. Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Eva Merino
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Adrián Campos
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Alex Montoya
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Luis Aragón
- Cell Cycle Group. Medical Research Council, London Institute of Medical Science, Du Cane Road, London W12 0NN, UK
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Institute of Functional Biology and Genomics (IBFG), Spanish National Research Council (CSIC). University of Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| |
Collapse
|
12
|
Feng J, Islam A, Bean B, Feng J, Sparapani S, Shrivastava M, Goyal A, Omran RP, Mallick J, Whiteway M. Hof1 plays a checkpoint-related role in MMS-induced DNA damage response in Candida albicans. Mol Biol Cell 2020; 31:348-359. [PMID: 31940254 PMCID: PMC7183792 DOI: 10.1091/mbc.e19-06-0316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cells depend on robust DNA damage recognition and repair systems to maintain genomic integrity for survival in a mutagenic environment. In the pathogenic yeast Candida albicans, a subset of genes involved in the response to DNA damage-induced genome instability and morphological changes has been found to regulate virulence. To better understand the virulence-linked DNA repair network, we screened for methyl methane sulfonate (MMS) sensitivity within the GRACE conditional expression collection and identified 56 hits. One of these potential DNA damage repair-associated genes, a HOF1 conditional mutant, unexpectedly had a previously characterized function in cytokinesis. Deletion of HOF1 resulted in MMS sensitivity and genome instability, suggesting Hof1 acts in the DNA damage response. By probing genetic interactions with distinct DNA repair pathways, we found that Hof1 is genetically linked to the Rad53 pathway. Furthermore, Hof1 is down-regulated in a Rad53-dependent manner and its importance in the MMS response is reduced when Rad53 is overexpressed or when RAD4 or RAD23 is deleted. Together, this work expands our understanding of the C. albicans DNA repair network and uncovers interplay between the cytokinesis regulator Hof1 and the Rad53-mediated checkpoint.
Collapse
Affiliation(s)
- Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Amjad Islam
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642
| | - Bjorn Bean
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Jia Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | | | | | - Aashima Goyal
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | - Jaideep Mallick
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Malcolm Whiteway
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
13
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
14
|
Bu P, Nagar S, Bhagwat M, Kaur P, Shah A, Zeng J, Vancurova I, Vancura A. DNA damage response activates respiration and thereby enlarges dNTP pools to promote cell survival in budding yeast. J Biol Chem 2019; 294:9771-9786. [PMID: 31073026 DOI: 10.1074/jbc.ra118.007266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Previously, we found that decreased histone expression induces mitochondrial respiration, raising the question whether the DDR also stimulates respiration. Here, using oxygen consumption and ATP assays, RT-qPCR and ChIP-qPCR methods, and dNTP analyses, we show that DDR activation in the budding yeast Saccharomyces cerevisiae, either by genetic manipulation or by growth in the presence of genotoxic chemicals, induces respiration. We observed that this induction is conferred by reduced transcription of histone genes and globally decreased DNA nucleosome occupancy. This globally altered chromatin structure increased the expression of genes encoding enzymes of tricarboxylic acid cycle, electron transport chain, oxidative phosphorylation, elevated oxygen consumption, and ATP synthesis. The elevated ATP levels resulting from DDR-stimulated respiration drove enlargement of dNTP pools; cells with a defect in respiration failed to increase dNTP synthesis and exhibited reduced fitness in the presence of DNA damage. Together, our results reveal an unexpected connection between respiration and the DDR and indicate that the benefit of increased dNTP synthesis in the face of DNA damage outweighs possible cellular damage due to increased oxygen metabolism.
Collapse
Affiliation(s)
- Pengli Bu
- From the Departments of Biological Sciences and
| | | | | | | | - Ankita Shah
- Pharmaceutical Sciences, St. John's University, Queens, New York 11439
| | - Joey Zeng
- From the Departments of Biological Sciences and
| | | | | |
Collapse
|
15
|
Budding yeast Rtt107 prevents checkpoint hyperactivation after replicative stress by limiting DNA damage. DNA Repair (Amst) 2019; 74:1-16. [DOI: 10.1016/j.dnarep.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
|
16
|
Millan-Zambrano G, Santos-Rosa H, Puddu F, Robson SC, Jackson SP, Kouzarides T. Phosphorylation of Histone H4T80 Triggers DNA Damage Checkpoint Recovery. Mol Cell 2018; 72:625-635.e4. [PMID: 30454561 PMCID: PMC6242705 DOI: 10.1016/j.molcel.2018.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022]
Abstract
In response to genotoxic stress, cells activate a signaling cascade known as the DNA damage checkpoint (DDC) that leads to a temporary cell cycle arrest and activation of DNA repair mechanisms. Because persistent DDC activation compromises cell viability, this process must be tightly regulated. However, despite its importance, the mechanisms regulating DDC recovery are not completely understood. Here, we identify a DNA-damage-regulated histone modification in Saccharomyces cerevisiae, phosphorylation of H4 threonine 80 (H4T80ph), and show that it triggers checkpoint inactivation. H4T80ph is critical for cell survival to DNA damage, and its absence causes impaired DDC recovery and persistent cell cycle arrest. We show that, in response to genotoxic stress, p21-activated kinase Cla4 phosphorylates H4T80 to recruit Rtt107 to sites of DNA damage. Rtt107 displaces the checkpoint adaptor Rad9, thereby interrupting the checkpoint-signaling cascade. Collectively, our results indicate that H4T80ph regulates DDC recovery.
Collapse
Affiliation(s)
- Gonzalo Millan-Zambrano
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | - Helena Santos-Rosa
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Fabio Puddu
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Samuel C Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Tony Kouzarides
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
17
|
Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials. Stem Cells Int 2017; 2017:8920356. [PMID: 28751918 PMCID: PMC5511667 DOI: 10.1155/2017/8920356] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Human dental pulp stem cells (HDPSCs) are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white), an epoxy resin sealant (AH-Plus cement), and an MTA-based cement sealer (MTA-Fillapex). Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed.
Collapse
|
18
|
Dmowski M, Rudzka J, Campbell JL, Jonczyk P, Fijałkowska IJ. Mutations in the Non-Catalytic Subunit Dpb2 of DNA Polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint. PLoS Genet 2017; 13:e1006572. [PMID: 28107343 PMCID: PMC5291541 DOI: 10.1371/journal.pgen.1006572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 02/03/2017] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
To preserve genome integrity, the S-phase checkpoint senses damaged DNA or nucleotide depletion and when necessary, arrests replication progression and delays cell division. Previous studies, based on two pol2 mutants have suggested the involvement of DNA polymerase epsilon (Pol ε) in sensing DNA replication accuracy in Saccharomyces cerevisiae. Here we have studied the involvement of Pol ε in sensing proper progression of DNA replication, using a mutant in DPB2, the gene coding for a non-catalytic subunit of Pol ε. Under genotoxic conditions, the dpb2-103 cells progress through S phase faster than wild-type cells. Moreover, the Nrm1-dependent branch of the checkpoint, which regulates the expression of many replication checkpoint genes, is impaired in dpb2-103 cells. Finally, deletion of DDC1 in the dpb2-103 mutant is lethal supporting a model of strand-specific activation of the replication checkpoint. This lethality is suppressed by NRM1 deletion. We postulate that improper activation of the Nrm1-branch may explain inefficient replication checkpoint activation in Pol ε mutants. The viability of living organisms depends on the integrity of their genomes. Each cell has to constantly monitor DNA replication and coordinate it with cell division to avoid genomic instability. This is achieved through pathways known as cell cycle checkpoints. Therefore, upon replication perturbation, DNA synthesis slows down and cell division is delayed. For that, a specific signal is induced and propagated through a mechanism that have already been identified but still need investigations. We have isolated a mutated form of Dpb2, the essential subunit of DNA polymerase epsilon (Pol ε) holoenzyme. This mutated form of Pol ε impairs proper activation of the cellular response to replication stress. We show that yeast cells with mutations in the DPB2 gene fail to activate the Nrm1-regulated branch of the checkpoint, which controls numerous genes expressed in response to replication stress. Moreover, our results support the model of parallel activation of replication checkpoint from the leading and lagging DNA strands. This strongly suggests that Pol ε, the leading strand replicase, is involved in replication checkpoint activation from this strand. Our results contribute to the understanding of mechanisms of cellular response to replication stress, which are necessary to preserve genome stability.
Collapse
Affiliation(s)
- Michał Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
- * E-mail:
| | - Justyna Rudzka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| | - Judith L. Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA, United States of America
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| | - Iwona J. Fijałkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a, Warsaw, POLAND
| |
Collapse
|
19
|
Villa-Hernández S, Bueno A, Bermejo R. The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:395-419. [PMID: 29357068 DOI: 10.1007/978-981-10-6955-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.
Collapse
Affiliation(s)
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
20
|
Villa M, Cassani C, Gobbini E, Bonetti D, Longhese MP. Coupling end resection with the checkpoint response at DNA double-strand breaks. Cell Mol Life Sci 2016; 73:3655-63. [PMID: 27141941 PMCID: PMC11108263 DOI: 10.1007/s00018-016-2262-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/08/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
DNA double-strand breaks (DSBs) are a nasty form of damage that needs to be repaired to ensure genome stability. The DSB ends can undergo a strand-biased nucleolytic processing (resection) to generate 3'-ended single-stranded DNA (ssDNA) that channels DSB repair into homologous recombination. Generation of ssDNA also triggers the activation of the DNA damage checkpoint, which couples cell cycle progression with DSB repair. The checkpoint response is intimately linked to DSB resection, as some checkpoint proteins regulate the resection process. The present review will highlight recent works on the mechanism and regulation of DSB resection and its interplays with checkpoint activation/inactivation in budding yeast.
Collapse
Affiliation(s)
- Matteo Villa
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Diego Bonetti
- Institute of Molecular Biology gGmbH (IMB), 55128, Mainz, Germany
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
21
|
Almawi AW, Matthews LA, Larasati, Myrox P, Boulton S, Lai C, Moraes T, Melacini G, Ghirlando R, Duncker BP, Guarné A. 'AND' logic gates at work: Crystal structure of Rad53 bound to Dbf4 and Cdc7. Sci Rep 2016; 6:34237. [PMID: 27681475 PMCID: PMC5041073 DOI: 10.1038/srep34237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023] Open
Abstract
Forkhead-associated (FHA) domains are phosphopeptide recognition modules found in many signaling proteins. The Saccharomyces cerevisiae protein kinase Rad53 is a key regulator of the DNA damage checkpoint and uses its two FHA domains to interact with multiple binding partners during the checkpoint response. One of these binding partners is the Dbf4-dependent kinase (DDK), a heterodimer composed of the Cdc7 kinase and its regulatory subunit Dbf4. Binding of Rad53 to DDK, through its N-terminal FHA (FHA1) domain, ultimately inhibits DDK kinase activity, thereby preventing firing of late origins. We have previously found that the FHA1 domain of Rad53 binds simultaneously to Dbf4 and a phosphoepitope, suggesting that this domain functions as an 'AND' logic gate. Here, we present the crystal structures of the FHA1 domain of Rad53 bound to Dbf4, in the presence and absence of a Cdc7 phosphorylated peptide. Our results reveal how the FHA1 uses a canonical binding interface to recognize the Cdc7 phosphopeptide and a non-canonical interface to bind Dbf4. Based on these data we propose a mechanism to explain how Rad53 enhances the specificity of FHA1-mediated transient interactions.
Collapse
Affiliation(s)
- Ahmad W. Almawi
- Department of Biochemistry and Biomedical Sciences, ON, Canada
| | | | - Larasati
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Polina Myrox
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Stephen Boulton
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Christine Lai
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Trevor Moraes
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, ON, Canada
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, ON, Canada,
| |
Collapse
|
22
|
Analyses of Compact Trichinella Kinomes Reveal a MOS-Like Protein Kinase with a Unique N-Terminal Domain. G3-GENES GENOMES GENETICS 2016; 6:2847-56. [PMID: 27412987 PMCID: PMC5015942 DOI: 10.1534/g3.116.032961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Parasitic worms of the genus Trichinella (phylum Nematoda; class Enoplea) represent a complex of at least twelve taxa that infect a range of different host animals, including humans, around the world. They are foodborne, intracellular nematodes, and their life cycles differ substantially from those of other nematodes. The recent characterization of the genomes and transcriptomes of all twelve recognized taxa of Trichinella now allows, for the first time, detailed studies of their molecular biology. In the present study, we defined, curated, and compared the protein kinase complements (kinomes) of Trichinella spiralis and T. pseudospiralis using an integrated bioinformatic workflow employing transcriptomic and genomic data sets. We examined how variation in the kinome might link to unique aspects of Trichinella morphology, biology, and evolution. Furthermore, we utilized in silico structural modeling to discover and characterize a novel, MOS-like kinase with an unusual, previously undescribed N-terminal domain. Taken together, the present findings provide a basis for comparative investigations of nematode kinomes, and might facilitate the identification of Enoplea-specific intervention and diagnostic targets. Importantly, the in silico modeling approach assessed here provides an exciting prospect of being able to identify and classify currently unknown (orphan) kinases, as a foundation for their subsequent structural and functional investigation.
Collapse
|
23
|
Cussiol JR, Dibitetto D, Pellicioli A, Smolka MB. Slx4 scaffolding in homologous recombination and checkpoint control: lessons from yeast. Chromosoma 2016; 126:45-58. [PMID: 27165041 DOI: 10.1007/s00412-016-0600-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/07/2023]
Abstract
Homologous recombination-mediated DNA repair is essential for maintaining genome integrity. It is a multi-step process that involves resection of DNA ends, strand invasion, DNA synthesis and/or DNA end ligation, and finally, the processing of recombination intermediates such as Holliday junctions or other joint molecules. Over the last 15 years, it has been established that the Slx4 protein plays key roles in the processing of recombination intermediates, functioning as a scaffold to coordinate the action of structure-specific endonucleases. Recent work in budding yeast has uncovered unexpected roles for Slx4 in the initial step of DNA-end resection and in the modulation of DNA damage checkpoint signaling. Here we review these latest findings and discuss the emerging role of yeast Slx4 as an important coordinator of DNA damage signaling responses and a regulator of multiple steps in homologous recombination-mediated repair.
Collapse
Affiliation(s)
- José R Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diego Dibitetto
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
24
|
Kapoor P, Bao Y, Xiao J, Luo J, Shen J, Persinger J, Peng G, Ranish J, Bartholomew B, Shen X. Regulation of Mec1 kinase activity by the SWI/SNF chromatin remodeling complex. Genes Dev 2015; 29:591-602. [PMID: 25792597 PMCID: PMC4378192 DOI: 10.1101/gad.257626.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Kapoor et al. found that the SWI/SNF chromatin remodeling complex is capable of regulating the activity of S. cerevisiae checkpoint kinase Mec1. SWI/SNF can activate Mec1 kinase activity in the absence of chromatin or known activators such as Dbp11. The subunit requirement of SWI/SNF-mediated Mec1 regulation differs from that of SWI/SNF-mediated chromatin remodeling. These findings suggest that ATP-dependent chromatin remodeling complexes can regulate non-chromatin substrates such as a checkpoint kinase. ATP-dependent chromatin remodeling complexes alter chromatin structure through interactions with chromatin substrates such as DNA, histones, and nucleosomes. However, whether chromatin remodeling complexes have the ability to regulate nonchromatin substrates remains unclear. Saccharomyces cerevisiae checkpoint kinase Mec1 (ATR in mammals) is an essential master regulator of genomic integrity. Here we found that the SWI/SNF chromatin remodeling complex is capable of regulating Mec1 kinase activity. In vivo, Mec1 activity is reduced by the deletion of Snf2, the core ATPase subunit of the SWI/SNF complex. SWI/SNF interacts with Mec1, and cross-linking studies revealed that the Snf2 ATPase is the main interaction partner for Mec1. In vitro, SWI/SNF can activate Mec1 kinase activity in the absence of chromatin or known activators such as Dpb11. The subunit requirement of SWI/SNF-mediated Mec1 regulation differs from that of SWI/SNF-mediated chromatin remodeling. Functionally, SWI/SNF-mediated Mec1 regulation specifically occurs in S phase of the cell cycle. Together, these findings identify a novel regulator of Mec1 kinase activity and suggest that ATP-dependent chromatin remodeling complexes can regulate nonchromatin substrates such as a checkpoint kinase.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Yunhe Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Jing Xiao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | - Jianfeng Shen
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jim Persinger
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Xuetong Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA;
| |
Collapse
|
25
|
Termination of Replication Stress Signaling via Concerted Action of the Slx4 Scaffold and the PP4 Phosphatase. Genetics 2015; 201:937-49. [PMID: 26362319 DOI: 10.1534/genetics.115.181479] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022] Open
Abstract
In response to replication stress, signaling mediated by DNA damage checkpoint kinases protects genome integrity. However, following repair or bypass of DNA lesions, checkpoint signaling needs to be terminated for continued cell cycle progression and proliferation. In budding yeast, the PP4 phosphatase has been shown to play a key role in preventing hyperactivation of the checkpoint kinase Rad53. In addition, we recently uncovered a phosphatase-independent mechanism for downregulating Rad53 in which the DNA repair scaffold Slx4 decreases engagement of the checkpoint adaptor Rad9 at DNA lesions. Here we reveal that proper termination of checkpoint signaling following the bypass of replication blocks imposed by alkylated DNA adducts requires the concerted action of these two fundamentally distinct mechanisms of checkpoint downregulation. Cells lacking both SLX4 and the PP4-subunit PPH3 display a synergistic increase in Rad53 signaling and are exquisitely sensitive to the DNA alkylating agent methyl methanesulfonate, which induces replication blocks and extensive formation of chromosomal linkages due to template switching mechanisms required for fork bypass. Rad53 hypersignaling in these cells seems to converge to a strong repression of Mus81-Mms4, the endonuclease complex responsible for resolving chromosomal linkages, thus explaining the selective sensitivity of slx4Δ pph3Δ cells to alkylation damage. Our results support a model in which Slx4 acts locally to downregulate Rad53 activation following fork bypass, while PP4 acts on pools of active Rad53 that have diffused from the site of lesions. We propose that the proper spatial coordination of the Slx4 scaffold and PP4 action is crucial to allow timely activation of Mus81-Mms4 and, therefore, proper chromosome segregation.
Collapse
|
26
|
Simpson-Lavy KJ, Bronstein A, Kupiec M, Johnston M. Cross-Talk between Carbon Metabolism and the DNA Damage Response in S. cerevisiae. Cell Rep 2015; 12:1865-75. [PMID: 26344768 DOI: 10.1016/j.celrep.2015.08.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Yeast cells with DNA damage avoid respiration, presumably because products of oxidative metabolism can be harmful to DNA. We show that DNA damage inhibits the activity of the Snf1 (AMP-activated) protein kinase (AMPK), which activates expression of genes required for respiration. Glucose and DNA damage upregulate SUMOylation of Snf1, catalyzed by the SUMO E3 ligase Mms21, which inhibits SNF1 activity. The DNA damage checkpoint kinases Mec1/ATR and Tel1/ATM, as well as the nutrient-sensing protein kinase A (PKA), regulate Mms21 activity toward Snf1. Mec1 and Tel1 are required for two SNF1-regulated processes-glucose sensing and ADH2 gene expression-even without exogenous genotoxic stress. Our results imply that inhibition of Snf1 by SUMOylation is a mechanism by which cells lower their respiration in response to DNA damage. This raises the possibility that activation of DNA damage checkpoint mechanisms could contribute to aerobic fermentation (Warburg effect), a hallmark of cancer cells.
Collapse
Affiliation(s)
- Kobi J Simpson-Lavy
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, 12801 E 17(th) Avenue, Aurora, CO 80045, USA; Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel.
| | - Alex Bronstein
- Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel
| | - Martin Kupiec
- Tel Aviv University, Department of Molecular Microbiology and Biotechnology, Haim Levanon Street, Tel Aviv 6997801, Israel
| | - Mark Johnston
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, 12801 E 17(th) Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
27
|
Ogi H, Goto GH, Ghosh A, Zencir S, Henry E, Sugimoto K. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition. Mol Biol Cell 2015; 26:3480-8. [PMID: 26246601 PMCID: PMC4591692 DOI: 10.1091/mbc.e15-05-0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/29/2015] [Indexed: 02/04/2023] Open
Abstract
Two large phosphatidylinositol 3-kinase-related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins.
Collapse
Affiliation(s)
- Hiroo Ogi
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Greicy H Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Avik Ghosh
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Sevil Zencir
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Everett Henry
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103 )
| |
Collapse
|
28
|
Phosphorylation-Dependent Enhancement of Rad53 Kinase Activity through the INO80 Chromatin Remodeling Complex. Mol Cell 2015; 58:863-9. [PMID: 25959398 DOI: 10.1016/j.molcel.2015.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 11/23/2022]
Abstract
ATP-dependent chromatin remodeling complexes such as INO80 have been implicated in checkpoint regulation in response to DNA damage. However, how chromatin remodeling complexes regulate DNA damage checkpoints remain unclear. Here, we identified a mechanism of regulating checkpoint effector kinase Rad53 through a direct interaction with the INO80 chromatin remodeling complex. Rad53 is a key checkpoint kinase downstream of Mec1. Mec1/Tel1 phosphorylates the Ies4 subunit of the INO80 complex in response to DNA damage. We find that the phosphorylated Ies4 binds to the N-terminal FHA domain of Rad53. In vitro, INO80 can activate Rad53 kinase activity in an Ies4-phosphorylation-dependent manner in the absence of known activators such as Rad9. In vivo, Ies4 and Rad9 function synergistically to activate Rad53. These findings establish a direct connection between ATP-dependent chromatin remodeling complexes and checkpoint regulation.
Collapse
|
29
|
Meas R, Smerdon MJ, Wyrick JJ. The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae. Nucleic Acids Res 2015; 43:4990-5001. [PMID: 25897129 PMCID: PMC4446432 DOI: 10.1093/nar/gkv372] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
Histone amino-terminal tails (N-tails) are required for cellular resistance to DNA damaging agents; therefore, we examined the role of histone N-tails in regulating DNA damage response pathways in Saccharomyces cerevisiae. Combinatorial deletions reveal that the H2A and H3 N-tails are important for the removal of MMS-induced DNA lesions due to their role in regulating the basal and MMS-induced expression of DNA glycosylase Mag1. Furthermore, overexpression of Mag1 in a mutant lacking the H2A and H3 N-tails rescues base excision repair (BER) activity but not MMS sensitivity. We further show that the H3 N-tail functions in the Rad9/Rad53 DNA damage signaling pathway, but this function does not appear to be the primary cause of MMS sensitivity of the double tailless mutants. Instead, epistasis analyses demonstrate that the tailless H2A/H3 phenotypes are in the RAD18 epistasis group, which regulates postreplication repair. We observed increased levels of ubiquitylated PCNA and significantly lower mutation frequency in the tailless H2A/H3 mutant, indicating a defect in postreplication repair. In summary, our data identify novel roles of the histone H2A and H3 N-tails in (i) regulating the expression of a critical BER enzyme (Mag1), (ii) supporting efficient DNA damage signaling and (iii) facilitating postreplication repair.
Collapse
Affiliation(s)
- Rithy Meas
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| |
Collapse
|
30
|
Cussiol JR, Jablonowski CM, Yimit A, Brown GW, Smolka MB. Dampening DNA damage checkpoint signalling via coordinated BRCT domain interactions. EMBO J 2015; 34:1704-17. [PMID: 25896509 DOI: 10.15252/embj.201490834] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/27/2015] [Indexed: 11/09/2022] Open
Abstract
In response to DNA damage, checkpoint signalling protects genome integrity at the cost of repressing cell cycle progression and DNA replication. Mechanisms for checkpoint down-regulation are therefore necessary for proper cellular proliferation. We recently uncovered a phosphatase-independent mechanism for dampening checkpoint signalling, where the checkpoint adaptor Rad9 is counteracted by the repair scaffolds Slx4-Rtt107. Here, we establish the molecular requirements for this new mode of checkpoint regulation. We engineered a minimal multi-BRCT-domain (MBD) module that recapitulates the action of Slx4-Rtt107 in checkpoint down-regulation. MBD mimics the damage-induced Dpb11-Slx4-Rtt107 complex by synergistically interacting with lesion-specific phospho-sites in Ddc1 and H2A. We propose that efficient recruitment of Dpb11-Slx4-Rtt107 or MBD via a cooperative 'two-site-docking' mechanism displaces Rad9. MBD also interacts with the Mus81 nuclease following checkpoint dampening, suggesting a spatio-temporal coordination of checkpoint signalling and DNA repair via a combinatorial mode of BRCT-domains interactions.
Collapse
Affiliation(s)
- José R Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Carolyn M Jablonowski
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Askar Yimit
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Donnelly Centre and Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Interplay between histone H3 lysine 56 deacetylation and chromatin modifiers in response to DNA damage. Genetics 2015; 200:185-205. [PMID: 25786853 DOI: 10.1534/genetics.115.175919] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/12/2015] [Indexed: 01/23/2023] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56Ac) is present in newly synthesized histones deposited throughout the genome during DNA replication. The sirtuins Hst3 and Hst4 deacetylate H3K56 after S phase, and virtually all histone H3 molecules are K56 acetylated throughout the cell cycle in hst3∆ hst4∆ mutants. Failure to deacetylate H3K56 causes thermosensitivity, spontaneous DNA damage, and sensitivity to replicative stress via molecular mechanisms that remain unclear. Here we demonstrate that unlike wild-type cells, hst3∆ hst4∆ cells are unable to complete genome duplication and accumulate persistent foci containing the homologous recombination protein Rad52 after exposure to genotoxic drugs during S phase. In response to replicative stress, cells lacking Hst3 and Hst4 also displayed intense foci containing the Rfa1 subunit of the single-stranded DNA binding protein complex RPA, as well as persistent activation of DNA damage-induced kinases. To investigate the basis of these phenotypes, we identified histone point mutations that modulate the temperature and genotoxic drug sensitivity of hst3∆ hst4∆ cells. We found that reducing the levels of histone H4 lysine 16 acetylation or H3 lysine 79 methylation partially suppresses these sensitivities and reduces spontaneous and genotoxin-induced activation of the DNA damage-response kinase Rad53 in hst3∆ hst4∆ cells. Our data further suggest that elevated DNA damage-induced signaling significantly contributes to the phenotypes of hst3∆ hst4∆ cells. Overall, these results outline a novel interplay between H3K56Ac, H3K79 methylation, and H4K16 acetylation in the cellular response to DNA damage.
Collapse
|
32
|
The DNA damage response and checkpoint adaptation in Saccharomyces cerevisiae: distinct roles for the replication protein A2 (Rfa2) N-terminus. Genetics 2015; 199:711-27. [PMID: 25595672 PMCID: PMC4349066 DOI: 10.1534/genetics.114.173211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to DNA damage, two general but fundamental processes occur in the cell: (1) a DNA lesion is recognized and repaired, and (2) concomitantly, the cell halts the cell cycle to provide a window of opportunity for repair to occur. An essential factor for a proper DNA-damage response is the heterotrimeric protein complex Replication Protein A (RPA). Of particular interest is hyperphosphorylation of the 32-kDa subunit, called RPA2, on its serine/threonine-rich amino (N) terminus following DNA damage in human cells. The unstructured N-terminus is often referred to as the phosphorylation domain and is conserved among eukaryotic RPA2 subunits, including Rfa2 in Saccharomyces cerevisiae. An aspartic acid/alanine-scanning and genetic interaction approach was utilized to delineate the importance of this domain in budding yeast. It was determined that the Rfa2 N-terminus is important for a proper DNA-damage response in yeast, although its phosphorylation is not required. Subregions of the Rfa2 N-terminus important for the DNA-damage response were also identified. Finally, an Rfa2 N-terminal hyperphosphorylation-mimetic mutant behaves similarly to another Rfa1 mutant (rfa1-t11) with respect to genetic interactions, DNA-damage sensitivity, and checkpoint adaptation. Our data indicate that post-translational modification of the Rfa2 N-terminus is not required for cells to deal with "repairable" DNA damage; however, post-translational modification of this domain might influence whether cells proceed into M-phase in the continued presence of unrepaired DNA lesions as a "last-resort" mechanism for cell survival.
Collapse
|
33
|
Hatem E, Berthonaud V, Dardalhon M, Lagniel G, Baudouin-Cornu P, Huang ME, Labarre J, Chédin S. Glutathione is essential to preserve nuclear function and cell survival under oxidative stress. Free Radic Biol Med 2014; 67:103-14. [PMID: 24145121 DOI: 10.1016/j.freeradbiomed.2013.10.807] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 12/17/2022]
Abstract
Glutathione (GSH) is considered the most important redox buffer of the cell. To better characterize its essential function during oxidative stress conditions, we studied the physiological response of H2O2-treated yeast cells containing various amounts of GSH. We showed that the transcriptional response of GSH-depleted cells is severely impaired, despite an efficient nuclear accumulation of the transcription factor Yap1. Moreover, oxidative stress generates high genome instability in GSH-depleted cells, but does not activate the checkpoint kinase Rad53. Surprisingly, scarce amounts of intracellular GSH are sufficient to preserve cell viability under H2O2 treatment. In these cells, oxidative stress still causes the accumulation of oxidized proteins and the inactivation of the translational activity, but nuclear components and activities are protected against oxidative injury. We conclude that the essential role of GSH is to preserve nuclear function, allowing cell survival and growth resumption after oxidative stress release. We propose that cytosolic proteins are part of a protective machinery that shields the nucleus by scavenging reactive oxygen species before they can cross the nuclear membrane.
Collapse
Affiliation(s)
- Elie Hatem
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Véronique Berthonaud
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Michèle Dardalhon
- CNRS, Institut Curie, UMR3348 "Genotoxic Stress and Cancer," F-91405 Orsay, France
| | - Gilles Lagniel
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Peggy Baudouin-Cornu
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Meng-Er Huang
- CNRS, Institut Curie, UMR3348 "Genotoxic Stress and Cancer," F-91405 Orsay, France
| | - Jean Labarre
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France
| | - Stéphane Chédin
- CEA, iBiTecS, F-91191 Gif-sur-Yvette, France; CNRS, FRE3377, F-91191 Gif-sur-Yvette, France; Université Paris-Sud, FRE3377, F-91191 Gif-sur-Yvette, France.
| |
Collapse
|
34
|
Schroeder EA, Shadel GS. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan. Mech Ageing Dev 2013; 135:41-9. [PMID: 24373996 DOI: 10.1016/j.mad.2013.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 01/09/2023]
Abstract
Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal.
Collapse
Affiliation(s)
- Elizabeth A Schroeder
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
35
|
Chen ESW, Hoch NC, Wang SC, Pellicioli A, Heierhorst J, Tsai MD. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo. Mol Cell Proteomics 2013; 13:551-65. [PMID: 24302356 PMCID: PMC3916653 DOI: 10.1074/mcp.m113.034058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cell cycle checkpoint kinases play central roles in the genome maintenance of eukaryotes. Activation of the yeast checkpoint kinase Rad53 involves Rad9 or Mrc1 adaptor-mediated phospho-priming by Mec1 kinase, followed by auto-activating phosphorylation within its activation loop. However, the mechanisms by which these adaptors regulate priming phosphorylation of specific sites and how this then leads to Rad53 activation remain poorly understood. Here we used quantitative mass spectrometry to delineate the stepwise phosphorylation events in the activation of endogenous Rad53 in response to S phase alkylation DNA damage, and we show that the two Rad9 and Mrc1 adaptors, the four N-terminal Mec1-target TQ sites of Rad53 (Rad53-SCD1), and Rad53-FHA2 coordinate intimately for optimal priming phosphorylation to support substantial Rad53 auto-activation. Rad9 or Mrc1 alone can mediate surprisingly similar Mec1 target site phosphorylation patterns of Rad53, including previously undetected tri- and tetraphosphorylation of Rad53-SCD1. Reducing the number of TQ motifs turns the SCD1 into a proportionally poorer Mec1 target, which then requires the presence of both Mrc1 and Rad9 for sufficient priming and auto-activation. The phosphothreonine-interacting Rad53-FHA domains, particularly FHA2, regulate phospho-priming by interacting with the checkpoint mediators but do not seem to play a major role in the phospho-SCD1-dependent auto-activation step. Finally, mutation of all four SCD1 TQ motifs greatly reduces Rad53 activation but does not eliminate it, and residual Rad53 activity in this mutant is dependent on Rad9 but not Mrc1. Altogether, our results provide a paradigm for how phosphorylation site clusters and checkpoint mediators can be involved in the regulation of signaling relay in protein kinase cascades in vivo and elucidate an SCD1-independent Rad53 auto-activation mechanism through the Rad9 pathway. The work also demonstrates the power of mass spectrometry for in-depth analyses of molecular mechanisms in cellular signaling in vivo.
Collapse
Affiliation(s)
- Eric S-W Chen
- Institute of Biological Chemistry, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Matthews LA, Guarné A. Dbf4: the whole is greater than the sum of its parts. Cell Cycle 2013; 12:1180-8. [PMID: 23549174 PMCID: PMC3674083 DOI: 10.4161/cc.24416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/22/2013] [Indexed: 12/29/2022] Open
Abstract
Together with cyclin-dependent kinases, the Dbf4-dependent kinase (DDK) is essential to activate the Mcm2-7 helicase and, hence, initiate DNA replication in eukaryotes. Beyond its role as the regulatory subunit of the DDK complex, the Dbf4 protein also regulates the activity of other cell cycle kinases to mediate the checkpoint response and prevent premature mitotic exit under stress. Two features that are unusual in DNA replication proteins characterize Dbf4. The first is its evolutionary divergence; the second is how its conserved motifs are combined to form distinct functional units. This structural plasticity appears to be at odds with the conserved functions of Dbf4. In this review, we summarize recent genetic, biochemical and structural work delineating the multiple interactions mediated by Dbf4 and its various functions during the cell cycle. We also discuss how the limited sequence conservation of Dbf4 may be an advantage to regulate the activities of multiple cell cycle kinases.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
37
|
Catalano A, O'Day DH. Rad53 homologue forkhead-associated kinase A (FhkA) and Ca2+-binding protein 4a (CBP4a) are nucleolar proteins that differentially redistribute during mitosis in Dictyostelium. Cell Div 2013; 8:4. [PMID: 23587254 PMCID: PMC3637376 DOI: 10.1186/1747-1028-8-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND During mitosis most nucleolar proteins redistribute to other locales providing an opportunity to study the relationship between nucleolar protein localization and function. Dictyostelium is a model organism for the study of several fundamental biological processes and human diseases but only two nucleolar proteins have been studied during mitosis: NumA1 and Snf12. Both of them are linked to the cell cycle. To acquire a better understanding of nucleolar protein localization and dynamics in Dictyostelium we studied the nucleolar localization of two additional proteins during mitosis: Snf12-linked forkhead-associated kinase A (FhkA), which is involved in the cell cycle, and Ca2+-binding protein 4a (CBP4a), which is a binding partner of NumA1. METHODS Polyclonal antibodies were produced in-house. Cells were fixed and probed with either anti-FhkA or anti-CBP4a in order to determine cellular localization during interphase and throughout the stages of mitosis. Colocalization with DAPI nuclear stain allowed us to determine the location of the nucleus and nucleolus while colocalization with anti-α-tubulin allowed us to determine the cell cycle stage. RESULTS Here we verify two novel nucleolar proteins, Rad53 homologue FhkA which localized around the edge of the nucleolus and CBP4a which was detected throughout the entire nucleolus. Treatment with the Ca2+ chelator BAPTA (5 mM) showed that the nucleolar localization of CBP4a is Ca2+-dependent. In response to actinomycin D (0.05 mg/mL) CBP4a disappeared from the nucleolus while FhkA protruded from the nucleus, eventually pinching off as cytoplasmic circles. FhkA and CBP4a redistributed differently during mitosis. FhkA redistributed throughout the entire cell and at the nuclear envelope region from prometaphase through telophase. In contrast, during prometaphase CBP4a relocated to many large, discrete "CBP4a islands" throughout the nucleoplasm. Two larger "CBP4a islands" were also detected specifically at the metaphase plate region. CONCLUSIONS FhkA and CBP4a represent the sixth and seventh nucleolar proteins that have been verified to date in Dictyostelium and the third and fourth studied during mitosis. The protein-specific distributions of all of these nucleolar proteins during interphase and mitosis provide unique insight into nucleolar protein dynamics in this model organism setting the stage for future work.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord st,, Toronto, ON M5S 3G5, Canada.
| | | |
Collapse
|
38
|
Abreu CM, Kumar R, Hamilton D, Dawdy AW, Creavin K, Eivers S, Finn K, Balsbaugh JL, O'Connor R, Kiely PA, Shabanowitz J, Hunt DF, Grenon M, Lowndes NF. Site-specific phosphorylation of the DNA damage response mediator rad9 by cyclin-dependent kinases regulates activation of checkpoint kinase 1. PLoS Genet 2013; 9:e1003310. [PMID: 23593009 PMCID: PMC3616908 DOI: 10.1371/journal.pgen.1003310] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/24/2012] [Indexed: 01/05/2023] Open
Abstract
The mediators of the DNA damage response (DDR) are highly phosphorylated by kinases that control cell proliferation, but little is known about the role of this regulation. Here we show that cell cycle phosphorylation of the prototypical DDR mediator Saccharomyces cerevisiae Rad9 depends on cyclin-dependent kinase (CDK) complexes. We find that a specific G2/M form of Cdc28 can phosphorylate in vitro the N-terminal region of Rad9 on nine consensus CDK phosphorylation sites. We show that the integrity of CDK consensus sites and the activity of Cdc28 are required for both the activation of the Chk1 checkpoint kinase and its interaction with Rad9. We have identified T125 and T143 as important residues in Rad9 for this Rad9/Chk1 interaction. Phosphorylation of T143 is the most important feature promoting Rad9/Chk1 interaction, while the much more abundant phosphorylation of the neighbouring T125 residue impedes the Rad9/Chk1 interaction. We suggest a novel model for Chk1 activation where Cdc28 regulates the constitutive interaction of Rad9 and Chk1. The Rad9/Chk1 complex is then recruited at sites of DNA damage where activation of Chk1 requires additional DDR–specific protein kinases. Human cells activate the DNA damage response (DDR) to repair DNA damage and to prevent cells with DNA damage from proliferating. Alterations to the DDR are strongly implicated in the development of cancer. Using the budding yeast model system, we have studied how the regulation of the key DDR component Rad9 is integrated into cell cycle control. The cyclin-dependent kinase Cdc28 that regulates the yeast cell cycle also extensively phosphorylates Rad9 during cell cycle progression. We show here that Cdc28 controls Rad9 function in the activation of the important downstream DNA damage effector kinase Chk1. Two sites of phosphorylation in the N-terminus of Rad9 are crucial for the physical interaction between Rad9 and Chk1 regulated by Cdc28. We propose a novel model for Chk1 activation whereby a subset of Rad9 and Chk1 interacts constitutively in the absence of DNA damage. The Rad9/Chk1 complex is recruited to sites of DNA damage where activation of Chk1 involves additional DDR–specific protein kinases. Human cells contain multiple Rad9-like proteins that are also known to be cell cycle phosphorylated in the absence of exogenous DNA damage, suggesting that our observations may have important implications for DDR regulation in human cells.
Collapse
Affiliation(s)
- Carla Manuela Abreu
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Ramesh Kumar
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Danielle Hamilton
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Andrew William Dawdy
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kevin Creavin
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Sarah Eivers
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Karen Finn
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
| | - Jeremy Lynn Balsbaugh
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rosemary O'Connor
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Patrick A. Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Muriel Grenon
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
- * E-mail: (MG); (NFL)
| | - Noel Francis Lowndes
- Centre for Chromosome Biology, School of Natural Science, National University of Ireland Galway, Galway, Ireland
- * E-mail: (MG); (NFL)
| |
Collapse
|
39
|
Jossen R, Bermejo R. The DNA damage checkpoint response to replication stress: A Game of Forks. Front Genet 2013; 4:26. [PMID: 23493417 PMCID: PMC3595514 DOI: 10.3389/fgene.2013.00026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 12/23/2022] Open
Abstract
Conditions challenging replication fork progression, collectively referred to as replication stress, represent a major source of genomic instability and are associated to cancer onset. The replication checkpoint, a specialized branch of the DNA damage checkpoint, monitors fork problems, and triggers a cellular response aimed at preserving genome integrity. Here, we review the mechanisms by which the replication checkpoint monitors and responds to replication stress, focusing on the checkpoint-mediated pathways contributing to protect replication fork integrity. We discuss how cells achieve checkpoint signaling inactivation once replication stress is overcome and how a failure to timely revert checkpoint-mediated changes in cellular physiology might impact on replication dynamics and genome integrity. We also highlight the checkpoint function as an anti-cancer barrier preventing cells malignant transformation following oncogene-induced replication stress.
Collapse
Affiliation(s)
- Rachel Jossen
- Instituto de Biología Funcional y Genómica, CSIC/USAL Salamanca, Spain
| | | |
Collapse
|
40
|
Saccharomyces cerevisiae as a model system to study the response to anticancer agents. Cancer Chemother Pharmacol 2012; 70:491-502. [PMID: 22851206 DOI: 10.1007/s00280-012-1937-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
The development of new strategies for cancer therapeutics is indispensable for the improvement of standard protocols and the creation of other possibilities in cancer treatment. Yeast models have been employed to study numerous molecular aspects directly related to cancer development, as well as to determine the genetic contexts associated with anticancer drug sensitivity or resistance. The budding yeast Saccharomyces cerevisiae presents conserved cellular processes with high homology to humans, and it is a rapid, inexpensive and efficient compound screening tool. However, yeast models are still underused in cancer research and for screening of antineoplastic agents. Here, the employment of S. cerevisiae as a model system to anticancer research is discussed and exemplified. Focusing on the important determinants in genomic maintenance and cancer development, including DNA repair, cell cycle control and epigenetics, this review proposes the use of mutant yeast panels to mimic cancer phenotypes, screen and study tumor features and synthetic lethal interactions. Finally, the benefits and limitations of the yeast model are highlighted, as well as the strategies to overcome S. cerevisiae model limitations.
Collapse
|
41
|
Matthews LA, Jones DR, Prasad AA, Duncker BP, Guarné A. Saccharomyces cerevisiae Dbf4 has unique fold necessary for interaction with Rad53 kinase. J Biol Chem 2011; 287:2378-87. [PMID: 22130670 DOI: 10.1074/jbc.m111.233973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dbf4 is a conserved eukaryotic protein that functions as the regulatory subunit of the Dbf4-dependent kinase (DDK) complex. DDK plays essential roles in DNA replication initiation and checkpoint activation. During the replication checkpoint, Saccharomyces cerevisiae Dbf4 is phosphorylated in a Rad53-dependent manner, and this, in turn, inhibits initiation of replication at late origins. We have determined the minimal region of Dbf4 required for the interaction with the checkpoint kinase Rad53 and solved its crystal structure. The core of this fragment of Dbf4 folds as a BRCT domain, but it includes an additional N-terminal helix unique to Dbf4. Mutation of the residues that anchor this helix to the domain core abolish the interaction between Dbf4 and Rad53, indicating that this helix is an integral element of the domain. The structure also reveals that previously characterized Dbf4 mutants with checkpoint phenotypes destabilize the domain, indicating that its structural integrity is essential for the interaction with Rad53. Collectively, these results allow us to propose a model for the association between Dbf4 and Rad53.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
42
|
Activation of protein kinase Tel1 through recognition of protein-bound DNA ends. Mol Cell Biol 2011; 31:1959-71. [PMID: 21402778 DOI: 10.1128/mcb.05157-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Double-strand breaks (DSBs) in chromosomal DNA elicit a rapid signaling response through the ATM protein kinase. ATM corresponds to Tel1 in budding yeast. Here we show that the catalytic activity of Tel1 is altered by protein binding at DNA ends via the Mre11-Rad50-Xrs2 (MRX) complex. Like ATM, Tel1 is activated through interaction with the MRX complex and DNA ends. In vivo, Tel1 activation is enhanced in sae2Δ or mre11-3 mutants after camptothecin treatment; both of these mutants are defective in the removal of topoisomerase I from DNA. In contrast, an sae2Δ mutation does not stimulate Tel1 activation after expression of the EcoRI endonuclease, which generates "clean" DNA ends. In an in vitro system, tethering of Fab fragments to DNA ends inhibits MRX-mediated DNA end processing but enhances Tel1 activation. The mre11-3 mutation abolishes DNA end-processing activity but does not affect the ability to enhance Tel1 activation. These results support a model in which MRX controls Tel1 activation by recognizing protein-bound DNA ends.
Collapse
|
43
|
Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity. PLoS Genet 2010; 6. [PMID: 20700441 PMCID: PMC2916856 DOI: 10.1371/journal.pgen.1001047] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 07/02/2010] [Indexed: 12/21/2022] Open
Abstract
Saccharomyces cerevisiae Rad9 is required for an effective DNA damage response throughout the cell cycle. Assembly of Rad9 on chromatin after DNA damage is promoted by histone modifications that create docking sites for Rad9 recruitment, allowing checkpoint activation. Rad53 phosphorylation is also dependent upon BRCT-directed Rad9 oligomerization; however, the crosstalk between these molecular determinants and their functional significance are poorly understood. Here we report that, in the G1 and M phases of the cell cycle, both constitutive and DNA damage-dependent Rad9 chromatin association require its BRCT domains. In G1 cells, GST or FKBP dimerization motifs can substitute to the BRCT domains for Rad9 chromatin binding and checkpoint function. Conversely, forced Rad9 dimerization in M phase fails to promote its recruitment onto DNA, although it supports Rad9 checkpoint function. In fact, a parallel pathway, independent on histone modifications and governed by CDK1 activity, allows checkpoint activation in the absence of Rad9 chromatin binding. CDK1-dependent phosphorylation of Rad9 on Ser11 leads to specific interaction with Dpb11, allowing Rad53 activation and bypassing the requirement for the histone branch. In response to DNA damage all eukaryotic cells activate a surveillance mechanism, known as the DNA damage checkpoint, which delays cell cycle progression and modulates DNA repair. Yeast RAD9 was the first DNA damage checkpoint gene identified. The genetic tools available in this model system allow to address relevant questions to understand the molecular mechanisms underlying the Rad9 biological function. By chromatin-binding and domain-swapping experiments, we found that Rad9 is recruited into DNA both in unperturbed and in DNA–damaging conditions, and we identified the molecular determinants required for such interaction. Moreover, the extent of chromatin-bound Rad9 is regulated during the cell cycle and influences its role in checkpoint activation. In fact, the checkpoint function of Rad9 in G1 cells is solely mediated by its interaction with modified histones, while in M phase it occurs through an additional scaffold protein, named Dpb11. Productive Rad9-Dpb11 interaction in M phase requires Rad9 phosphorylation by CDK1, and we identified the Ser11 residue as the major CDK1 target. The model of Rad9 action that we are presenting can be extended to other eukaryotic organisms, since Rad9 and Dpb11 have been conserved through evolution from yeast to mammalian cells.
Collapse
|
44
|
Morillo-Huesca M, Maya D, Muñoz-Centeno MC, Singh RK, Oreal V, Reddy GU, Liang D, Géli V, Gunjan A, Chávez S. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1. PLoS Genet 2010; 6:e1000964. [PMID: 20502685 PMCID: PMC2873916 DOI: 10.1371/journal.pgen.1000964] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/20/2010] [Indexed: 11/18/2022] Open
Abstract
The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication. Lengthy genomic DNA is packed in a highly organized nucleoprotein structure called chromatin, whose basic subunit is the nucleosome which is formed by DNA wrapped around an octamer of proteins called histones. Nucleosomes need to be disassembled to allow DNA transcription by RNA polymerases. An essential factor for the disassembly/reassembly process during DNA transcription is the FACT complex. We investigated a phenotype of yeast FACT mutants, a delay in a specific step of the cell cycle division process immediately prior to starting DNA replication. The dysfunction caused by the FACT mutation causes a downregulation of a gene, CLN3, which controls the length of that specific step of the cell cycle. FACT dysfunction also increases the level of the free histones released from chromatin during transcription, and the phenotype of the Spt16 mutant is enhanced by a second mutation affecting a protein that regulates DNA repair and excess histone degradation. Moreover, we show that the overexpression of histones causes a cell cycle delay before DNA replication in wild-type cells. Our results point out a so-far unknown connection between chromatin dynamics and the regulation of the cell cycle.
Collapse
Affiliation(s)
| | - Douglas Maya
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | | | - Rakesh Kumar Singh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Oreal
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Gajjalaiahvari Ugander Reddy
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Dun Liang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Géli
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Akash Gunjan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail: (SC); (MCM-C)
| |
Collapse
|
45
|
Lee J, Dunphy WG. Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks. Mol Biol Cell 2010; 21:926-35. [PMID: 20110345 PMCID: PMC2836973 DOI: 10.1091/mbc.e09-11-0958] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This work provides novel mechanistic insights into how TopBP1 and the Rad9-Hus1-Rad1 (9-1-1) complex dock with one another at stalled replication forks. This step is necessary for the ATR-dependent activation of Chk1 during checkpoint responses. Rad17 is critical for the ATR-dependent activation of Chk1 during checkpoint responses. It is known that Rad17 loads the Rad9-Hus1-Rad1 (9-1-1) complex onto DNA. We show that Rad17 also mediates the interaction of 9-1-1 with the ATR-activating protein TopBP1 in Xenopus egg extracts. Studies with Rad17 mutants indicate that binding of ATP to Rad17 is essential for the association of 9-1-1 and TopBP1. Furthermore, hydrolysis of ATP by Rad17 is necessary for the loading of 9-1-1 onto DNA and the elevated, checkpoint-dependent accumulation of TopBP1 on chromatin. Significantly, a mutant 9-1-1 complex that cannot bind TopBP1 has a normal capacity to promote elevated accumulation of TopBP1 on chromatin. Taken together, we propose the following mechanism. First, Rad17 loads 9-1-1 onto DNA. Second, TopBP1 accumulates on chromatin in a manner that depends on both Rad17 and 9-1-1. Finally, 9-1-1 and TopBP1 dock in a Rad17-dependent manner before activation of Chk1.
Collapse
Affiliation(s)
- Joon Lee
- Division of Biology 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
46
|
Donnianni RA, Ferrari M, Lazzaro F, Clerici M, Tamilselvan Nachimuthu B, Plevani P, Muzi-Falconi M, Pellicioli A. Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway. PLoS Genet 2010; 6:e1000763. [PMID: 20098491 PMCID: PMC2797610 DOI: 10.1371/journal.pgen.1000763] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/11/2009] [Indexed: 01/05/2023] Open
Abstract
Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends. Double strand DNA breaks (DSBs) are dangerous chromosomal lesions that can lead to genome rearrangements, genetic instability, and cancer if not accurately repaired. Eukaryotes activate a surveillance mechanism, called DNA damage checkpoint, to arrest cell cycle progression and facilitate DNA repair. Several factors are physically recruited to DSBs, and specific kinases phosphorylate multiple targets leading to checkpoint activation. Budding yeast is a good model system to study checkpoint, and most of the factors involved in the DSBs response were originally characterized in this organism. Using the yeast Saccharomyces cerevisiae, we explored the functional role of polo kinase Cdc5 in regulating the DSB–induced checkpoint. Polo kinases have been previously involved in checkpoint inactivation in all the eukaryotes, and they are frequently overexpressed in cancer cells. We found that elevated levels of Cdc5 affect the cellular response to a DSB at different steps, altering DNA processing and overriding the signal triggered by checkpoint kinases. Our findings suggest that Cdc5 likely regulates multiple factors in response to a DSB and provide a rationale for a proteome-wide screening to identify targets of polo kinases in yeast and human cells. Such information may have a practical application to design specific molecular tools for cancer therapy. Two related papers published in PLoS Biology—by Vidanes et al., doi:10.1371/journal.pbio.1000286, and van Vugt et al., doi:10.1371/journal.pbio.1000287—similarly investigate the phenomenon of checkpoint adaptation/overriding.
Collapse
Affiliation(s)
- Roberto Antonio Donnianni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | - Matteo Ferrari
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | - Federico Lazzaro
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Milano, Italy
| | | | - Paolo Plevani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | - Achille Pellicioli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
47
|
Diani L, Colombelli C, Nachimuthu BT, Donnianni R, Plevani P, Muzi-Falconi M, Pellicioli A. Saccharomyces CDK1 phosphorylates Rad53 kinase in metaphase, influencing cellular morphogenesis. J Biol Chem 2009; 284:32627-34. [PMID: 19801655 DOI: 10.1074/jbc.m109.048157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rad53 is an essential protein kinase governing DNA damage and replication stress checkpoints in budding yeast. It also appears to be involved in cellular morphogenesis processes. Mass spectrometry analyses revealed that Rad53 is phosphorylated at multiple SQ/TQ and at SP/TP residues, which are typical consensus sites for phosphatidylinositol 3-kinase-related kinases and CDKs, respectively. Here we show that Clb-CDK1 phosphorylates Rad53 at Ser(774) in metaphase. This phosphorylation event does not influence the DNA damage and replication checkpoint roles of Rad53, and it is independent of the spindle assembly checkpoint network. Moreover, the Ser-to-Asp mutation, mimicking a constitutive phosphorylation state at site 774, causes sensitivity to calcofluor, supporting a functional linkage between Rad53 and cellular morphogenesis.
Collapse
Affiliation(s)
- Laura Diani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
53BP1 (p53-binding protein 1) is classified as a mediator/adaptor of the DNA-damage response, and is recruited to nuclear structures termed foci following genotoxic insult. In the present paper, we review the functions of 53BP1 in DNA-damage checkpoint activation and DNA repair, and the mechanisms of its recruitment and activation following DNA damage. We focus in particular on the role of covalent histone modifications in this process.
Collapse
|
49
|
Stracker TH, Usui T, Petrini JHJ. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 2009; 8:1047-54. [PMID: 19473886 PMCID: PMC2725228 DOI: 10.1016/j.dnarep.2009.04.012] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cellular DNA damage response (DDR) is activated by many types of DNA lesions. Upon recognition of DNA damage by sensor proteins, an intricate signal transduction network is activated to coordinate diverse cellular outcomes that promote genome integrity. Key components of the DDR in mammalian cells are the checkpoint effector kinases Chk1 and Chk2 (referred to henceforth as the effector kinases; orthologous to spChk1 and spCds1 in the fission yeast S. pombe and scChk1 and scRad53 in the budding yeast S. cerevisiae). These evolutionarily conserved and structurally divergent kinases phosphorylate numerous substrates to regulate the DDR. This review will focus on recent advances in our understanding of the structure, regulation, and functions of the effector kinases in the DDR, as well as their potential roles in human disease.
Collapse
|
50
|
Humpal SE, Robinson DA, Krebs JE. Marks to stop the clock: histone modifications and checkpoint regulation in the DNA damage response. Biochem Cell Biol 2009; 87:243-53. [PMID: 19234538 DOI: 10.1139/o08-109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA damage from endogenous and exogenous sources occurs throughout the cell cycle. In response to this damage, cells have developed a series of biochemical responses that allow them to recover from DNA damage and prevent mutations from being passed on to daughter cells. An important part of the DNA damage response is the ability to halt the progression of the cell cycle, allowing damaged DNA to be repaired. The cell cycle can be halted at semi-discrete times, called checkpoints, which occur at critical stages during the cell cycle. Recent work in our laboratory and by others has shown the importance of post-translational histone modifications in the DNA damage response. While many histone modifications have been identified that appear to facilitate repair per se, there have been surprisingly few links between these modifications and DNA damage checkpoints. Here, we review how modifications to histone H2A serine 129 (HSA129) and histone H3 lysine 79 (H3K79) contribute to the stimulation of the G1/S checkpoint. We also discuss recent findings that conflict with the current model of the way methylated H3K79 interacts with the checkpoint adaptor protein Rad9.
Collapse
Affiliation(s)
- Stephen E Humpal
- Department of Biological Sciences, University of Alaska-Anchorage, 3211 Providence Drive, Anchorage, AK99508, USA
| | | | | |
Collapse
|