1
|
Liu S, Wu Q, Zhong Y, He Z, Wang Z, Li R, Wang M. Fosthiazate exposure induces oxidative stress, nerve damage, and reproductive disorders in nontarget nematodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12522-12531. [PMID: 36112285 DOI: 10.1007/s11356-022-23010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
As a forceful nematicide, fosthiazate has been largely applied in the management of root-knot nematodes and other herbivorous nematodes. However, the toxicity of fosthiazate to nontarget nematodes is unclear. To explore the toxicity and the mechanisms of fosthiazate in nontarget nematodes, Caenorhabditis elegans was exposed to 0.01-10 mg/L fosthiazate. The results implied that treatment with fosthiazate at doses above 0.01 mg/L could cause injury to the growth, locomotion behavior, and reproduction of the nematodes. Moreover, L1 larvae were more vulnerable to fosthiazate exposure than L4 larvae. Reactive oxygen species (ROS) production and lipofuscin accumulation were fairly increased in 1 mg/L fosthiazate-exposed nematodes. Treatment with 0.1 mg/L fosthiazate significantly inhibited the activity of acetylcholinesterase (p < 0.01). Furthermore, subacute exposure to 10 mg/L fosthiazate strongly influenced the expression of genes related to oxidative stress, reproduction, and nerve function (e.g., gst-1, sod-1, puf-8, wee-1.3, and ace-1 genes). These findings suggested that oxidative stress, reproduction and nerve disorders could serve as key endpoints of toxicity induced by fosthiazate. The cyp-35a family gene was the main metabolic fosthiazate in C. elegans, and the cyp-35a5 subtype was the most sensitive, with a change in expression level of 2.11-fold compared with the control. These results indicate that oxidative stress and neurological and reproductive disorders played fundamental roles in the toxicity of fosthiazate in C. elegans and may affect the abundance and function of soil nematodes.
Collapse
Affiliation(s)
- Shiling Liu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Qiqi Wu
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Yanru Zhong
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Zongzhe He
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu province, China.
| |
Collapse
|
2
|
Nett EM, Sepulveda NB, Petrella LN. Defects in mating behavior and tail morphology are the primary cause of sterility in Caenorhabditis elegans males at high temperature. ACTA ACUST UNITED AC 2019; 222:jeb.208041. [PMID: 31672732 DOI: 10.1242/jeb.208041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Reproduction is a fundamental imperative of all forms of life. For all the advantages sexual reproduction confers, it has a deeply conserved flaw: it is temperature sensitive. As temperatures rise, fertility decreases. Across species, male fertility is particularly sensitive to elevated temperature. Previously, we have shown in the model nematode Caenorhabditis elegans that all males are fertile at 20°C, but almost all males have lost fertility at 27°C. Male fertility is dependent on the production of functional sperm, successful mating and transfer of sperm, and successful fertilization post-mating. To determine how male fertility is impacted by elevated temperature, we analyzed these aspects of male reproduction at 27°C in three wild-type strains of C. elegans: JU1171, LKC34 and N2. We found no effect of elevated temperature on the number of immature non-motile spermatids formed. There was only a weak effect of elevated temperature on sperm activation. In stark contrast, there was a strong effect of elevated temperature on male mating behavior, male tail morphology and sperm transfer such that males very rarely completed mating successfully when exposed to 27°C. Therefore, we propose a model where elevated temperature reduces male fertility as a result of the negative impacts of temperature on the somatic tissues necessary for mating. Loss of successful mating at elevated temperature overrides any effects that temperature may have on the germline or sperm cells.
Collapse
Affiliation(s)
- Emily M Nett
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
3
|
Liu Z, Wang B, He R, Zhao Y, Miao L. Calcium signaling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:299-308. [PMID: 24239721 DOI: 10.1016/j.bbamcr.2013.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
Abstract
In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.
Collapse
Affiliation(s)
- Zhiyu Liu
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruijun He
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanmei Zhao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Miao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Liu Z, Chen L, Shang Y, Huang P, Miao L. The micronutrient element zinc modulates sperm activation through the SPE-8 pathway in Caenorhabditis elegans. Development 2013; 140:2103-7. [DOI: 10.1242/dev.091025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Immotile spermatids produced in the testis must undergo a series of poorly understood morphological, physiological and biochemical processes called sperm activation to become motile, fertilization-competent spermatozoa. In Caenorhabditis elegans, the spe-8 group contains sperm-specific genes active in both males and hermaphrodites, although their activity is required only for hermaphrodite self-sperm activation. The activating signal upstream of the SPE-8 signaling cascade remains unknown. Here, we show that the micronutrient zinc is sufficient to trigger sperm activation in vitro, and that extracellular zinc induces the intracellular redistribution of labile zinc. We demonstrate that other activating signals promote the similar redistribution of labile zinc, indicating that zinc might have first and/or second messenger roles during sperm activation. Moreover, zinc-induced sperm activation is SPE-8 pathway dependent. Labile zinc was enriched in the spermatheca, the normal site for self-sperm activation in hermaphrodites. High levels of zinc were also found in the secretory cells in the male gonad, suggesting that zinc might be secreted from these cells during copulation and become a component of seminal fluid, to modulate sperm activation post-copulation. These data indicate that zinc regulates sperm activation in both male and hermaphrodite C. elegans, a finding with important implications for understanding hermaphroditic evolution.
Collapse
Affiliation(s)
- Zhiyu Liu
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianwan Chen
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunlong Shang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Huang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Miao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Ma X, Zhao Y, Sun W, Shimabukuro K, Miao L. Transformation: how do nematode sperm become activated and crawl? Protein Cell 2012; 3:755-61. [PMID: 22903434 PMCID: PMC4875351 DOI: 10.1007/s13238-012-2936-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/09/2012] [Indexed: 01/16/2023] Open
Abstract
Nematode sperm undergo a drastic physiological change during spermiogenesis (sperm activation). Unlike mammalian flagellated sperm, nematode sperm are amoeboid cells and their motility is driven by the dynamics of a cytoskeleton composed of major sperm protein (MSP) rather than actin found in other crawling cells. This review focuses on sperm from Caenorhabditis elegans and Ascaris suum to address the roles of external and internal factors that trigger sperm activation and power sperm motility. Nematode sperm can be activated in vitro by several factors, including Pronase and ionophores, and in vivo through the TRY-5 and SPE-8 pathways. Moreover, protease and protease inhibitors are crucial regulators of sperm maturation. MSP-based sperm motility involves a coupled process of protrusion and retraction, both of which have been reconstituted in vitro. Sperm motility is mediated by phosphorylation signals, as illustrated by identification of several key components (MPOP, MFPs and MPAK) in Ascaris and the characterization of GSP-3/4 in C. elegans.
Collapse
Affiliation(s)
- Xuan Ma
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yanmei Zhao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Sun
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, Ube National College of Technology, Ube, Yamaguchi, 755-8555 Japan
| | - Long Miao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
6
|
Fraire-Zamora JJ, Tran T, Cardullo RA. Cholesterol-enriched microdomains regulate pseudopod extension in the MSP-based cytoskeleton of amoeboid sperm. Biochem Biophys Res Commun 2012; 427:478-84. [DOI: 10.1016/j.bbrc.2012.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/24/2022]
|
7
|
Singaravelu G, Singson A. New insights into the mechanism of fertilization in nematodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:211-38. [PMID: 21749902 PMCID: PMC3273857 DOI: 10.1016/b978-0-12-386039-2.00006-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fertilization results from the fusion of male and female gametes in all sexually reproducing organisms. Much of nematode fertility work was focused on Caenorhabditis elegans and Ascaris suum. The C. elegans hermaphrodite produces a limited number of sperm initially and then commits to the exclusive production of oocytes. The postmeiotic differentiation called spermiogenesis converts sessile spermatids into motile spermatozoa. The motility of spermatozoa depends on dynamic assembly and disassembly of a major sperm protein-based cytoskeleton uniquely found in nematodes. Both self-derived and male-derived spermatozoa are stored in spermatheca, the site of fertilization in hermaphrodites. The oocyte is arrested in meiotic prophase I until a sperm-derived signal relieves the inhibition allowing the meiotic maturation to occur. Oocyte undergoes meiotic maturation, enters into spermatheca, gets fertilized, completes meiosis, and exits into uterus as a zygote. This review focuses on our current understanding of the events around fertilization in nematodes.
Collapse
|
8
|
Abstract
Although the general events surrounding fertilization in many species are well described, the molecular underpinnings of fertilization are still poorly understood. Caenorhabditis elegans has emerged as a powerful model system for addressing the molecular and cell biological mechanism of fertilization. A primary advantage is the ability to isolate and propagate mutants that effect gametes and no other cells. This chapter provides conceptual guidelines for the identification, maintenance, and experimental approaches for the study fertility mutants.
Collapse
Affiliation(s)
- Brian D. Geldziler
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| | - Matthew R. Marcello
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| | | | - Andrew Singson
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| |
Collapse
|
9
|
White-Cooper H, Bausek N. Evolution and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1465-80. [PMID: 20403864 DOI: 10.1098/rstb.2009.0323] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual reproduction depends on the production of haploid gametes, and their fusion to form diploid zygotes. Here, we discuss sperm production and function in a molecular and functional evolutionary context, drawing predominantly from studies in model organisms (mice, Drosophila, Caenorhabditis elegans). We consider the mechanisms involved in establishing and maintaining a germline stem cell population in testes, as well as the factors that regulate their contribution to the pool of differentiating cells. These processes involve considerable interaction between the germline and the soma, and we focus on regulatory signalling events in a variety of organisms. The male germline has a unique transcriptional profile, including expression of many testis-specific genes. The evolutionary pressures associated with gene duplication and acquisition of testis function are discussed in the context of genome organization and transcriptional regulation. Post-meiotic differentiation of spermatids involves very dramatic changes in cell shape and acquisition of highly specialized features. We discuss the variety of sperm motility mechanisms and how various reproductive strategies are associated with the diversity of sperm forms found in animals.
Collapse
Affiliation(s)
- Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AT, UK.
| | | |
Collapse
|
10
|
Wu TF, Nera B, Chu DS, Shakes DC. Elucidating gene regulatory mechanisms for sperm function through the integration of classical and systems approaches in C. elegans. Syst Biol Reprod Med 2010; 56:222-35. [PMID: 20536322 DOI: 10.3109/19396361003749986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
From worms to mammals, successful spermatogenesis depends on a gene expression profile that balances activating and repressive mechanisms. Besides developmental control of specific spermatogenic genes, male fertility requires temporal shifts in global gene expression and dramatic changes in chromatin structure and condensation. Recent studies are beginning to elucidate the molecular processes that both drive these temporal changes in gene expression and underlie fertility. In this review, we provide an overview of relevant C. elegans studies that have laid the groundwork for modern approaches. Next, we highlight recent studies that investigate how gene expression in C. elegans is modulated during spermatogenesis. These studies use large-scale genomic profiling in combination with bioinformatics, genetics, biochemistry, and in vitro methods to target specific stages or processes during sperm formation. Such studies are beginning to elucidate the multiple layers of gene regulation required during spermatogenesis, i.e., transcriptional, post-transcriptional, and epigenetic. Moreover, knowledge of how C. elegans coordinately regulates gene expression during spermatogenesis promises to provide key insights into parallel processes in mammals that are vital for fertility.
Collapse
Affiliation(s)
- Tammy F Wu
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | |
Collapse
|
11
|
Brown AC, Harrison LM, Kapulkin W, Jones BF, Sinha A, Savage A, Villalon N, Cappello M. Molecular cloning and characterization of a C-type lectin from Ancylostoma ceylanicum: evidence for a role in hookworm reproductive physiology. Mol Biochem Parasitol 2006; 151:141-7. [PMID: 17129620 PMCID: PMC1831819 DOI: 10.1016/j.molbiopara.2006.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 11/24/2022]
Abstract
Lectins comprise a family of related proteins that mediate essential cell functions through binding to carbohydrates. Within this protein family, C-type lectins are defined by the requirement of calcium for optimal biologic activity. Using reverse transcription PCR, a cDNA corresponding to a putative C-type lectin has been amplified from the hookworm parasite Ancylostoma ceylanicum. The 550 nucleotide open reading frame of the A. ceylanicum C-type Lectin-1 (AceCTL-1) cDNA corresponds to a 167 amino acid mature protein (18,706 Da) preceded by a 17 amino acid secretory signal sequence. The recombinant protein (rAceCTL-1) was expressed in Drosophila S2 cells and purified using a combination of affinity chromatography and reverse phase HPLC. Using in vitro carbohydrate binding studies, it was determined that rAceCTL-1 binds N-acetyl-d-glucosamine, a common component of eukaryotic egg cell membranes. Using a polyclonal IgG raised against the recombinant protein, the native AceCTL-1 was identified in sperm and soluble protein extracts of adult male A. ceylanicum by immunoblot. Probing of adult hookworm sections with the polyclonal IgG demonstrated localization to the testes in males, as well as the spermatheca and developing embryos in females, consistent with its role as a sperm protein. Together, these data strongly suggest that AceCTL-1 is a male gender-specific C-type lectin with a function in hookworm reproductive physiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael Cappello
- Corresponding author: Mail: Yale Child Health Research Center, 464 Congress Avenue, New Haven, CT 06520, , Tel: 203-737-432, Fax: 203-737-5972
| |
Collapse
|