1
|
Branco dos Santos F, Du W, Hellingwerf KJ. Synechocystis: Not Just a Plug-Bug for CO2, but a Green E. coli. Front Bioeng Biotechnol 2014; 2:36. [PMID: 25279375 PMCID: PMC4166995 DOI: 10.3389/fbioe.2014.00036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023] Open
Abstract
Following multiple reports warning for threats posed by raising levels of atmospheric CO2, it is of paramount importance that human society rapidly evolves to be sustainable. Processes relying on photosynthetic microorganisms, converting CO2 and water into compounds of interest, fueled by light, are very pertinent, particularly if not directly competing for arable land. Here, we identify specific research questions that remain to be targeted to exploit the full potential of cyanobacterial cell factories. We argue that this approach will be more likely to be successful if organisms such as Synechocystis are not perceived as mere chassis for CO2 fixation, but rather considered as the "green" E. coli.
Collapse
Affiliation(s)
- Filipe Branco dos Santos
- Molecular Microbial Physiology Group, Faculty of Life Sciences, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Wei Du
- Molecular Microbial Physiology Group, Faculty of Life Sciences, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology Group, Faculty of Life Sciences, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Photanol B.V., Amsterdam, Netherlands
| |
Collapse
|
2
|
Abstract
AbstractPlants are redox systems and redox-active compounds control and regulate all aspects of their life. Recent studies have shown that changes in reactive oxygen species (ROS) concentration mediated by enzymatic and non-enzymatic antioxidants are transferred into redox signals used by plants to activate various physiological responses. An overview of the main antioxidants and redox signaling in plant cells is presented. In this review, the biological effects of ROS and related redox signals are discussed in the context of acclimation to changing environmental conditions. Special attention is paid to the role of thiol/disulfide exchange via thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs) in the redox regulatory network. In plants, chloroplasts and mitochondria occupying a chloroplasts and mitochondria play key roles in cellular metabolism as well as in redox regulation and signaling. The integrated redox functions of these organelles are discussed with emphasis on the importance of the chloroplast and mitochondrion to the nucleus retrograde signaling in acclimatory and stress response.
Collapse
|
3
|
Pfannschmidt T, Yang C. The hidden function of photosynthesis: a sensing system for environmental conditions that regulates plant acclimation responses. PROTOPLASMA 2012; 249 Suppl 2:S125-36. [PMID: 22441589 DOI: 10.1007/s00709-012-0398-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/12/2012] [Indexed: 05/03/2023]
Abstract
Plants convert light energy from the sun into chemical energy by photosynthesis. Since they are sessile, they have to deal with a wide range of conditions in their immediate environment. Many abiotic and biotic parameters exhibit considerable fluctuations which can have detrimental effects especially on the efficiency of photosynthetic light harvesting. During evolution, plants, therefore, evolved a number of acclimation processes which help them to adapt photosynthesis to such environmental changes. This includes protective mechanisms such as excess energy dissipation and processes supporting energy redistribution, e.g. state transitions or photosystem stoichiometry adjustment. Intriguingly, all these responses are triggered by photosynthesis itself via the interplay of its light reaction and the Calvin-Benson cycle with the residing environmental condition. Thus, besides its primary function in harnessing and converting light energy, photosynthesis acts as a sensing system for environmental changes that controls molecular acclimation responses which adapt the photosynthetic function to the environmental change. Important signalling parameters directly or indirectly affected by the environment are the pH gradient across the thylakoid membrane and the redox states of components of the photosynthetic electron transport chain and/or electron end acceptors coupled to it. Recent advances demonstrate that these signals control post-translational modifications of the photosynthetic protein complexes and also affect plastid and nuclear gene expression machineries as well as metabolic pathways providing a regulatory framework for an integrated response of the plant to the environment at all cellular levels.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Junior Research Group Plant Acclimation To Environmental Changes, Protein Analysis by MS, Department of Plant Physiology, Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str 159, 07743 Jena, Germany.
| | | |
Collapse
|
4
|
Allen JF, de Paula WBM, Puthiyaveetil S, Nield J. A structural phylogenetic map for chloroplast photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:645-55. [PMID: 22093371 DOI: 10.1016/j.tplants.2011.10.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 05/08/2023]
Abstract
Chloroplasts are cytoplasmic organelles and the sites of photosynthesis in eukaryotic cells. Advances in structural biology and comparative genomics allow us to identify individual components of the photosynthetic apparatus precisely with respect to the subcellular location of their genes. Here we present outline maps of four energy-transducing thylakoid membranes. The maps for land plants and red and green algae distinguish protein subunits encoded in the nucleus from those encoded in the chloroplast. We find no defining structural feature that is common to all chloroplast gene products. Instead, conserved patterns of gene location are consistent with photosynthetic redox chemistry exerting gene regulatory control over its own rate-limiting steps. Chloroplast DNA carries genes whose expression is placed under this control.
Collapse
Affiliation(s)
- John F Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | | | |
Collapse
|
5
|
Puthiyaveetil S. A mechanism for regulation of chloroplast LHC II kinase by plastoquinol and thioredoxin. FEBS Lett 2011; 585:1717-21. [PMID: 21557941 DOI: 10.1016/j.febslet.2011.04.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/30/2022]
Abstract
State transitions are acclimatory responses to changes in light quality in photosynthesis. They involve the redistribution of absorbed excitation energy between photosystems I and II. In plants and green algae, this redistribution is produced by reversible phosphorylation of the chloroplast light harvesting complex II (LHC II). The LHC II kinase is activated by reduced plastoquinone (PQ) in photosystem II-specific low light. In high light, when PQ is also reduced, LHC II kinase becomes inactivated by thioredoxin. Based on newly identified amino acid sequence features of LHC II kinase and other considerations, a mechanism is suggested for its redox regulation.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK.
| |
Collapse
|
6
|
Puthiyaveetil S, Ibrahim IM, Jeličić B, Tomašić A, Fulgosi H, Allen JF. Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function. Genome Biol Evol 2010; 2:888-96. [PMID: 21071627 PMCID: PMC3012001 DOI: 10.1093/gbe/evq073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts—photosynthetic plastids—in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. PTK also interacts directly with SIG-1. PTK has previously been shown to catalyze phosphorylation of plastid-encoded RNA polymerase (PEP), suppressing plastid transcription nonspecifically. Phospho-PTK is inactive as a PEP kinase. Here, we propose that phospho-CSK acts as a PTK kinase, releasing PTK repression of chloroplast transcription, while CSK also acts as a SIG-1 kinase, blocking transcription specifically at the gene promoter of chloroplast photosystem I. Oxidation of the photosynthetic electron carrier plastoquinone triggers phosphorylation of CSK, inducing chloroplast photosystem II while suppressing photosystem I. CSK places photosystem gene transcription under the control of photosynthetic electron transport. This redox signaling pathway has its origin in cyanobacteria, photosynthetic prokaryotes from which chloroplasts evolved. The persistence of this mechanism in cytoplasmic organelles of photosynthetic eukaryotes is in precise agreement with the CoRR hypothesis for the function of organellar genomes: the plastid genome and its primary gene products are Co-located for Redox Regulation. Genes are retained in plastids primarily in order for their expression to be subject to this rapid and robust redox regulatory transcriptional control mechanism, whereas plastid genes also encode genetic system components, such as some ribosomal proteins and RNAs, that exist in order to support this primary, redox regulatory control of photosynthesis genes. Plastid genome function permits adaptation of the photosynthetic apparatus to changing environmental conditions of light quantity and quality.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Iskander M. Ibrahim
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Branka Jeličić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Tomašić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Hrvoje Fulgosi
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - John F. Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|
7
|
Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB. Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC SYSTEMS BIOLOGY 2010; 4:105. [PMID: 20678200 PMCID: PMC2924297 DOI: 10.1186/1752-0509-4-105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 08/02/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. Synechocystis sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in Synechocystis have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes. RESULTS We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in Synechocystis. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of Synechocystis genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in Synechocystis under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes. CONCLUSION We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in Synechocystis.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Since its endosymbiotic beginning, the chloroplast has become fully integrated into the biology of the host eukaryotic cell. The exchange of genetic information from the chloroplast to the nucleus has resulted in considerable co-ordination in the activities of these two organelles during all stages of plant development. Here, we give an overview of the mechanisms of light perception and the subsequent regulation of nuclear gene expression in the model plant Arabidopsis thaliana, and we cover the main events that take place when proplastids differentiate into chloroplasts. We also consider recent findings regarding signalling networks between the chloroplast and the nucleus during seedling development, and how these signals are modulated by light. In addition, we discuss the mechanisms through which chloroplasts develop in different cell types, namely cotyledons and the dimorphic chloroplasts of the C(4) plant maize. Finally, we discuss recent data that suggest the specific regulation of the light-dependent phases of photosynthesis, providing a means to optimize photosynthesis to varying light regimes.
Collapse
Affiliation(s)
- Mark T Waters
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
9
|
Mulo P, Sirpiö S, Suorsa M, Aro EM. Auxiliary proteins involved in the assembly and sustenance of photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 98:489-501. [PMID: 18618287 DOI: 10.1007/s11120-008-9320-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/11/2008] [Indexed: 05/20/2023]
Abstract
Chloroplast proteins that regulate the biogenesis, performance and acclimation of the photosynthetic protein complexes are currently under intense research. Dozens, possibly even hundreds, of such proteins in the stroma, thylakoid membrane and the lumen assist the biogenesis and constant repair of the water splitting photosystem (PS) II complex. During the repair cycle, assistance is required at several levels including the degradation of photodamaged D1 protein, de novo synthesis, membrane insertion, folding of the nascent protein chains and the reassembly of released protein subunits and different co-factors into PSII in order to guarantee the maintenance of the PSII function. Here we review the present knowledge of the auxiliary proteins, which have been reported to be involved in the biogenesis and maintenance of PSII.
Collapse
Affiliation(s)
- Paula Mulo
- Department of Biology, Laboratory of Plant Physiology and Molecular Biology, University of Turku, 20014 Turku, Finland
| | | | | | | |
Collapse
|
10
|
Oreb M, Höfle A, Mirus O, Schleiff E. Phosphorylation regulates the assembly of chloroplast import machinery. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2309-16. [PMID: 18487635 PMCID: PMC2423650 DOI: 10.1093/jxb/ern095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/06/2008] [Accepted: 03/10/2008] [Indexed: 05/24/2023]
Abstract
Chloroplast function depends on the translocation of cytosolically synthesized precursor proteins into the organelle. The recognition and transfer of most precursor proteins across the outer membrane depend on a membrane inserted complex. Two receptor components of this complex, Toc34 and Toc159, are GTPases, which can be phosphorylated by kinases present in the hosting membrane. However, the physiological function of phosphorylation is not yet understood in detail. It is demonstrated that both receptors are phosphorylated within their G-domains. In vitro, the phosphorylation of Toc34 disrupts both homo- and heterodimerization of the G-domains as determined using a phospho-mimicking mutant. In endogenous membranes this mutation or phosphorylation of the wild-type receptor disturbs the association of Toc34, but not of Toc159 with the translocation pore. Therefore, phosphorylation serves as an inhibitor for the association of Toc34 with other components of the complex and phosphorylation can now be discussed as a mechanism to exchange different isoforms of Toc34 within this ensemble.
Collapse
Affiliation(s)
| | | | | | - Enrico Schleiff
- Present address and to whom correspondence should be sent: Molecular Plant Sciences, Biocenter, N 200, 3. OG, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany. E-mail:
| |
Collapse
|
11
|
Marín-Navarro J, Manuell AL, Wu J, P Mayfield S. Chloroplast translation regulation. PHOTOSYNTHESIS RESEARCH 2007; 94:359-74. [PMID: 17661159 DOI: 10.1007/s11120-007-9183-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs. Translation is regulated in response to a variety of biotic and abiotic factors, and requires a coordinate expression with the nuclear genome. The translational apparatus of chloroplasts is related to that of bacteria, but has adopted novel mechanisms in order to execute the specific roles that this organelle performs within a eukaryotic cell. Accordingly, plastid ribosomes contain a number of chloroplast-unique proteins and domains that may function in translational regulation. Chloroplast translation regulation involves cis-acting RNA elements (located in the mRNA 5' UTR) as well as a set of corresponding trans-acting protein factors. While regulation of chloroplast translation is primarily controlled at the initiation steps through these RNA-protein interactions, elongation steps are also targets for modulating chloroplast gene expression. Translation of chloroplast mRNAs is regulated in response to light, and the molecular mechanisms underlying this response involve changes in the redox state of key elements related to the photosynthetic electron chain, fluctuations of the ADP/ATP ratio and the generation of a proton gradient. Photosynthetic complexes also experience assembly-related autoinhibition of translation to coordinate the expression of different subunits of the same complex. Finally, the localization of all these molecular events among the different chloroplast subcompartments appear to be a crucial component of the regulatory mechanisms of chloroplast gene expression.
Collapse
Affiliation(s)
- Julia Marín-Navarro
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
12
|
Umate P, Schwenkert S, Karbat I, Bosco CD, Mlcòchová L, Volz S, Zer H, Herrmann RG, Ohad I, Meurer J. Deletion of PsbM in tobacco alters the QB site properties and the electron flow within photosystem II. J Biol Chem 2007; 282:9758-9767. [PMID: 17261590 DOI: 10.1074/jbc.m608117200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II, the oxygen-evolving complex of photosynthetic organisms, includes an intriguingly large number of low molecular weight polypeptides, including PsbM. Here we describe the first knock-out of psbM using a transplastomic, reverse genetics approach in a higher plant. Homoplastomic Delta psbM plants exhibit photoautotrophic growth. Biochemical, biophysical, and immunological analyses demonstrate that PsbM is not required for biogenesis of higher order photosystem II complexes. However, photosystem II is highly light-sensitive, and its activity is significantly decreased in Delta psbM, whereas kinetics of plastid protein synthesis, reassembly of photosystem II, and recovery of its activity are comparable with the wild type. Unlike wild type, phosphorylation of the reaction center proteins D1 and D2 is severely reduced, whereas the redox-controlled phosphorylation of photosystem II light-harvesting complex is reversely regulated in Delta psbM plants because of accumulation of reduced plastoquinone in the dark and a limited photosystem II-mediated electron transport in the light. Charge recombination in Delta psbM measured by thermoluminescence oscillations significantly differs from the 2/6 patterns in the wild type. A simulation program of thermoluminescence oscillations indicates a higher Q(B)/Q(-)(B) ratio in dark-adapted mutant thylakoids relative to the wild type. The interaction of the Q(A)/Q(B) sites estimated by shifts in the maximal thermoluminescence emission temperature of the Q band, induced by binding of different herbicides to the Q(B) site, is changed indicating alteration of the activation energy for back electron flow. We conclude that PsbM is primarily involved in the interaction of the redox components important for the electron flow within, outward, and backward to photosystem II.
Collapse
Affiliation(s)
- Pavan Umate
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Serena Schwenkert
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Izhar Karbat
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978 Ramat-Aviv, Tel-Aviv, Israel
| | - Cristina Dal Bosco
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Lada Mlcòchová
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Stefanie Volz
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Hagit Zer
- Minerva Avron, Even-Ari Center of Photosynthesis Research, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Reinhold G Herrmann
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany
| | - Itzhak Ohad
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Jörg Meurer
- Department of Biology I, Botany, Ludwig-Maximilians-University, Menzingerstrasse 67, 80638 Munich, Germany.
| |
Collapse
|