1
|
Amiama-Roig A, Barrientos-Moreno M, Cruz-Zambrano E, López-Ruiz LM, González-Prieto R, Ríos-Orelogio G, Prado F. A Rfa1-MN-based system reveals new factors involved in the rescue of broken replication forks. PLoS Genet 2025; 21:e1011405. [PMID: 40168399 PMCID: PMC11984746 DOI: 10.1371/journal.pgen.1011405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/10/2025] [Accepted: 03/10/2025] [Indexed: 04/03/2025] Open
Abstract
The integrity of the replication forks is essential for an accurate and timely completion of genome duplication. However, little is known about how cells deal with broken replication forks. We have generated in yeast a system based on a chimera of the largest subunit of the ssDNA binding complex RPA fused to the micrococcal nuclease (Rfa1-MN) to induce double-strand breaks (DSBs) at replication forks and searched for mutants affected in their repair. Our results show that the core homologous recombination (HR) proteins involved in the formation of the ssDNA/Rad51 filament are essential for the repair of DSBs at forks, whereas non-homologous end joining plays no role. Apart from the endonucleases Mus81 and Yen1, the repair process employs fork-associated HR factors, break-induced replication (BIR)-associated factors and replisome components involved in sister chromatid cohesion and fork stability, pointing to replication fork restart by BIR followed by fork restoration. Notably, we also found factors controlling the length of G1, suggesting that a minimal number of active origins facilitates the repair by converging forks. Our study has also revealed a requirement for checkpoint functions, including the synthesis of Dun1-mediated dNTPs. Finally, our screening revealed minimal impact from the loss of chromatin factors, suggesting that the partially disassembled nucleosome structure at the replication fork facilitates the accessibility of the repair machinery. In conclusion, this study provides an overview of the factors and mechanisms that cooperate to repair broken forks.
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Marta Barrientos-Moreno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Esther Cruz-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Luz M. López-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Román González-Prieto
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Gabriel Ríos-Orelogio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
Duan S, Nodelman IM, Zhou H, Tsukiyama T, Bowman GD, Zhang Z. H3K56 acetylation regulates chromatin maturation following DNA replication. Nat Commun 2025; 16:134. [PMID: 39746969 PMCID: PMC11697131 DOI: 10.1038/s41467-024-55144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Following DNA replication, the newly reassembled chromatin is disorganized and must mature to its steady state to maintain both genome and epigenome integrity. However, the regulatory mechanisms governing this critical process remain poorly understood. Here, we show that histone H3K56 acetylation (H3K56ac), a mark on newly-synthesized H3, facilitates the remodeling of disorganized nucleosomes in nascent chromatin, and its removal at the subsequent G2/M phase of the cell cycle marks the completion of chromatin maturation. In vitro, H3K56ac enhances the activity of ISWI chromatin remodelers, including yeast ISW1 and its human equivalent SNF2h. In vivo, a deficiency of H3K56ac in nascent chromatin results in the formation of closely packed di-nucleosomes and/or tetra-nucleosomes. In contrast, abnormally high H3K56ac levels disrupt chromatin maturation, leading to genome instability. These findings establish a central role of H3K56ac in chromatin maturation and reveal a mechanism regulating this critical aspect of chromosome replication.
Collapse
Affiliation(s)
- Shoufu Duan
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ilana M Nodelman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Hui Zhou
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Gregory D Bowman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Conte M, Eletto D, Pannetta M, Esposito R, Monti MC, Morretta E, Tessarz P, Morello S, Tosco A, Porta A. H3K56 acetylation affects Candida albicans morphology and secreted soluble factors interacting with the host. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195048. [PMID: 38885737 DOI: 10.1016/j.bbagrm.2024.195048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
In recent years, epigenetics has been revealed as a mechanism able to modulate the expression of virulence traits in diverse pathogens, including Candida albicans. Indeed, epigenetic regulation can sense environmental changes, leading to the rapid and reversible modulation of gene expression with consequent adaptation to novel environments. How epigenetic changes can impact expression and signalling output, including events associated with mechanisms of morphological transition and virulence, is still poorly studied. Here, using nicotinamide as a sirtuin inhibitor, we explored how the accumulation of the H3K56 acetylation, the most prominent histone acetylation in C. albicans, might affect its interaction with the host. Our experiments demonstrate that H3K56 acetylation profoundly affects the production and/or secretion of soluble factors compromising actin remodelling and cytokine production. ChIP- and RNA-seq analyses highlighted a direct impact of H3K56 acetylation on genes related to phenotypic switching, biofilm formation and cell aggregation. Direct and indirect regulation also involves genes related to cell wall protein biosynthesis, β-glucan and mannan exposure, and hydrolytic secreted enzymes, supporting the hypothesis that the fluctuations of H3K56 acetylation in C. albicans might impair the macrophage response to the yeast and thus promote the host-immune escaping.
Collapse
Affiliation(s)
- Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano (SA), Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Martina Pannetta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano (SA), Italy
| | - Roberta Esposito
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Department of Pharmacy, University of Naples "Federico II", Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Peter Tessarz
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, University of Cologne, Germany; Cologne Excellence Cluster on Stress Responses in ageing-associated Diseases (CECAD), University of Cologne, Germany; Dept. Of Human Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy.
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy.
| |
Collapse
|
4
|
Cai Q, Tian L, Xie JT, Jiang DH. Two sirtuin proteins, Hst3 and Hst4, modulate asexual development, stress tolerance, and virulence by affecting global gene expression in Beauveria bassiana. Microbiol Spectr 2024; 12:e0313723. [PMID: 38193686 PMCID: PMC10846017 DOI: 10.1128/spectrum.03137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Beauveria bassiana is a widely used entomopathogenic fungus in insect biological control applications. In this study, we investigated the role of two sirtuin homologs, BbHst3 and BbHst4, in the biological activities and pathogenicity of B. bassiana. Our results showed that deletion of BbHst3 and/or BbHst4 led to impaired sporulation, reduced (~50%) conidial production, and decreased tolerance to various stresses, including osmotic, oxidative, and cell wall-disturbing agents. Moreover, BbHst4 plays dominant roles in histone H3-K56 acetylation and DNA damage response, while BbHst3 is more responsible for maintaining cell wall integrity. Transcriptomic analyses revealed significant changes (>1,500 differentially expressed genes) in gene expression patterns in the mutant strains, particularly in genes related to secondary metabolism, detoxification, and transporters. Furthermore, the ΔBbHst3, ΔBbHst4, and ΔBbHst3ΔBbHst4 strains exhibited reduced virulence in insect bioassays, with decreased (~20%) abilities to kill insect hosts through topical application and intra-hemocoel injection. These findings highlight the crucial role of BbHst3 and BbHst4 in sporulation, DNA damage repair, cell wall integrity, and fungal infection in B. bassiana. Our study provides new insights into the regulatory mechanisms underlying the biological activities and pathogenicity of B. bassiana and emphasizes the potential of targeting sirtuins for improving the efficacy of fungal biocontrol agents.IMPORTANCESirtuins, as a class of histone deacetylases, have been shown to play important roles in various cellular processes in fungi, including asexual development, stress response, and pathogenicity. By investigating the functions of BbHst3 and BbHst4, we have uncovered their critical contributions to important phenotypes in Beauveria bassiana. Deletion of these sirtuin homologs led to reduced conidial yield, increased sensitivity to osmotic and oxidative stresses, impaired DNA damage repair processes, and decreased fungal virulence. Transcriptomic analyses showed differential expression of numerous genes involved in secondary metabolism, detoxification, transporters, and virulence-related factors, potentially uncovering new targets for manipulation and optimization of fungal biocontrol agents. Our study also emphasizes the significance of sirtuins as key regulators in fungal biology and highlights their potential as promising targets for the development of novel antifungal strategies.
Collapse
Affiliation(s)
- Qing Cai
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Tian
- Department of Bioengineering, Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Jia-Tao Xie
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dao-Hong Jiang
- College of Plant Science and Technology, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Blaszczak E, Pasquier E, Le Dez G, Odrzywolski A, Lazarewicz N, Brossard A, Fornal E, Moskalek P, Wysocki R, Rabut G. Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 2024; 23:100695. [PMID: 38101750 PMCID: PMC10803944 DOI: 10.1016/j.mcpro.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.
Collapse
Affiliation(s)
- Ewa Blaszczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland.
| | - Emeline Pasquier
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Gaëlle Le Dez
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Audrey Brossard
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Emilia Fornal
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Piotr Moskalek
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland.
| | - Gwenaël Rabut
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France.
| |
Collapse
|
6
|
Tremblay R, Mehrjoo Y, Ahmed O, Simoneau A, McQuaid ME, Affar EB, Nislow C, Giaever G, Wurtele H. Persistent Acetylation of Histone H3 Lysine 56 Compromises the Activity of DNA Replication Origins. Mol Cell Biol 2023; 43:566-595. [PMID: 37811746 PMCID: PMC10791153 DOI: 10.1080/10985549.2023.2259739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 08/09/2023] [Indexed: 10/10/2023] Open
Abstract
In Saccharomyces cerevisiae, newly synthesized histones H3 are acetylated on lysine 56 (H3 K56ac) by the Rtt109 acetyltransferase prior to their deposition on nascent DNA behind replication forks. Two deacetylases of the sirtuin family, Hst3 and Hst4, remove H3 K56ac from chromatin after S phase. hst3Δ hst4Δ cells present constitutive H3 K56ac, which sensitizes cells to replicative stress via unclear mechanisms. A chemogenomic screen revealed that DBF4 heterozygosity sensitizes cells to NAM-induced inhibition of sirtuins. DBF4 and CDC7 encode subunits of the Dbf4-dependent kinase (DDK), which activates origins of DNA replication during S phase. We show that (i) cells harboring the dbf4-1 or cdc7-4 hypomorphic alleles are sensitized to NAM, and that (ii) the sirtuins Sir2, Hst1, Hst3, and Hst4 promote DNA replication in cdc7-4 cells. We further demonstrate that Rif1, an inhibitor of DDK-dependent activation of origins, causes DNA damage and replication defects in NAM-treated cells and hst3Δ hst4Δ mutants. cdc7-4 hst3Δ hst4Δ cells are shown to display delayed initiation of DNA replication, which is not due to intra-S checkpoint activation but requires Rtt109-dependent H3 K56ac. Our results suggest that constitutive H3 K56ac sensitizes cells to replicative stress in part by negatively influencing the activation of origins of DNA replication.
Collapse
Affiliation(s)
- Roch Tremblay
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Yosra Mehrjoo
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Oumaima Ahmed
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Antoine Simoneau
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Québec, Canada
| | - Mary E. McQuaid
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
7
|
Robert F, Jeronimo C. Transcription-coupled nucleosome assembly. Trends Biochem Sci 2023; 48:978-992. [PMID: 37657993 DOI: 10.1016/j.tibs.2023.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
Eukaryotic transcription occurs on chromatin, where RNA polymerase II encounters nucleosomes during elongation. These nucleosomes must unravel for the DNA to enter the active site. However, in most transcribed genes, nucleosomes remain intact due to transcription-coupled chromatin assembly mechanisms. These mechanisms primarily involve the local reassembly of displaced nucleosomes to prevent (epi)genomic instability and the emergence of cryptic transcription. As a fail-safe mechanism, cells can assemble nucleosomes de novo, particularly in highly transcribed genes, but this may result in the loss of epigenetic information. This review examines transcription-coupled chromatin assembly, with an emphasis on studies in yeast and recent structural studies. These studies shed light on how elongation factors and histone chaperones coordinate to enable nucleosome recycling during transcription.
Collapse
Affiliation(s)
- François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H3A 1A3, Canada.
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
8
|
Parisis N, Dans PD, Jbara M, Singh B, Schausi-Tiffoche D, Molina-Serrano D, Brun-Heath I, Hendrychová D, Maity SK, Buitrago D, Lema R, Nait Achour T, Giunta S, Girardot M, Talarek N, Rofidal V, Danezi K, Coudreuse D, Prioleau MN, Feil R, Orozco M, Brik A, Wu PYJ, Krasinska L, Fisher D. Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair. Nat Commun 2023; 14:5104. [PMID: 37607906 PMCID: PMC10444856 DOI: 10.1038/s41467-023-40843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
Histone post-translational modifications promote a chromatin environment that controls transcription, DNA replication and repair, but surprisingly few phosphorylations have been documented. We report the discovery of histone H3 serine-57 phosphorylation (H3S57ph) and show that it is implicated in different DNA repair pathways from fungi to vertebrates. We identified CHK1 as a major human H3S57 kinase, and disrupting or constitutively mimicking H3S57ph had opposing effects on rate of recovery from replication stress, 53BP1 chromatin binding, and dependency on RAD52. In fission yeast, mutation of all H3 alleles to S57A abrogated DNA repair by both non-homologous end-joining and homologous recombination, while cells with phospho-mimicking S57D alleles were partly compromised for both repair pathways, presented aberrant Rad52 foci and were strongly sensitised to replication stress. Mechanistically, H3S57ph loosens DNA-histone contacts, increasing nucleosome mobility, and interacts with H3K56. Our results suggest that dynamic phosphorylation of H3S57 is required for DNA repair and recovery from replication stress, opening avenues for investigating the role of this modification in other DNA-related processes.
Collapse
Affiliation(s)
- Nikolaos Parisis
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
- BPMP, CNRS, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- Institut Jacques Monod, CNRS, University Paris Diderot, Paris, France
| | - Pablo D Dans
- IRB Barcelona, BIST, Barcelona, Spain
- Bioinformatics Unit, Institute Pasteur of Montevideo, Montevideo, Uruguay
- Department of Biological Sciences, CENUR North Riverside, University of the Republic (UdelaR), Salto, Uruguay
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Denisa Hendrychová
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
| | | | | | - Thiziri Nait Achour
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Simona Giunta
- The Rockefeller University, New York, NY, USA
- Laboratory of Genome Evolution, Department of Biology and Biotechnology "Charles Darwin", University of Rome Sapienza, Rome, Italy
| | - Michael Girardot
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Nicolas Talarek
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Valérie Rofidal
- BPMP, CNRS, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Katerina Danezi
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Damien Coudreuse
- IGDR, CNRS, University of Rennes, Rennes, France
- IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | | | - Robert Feil
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
| | - Pei-Yun Jenny Wu
- IGDR, CNRS, University of Rennes, Rennes, France
- IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | - Liliana Krasinska
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Daniel Fisher
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
9
|
Yao G, Han N, Zheng H, Wang L. The Histone Deacetylase HstD Regulates Fungal Growth, Development and Secondary Metabolite Biosynthesis in Aspergillus terreus. Int J Mol Sci 2023; 24:12569. [PMID: 37628749 PMCID: PMC10454297 DOI: 10.3390/ijms241612569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Histone acetylation modification significantly affects secondary metabolism in filamentous fungi. However, how histone acetylation regulates secondary metabolite synthesis in the lovastatin (a lipid-lowering drug) producing Aspergillus terreus remains unknown because protein is involved and has been identified in this species. Here, the fungal-specific histone deacetylase gene, hstD, was characterized through functional genomics in two marine-derived A. terreus strains, Mj106 and RA2905. The results showed that the ablation of HstD resulted in reduced mycelium growth, less conidiation, and decreased lovastatin biosynthesis but significantly increased terrein biosynthesis. However, unlike its homologs in yeast, HstD was not required for fungal responses to DNA damage agents, indicating that HstD likely plays a novel role in the DNA damage repair process in A. terreus. Furthermore, the loss of HstD resulted in a significant upregulation of H3K56 and H3K27 acetylation when compared to the wild type, suggesting that epigenetic functions of HstD, as a deacetylase, target H3K27 and H3K56. Additionally, a set of no-histone targets with potential roles in fungal growth, conidiation, and secondary metabolism were identified for the first time using acetylated proteomic analysis. In conclusion, we provide a comprehensive analysis of HstD for its targets in histone or non-histone and its roles in fungal growth and development, DNA damage response, and secondary metabolism in A. terreus.
Collapse
Affiliation(s)
- Guangshan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| | - Na Han
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| | - Lu Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| |
Collapse
|
10
|
Guan H, Wang P, Zhang P, Ruan C, Ou Y, Peng B, Zheng X, Lei J, Li B, Yan C, Li H. Diverse modes of H3K36me3-guided nucleosomal deacetylation by Rpd3S. Nature 2023; 620:669-675. [PMID: 37468628 PMCID: PMC10432269 DOI: 10.1038/s41586-023-06349-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Context-dependent dynamic histone modifications constitute a key epigenetic mechanism in gene regulation1-4. The Rpd3 small (Rpd3S) complex recognizes histone H3 trimethylation on lysine 36 (H3K36me3) and deacetylates histones H3 and H4 at multiple sites across transcribed regions5-7. Here we solved the cryo-electron microscopy structures of Saccharomyces cerevisiae Rpd3S in its free and H3K36me3 nucleosome-bound states. We demonstrated a unique architecture of Rpd3S, in which two copies of Eaf3-Rco1 heterodimers are asymmetrically assembled with Rpd3 and Sin3 to form a catalytic core complex. Multivalent recognition of two H3K36me3 marks, nucleosomal DNA and linker DNAs by Eaf3, Sin3 and Rco1 positions the catalytic centre of Rpd3 next to the histone H4 N-terminal tail for deacetylation. In an alternative catalytic mode, combinatorial readout of unmethylated histone H3 lysine 4 and H3K36me3 by Rco1 and Eaf3 directs histone H3-specific deacetylation except for the registered histone H3 acetylated lysine 9. Collectively, our work illustrates dynamic and diverse modes of multivalent nucleosomal engagement and methylation-guided deacetylation by Rpd3S, highlighting the exquisite complexity of epigenetic regulation with delicately designed multi-subunit enzymatic machineries in transcription and beyond.
Collapse
Affiliation(s)
- Haipeng Guan
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Pei Wang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Pei Zhang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Chun Ruan
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutian Ou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Bo Peng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Xiangdong Zheng
- Research Center of Basic Medicine, Academy of Medical Sciences, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China
- Technology Center for Protein Sciences, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, MOE Key Laboratory of Cell Differentiation and Apoptosis, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China.
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure and Beijing Advanced Innovation Center for Structural Biology, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
11
|
Navarrete B, Ibeas JI, Barrales RR. Systematic characterization of Ustilago maydis sirtuins shows Sir2 as a modulator of pathogenic gene expression. Front Microbiol 2023; 14:1157990. [PMID: 37113216 PMCID: PMC10126416 DOI: 10.3389/fmicb.2023.1157990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phytopathogenic fungi must adapt to the different environmental conditions found during infection and avoid the immune response of the plant. For these adaptations, fungi must tightly control gene expression, allowing sequential changes in transcriptional programs. In addition to transcription factors, chromatin modification is used by eukaryotic cells as a different layer of transcriptional control. Specifically, the acetylation of histones is one of the chromatin modifications with a strong impact on gene expression. Hyperacetylated regions usually correlate with high transcription and hypoacetylated areas with low transcription. Thus, histone deacetylases (HDACs) commonly act as repressors of transcription. One member of the family of HDACs is represented by sirtuins, which are deacetylases dependent on NAD+, and, thus, their activity is considered to be related to the physiological stage of the cells. This property makes sirtuins good regulators during environmental changes. However, only a few examples exist, and with differences in the extent of the implication of the role of sirtuins during fungal phytopathogenesis. In this work, we have performed a systematic study of sirtuins in the maize pathogen Ustilago maydis, finding Sir2 to be involved in the dimorphic switch from yeast cell to filament and pathogenic development. Specifically, the deletion of sir2 promotes filamentation, whereas its overexpression highly reduces tumor formation in the plant. Moreover, transcriptomic analysis revealed that Sir2 represses genes that are expressed during biotrophism development. Interestingly, our results suggest that this repressive effect is not through histone deacetylation, indicating a different target of Sir2 in this fungus.
Collapse
|
12
|
Gospodinov A, Dzhokova S, Petrova M, Ugrinova I. Chromatin regulators in DNA replication and genome stability maintenance during S-phase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:243-280. [PMID: 37061334 DOI: 10.1016/bs.apcsb.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The duplication of genetic information is central to life. The replication of genetic information is strictly controlled to ensure that each piece of genomic DNA is copied only once during a cell cycle. Factors that slow or stop replication forks cause replication stress. Replication stress is a major source of genome instability in cancer cells. Multiple control mechanisms facilitate the unimpeded fork progression, prevent fork collapse and coordinate fork repair. Chromatin alterations, caused by histone post-translational modifications and chromatin remodeling, have critical roles in normal replication and in avoiding replication stress and its consequences. This text reviews the chromatin regulators that ensure DNA replication and the proper response to replication stress. We also briefly touch on exploiting replication stress in therapeutic strategies. As chromatin regulators are frequently mutated in cancer, manipulating their activity could provide many possibilities for personalized treatment.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Stefka Dzhokova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
13
|
Yan Y, Liao Z, Shen J, Zhu Z, Cao Y. Nicotinamide potentiates amphotericin B activity against Candida albicans. Virulence 2022; 13:1533-1542. [PMID: 36068709 PMCID: PMC9467617 DOI: 10.1080/21505594.2022.2119656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amphotericin B (AmB) is a widely used antifungal agent especially for the therapy of systemic fungal infections. However, the severe side effects of AmB often leads to the premature termination of the treatment. So it is imperative to find the drugs that can both reduce the dosage and enhance the antifungal efficacy of AmB. Here we demonstrated that Nicotinamide (NAM), a cheap and safe vitamin, could enhance the antifungal activities of AmB. We demonstrated the synergistic interaction of NAM and AmB against Candida albicans as well as other Candida spp. and Cryptococcus neoformans. Moreover, NAM could enhance of the activity of AmB against biofilm. This enhancement was also observed in disseminated candidiasis in vivo. Our further study revealed that AmB could induce oxidative damage through the modification of histone acetylation. AmB could inhibit the expression of HST3, an H3K56 deacetylase in C. albicans. The immunoblotting test revealed excessive H3K56ac in AmB-treated fungal cells. Consistantly, the hst3Δ mutant displayed high sensitivity to AmB, while addition of NAM, an H3K56 deacetylation inhibitor, resulted in an even severe inhibition in the growth of this strain. These results indicated that AmB could execute antifungal activity via boosting H3K56ac which was mediated by HST3, and the mechanism for the synergistic interaction of NAM and AmB was based on exacerbating this process, which led to even excessive H3K56ac and oxidative damage. This finding provided theoretical basis for better understanding the antifungal mechanisms of AmB and clinical application of this drug.
Collapse
Affiliation(s)
- Yu Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - ZeBin Liao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Juan Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Conte M, Eletto D, Pannetta M, Petrone AM, Monti MC, Cassiano C, Giurato G, Rizzo F, Tessarz P, Petrella A, Tosco A, Porta A. Effects of Hst3p inhibition in Candida albicans: a genome-wide H3K56 acetylation analysis. Front Cell Infect Microbiol 2022; 12:1031814. [PMID: 36389164 PMCID: PMC9647175 DOI: 10.3389/fcimb.2022.1031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Candida spp. represent the third most frequent worldwide cause of infection in Intensive Care Units with a mortality rate of almost 40%. The classes of antifungals currently available include azoles, polyenes, echinocandins, pyrimidine derivatives, and allylamines. However, the therapeutical options for the treatment of candidiasis are drastically reduced by the increasing antifungal resistance. The growing need for a more targeted antifungal therapy is limited by the concern of finding molecules that specifically recognize the microbial cell without damaging the host. Epigenetic writers and erasers have emerged as promising targets in different contexts, including the treatment of fungal infections. In C. albicans, Hst3p, a sirtuin that deacetylates H3K56ac, represents an attractive antifungal target as it is essential for the fungus viability and virulence. Although the relevance of such epigenetic regulator is documented for the development of new antifungal therapies, the molecular mechanism behind Hst3p-mediated epigenetic regulation remains unrevealed. Here, we provide the first genome-wide profiling of H3K56ac in C. albicans resulting in H3K56ac enriched regions associated with Candida sp. pathogenicity. Upon Hst3p inhibition, 447 regions gain H3K56ac. Importantly, these genomic areas contain genes encoding for adhesin proteins, degradative enzymes, and white-opaque switching. Moreover, our RNA-seq analysis revealed 1330 upregulated and 1081 downregulated transcripts upon Hst3p inhibition, and among them, we identified 87 genes whose transcriptional increase well correlates with the enrichment of H3K56 acetylation on their promoters, including some well-known regulators of phenotypic switching and virulence. Based on our evidence, Hst3p is an appealing target for the development of new potential antifungal drugs.
Collapse
Affiliation(s)
- Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Martina Pannetta
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Anna M. Petrone
- Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano, Salerno, Italy
| | - Maria C. Monti
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- Department of Pharmacy, University of Naples ‘Federico II’, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | - Peter Tessarz
- Max Planck Research Group “Chromatin and Ageing”, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
15
|
Aricthota S, Rana PP, Haldar D. Histone acetylation dynamics in repair of DNA double-strand breaks. Front Genet 2022; 13:926577. [PMID: 36159966 PMCID: PMC9503837 DOI: 10.3389/fgene.2022.926577] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Packaging of eukaryotic genome into chromatin is a major obstacle to cells encountering DNA damage caused by external or internal agents. For maintaining genomic integrity, the double-strand breaks (DSB) must be efficiently repaired, as these are the most deleterious type of DNA damage. The DNA breaks have to be detected in chromatin context, the DNA damage response (DDR) pathways have to be activated to repair breaks either by non‐ homologous end joining and homologous recombination repair. It is becoming clearer now that chromatin is not a mere hindrance to DDR, it plays active role in sensing, detection and repair of DNA damage. The repair of DSB is governed by the reorganization of the pre-existing chromatin, leading to recruitment of specific machineries, chromatin remodelling complexes, histone modifiers to bring about dynamic alterations in histone composition, nucleosome positioning, histone modifications. In response to DNA break, modulation of chromatin occurs via various mechanisms including post-translational modification of histones. DNA breaks induce many types of histone modifications, such as phosphorylation, acetylation, methylation and ubiquitylation on specific histone residues which are signal and context dependent. DNA break induced histone modifications have been reported to function in sensing the breaks, activating processing of breaks by specific pathways, and repairing damaged DNA to ensure integrity of the genome. Favourable environment for DSB repair is created by generating open and relaxed chromatin structure. Histone acetylation mediate de-condensation of chromatin and recruitment of DSB repair proteins to their site of action at the DSB to facilitate repair. In this review, we will discuss the current understanding on the critical role of histone acetylation in inducing changes both in chromatin organization and promoting recruitment of DSB repair proteins to sites of DNA damage. It consists of an overview of function and regulation of the deacetylase enzymes which remove these marks and the function of histone acetylation and regulators of acetylation in genome surveillance.
Collapse
|
16
|
Wen M, Lan H, Sun R, Chen X, Zhang X, Zhu Z, Tan C, Yuan J, Wang S. Histone deacetylase SirE regulates development, DNA damage response and aflatoxin production in Aspergillus flavus. Environ Microbiol 2022; 24:5596-5610. [PMID: 36059183 DOI: 10.1111/1462-2920.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Aspergillus flavus is a ubiquitous saprotrophic soil-borne pathogenic fungus that causes crops contamination with the carcinogen aflatoxins. Although Sirtuin E (SirE) is known to be a NAD-dependent histone deacetylase involved in global transcriptional regulation. Its biological functions in A. flavus are not fully understood. To explore the effects of SirE, we found that SirE was located in the nucleus and increased the level of H3K56 acetylation. The ΔsirE mutant had the most severe growth defect in the sirtuin family. The RNA-Seq revealed that sirE was crucial for secondary metabolism production as well as genetic information process and oxidation-reduction in A. flavus. Further analysis revealed that the ΔsirE mutant increased aflatoxin production. Both the sirE deletion and H3K56 mutants were highly sensitive to DNA damage and oxidative stresses, indicating that SirE was required for DNA damage and redox reaction by the H3K56 locus. Furthermore, the ΔsirE mutant displayed high sensitivity to osmotic stress and cell wall stress, but they may not be associated with the H3K56. Finally, the catalytic activity site N192 of SirE was required for regulating growth, deacetylase function and aflatoxin production. Together, SirE is essential for histone deacetylation and biological function in A. flavus.
Collapse
Affiliation(s)
- Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuo Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Can Tan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Reardon RM, Walsh AK, Larsen CI, Schmidberger LH, Morrow LA, Thompson AE, Wellik IM, Thompson JS. An epigenetically inherited UV hyper-resistance phenotype in Saccharomyces cerevisiae. Epigenetics Chromatin 2022; 15:31. [PMID: 35986361 PMCID: PMC9392361 DOI: 10.1186/s13072-022-00464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Epigenetics refers to inheritable phenotypic changes that occur in the absence of genetic alteration. Such adaptations can provide phenotypic plasticity in reaction to environmental cues. While prior studies suggest that epigenetics plays a role in the response to DNA damage, no direct demonstration of epigenetically inheritable processes have been described in this context. Results Here we report the identification of an epigenetic response to ultraviolet (UV) radiation in the baker’s yeast Saccharomyces cerevisiae. Cells that have been previously exposed to a low dosage of UV exhibit dramatically increased survival following subsequent UV exposure, which we refer to as UV hyper-resistance (UVHR). This phenotypic change persists for multiple mitotic generations, without any indication of an underlying genetic basis. Pre-exposed cells experience a notable reduction in the amount of DNA damage caused by the secondary UV exposure. While the mechanism for the protection is not fully characterized, our results suggest that UV-induced cell size increases and/or cell wall changes are contributing factors. In addition, we have identified two histone modifications, H3K56 acetylation and H3K4 methylation, that are important for UVHR, potentially serving as mediators of UV protective gene expression patterns, as well as epigenetic marks to propagate the phenotype across cell generations. Conclusions Exposure to UV radiation triggers an epigenetically inheritable protective response in baker’s yeast that increases the likelihood of survival in response to subsequent UV exposures. These studies provide the first demonstration of an epigenetically inheritable dimension of the cellular response to DNA damage. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00464-5.
Collapse
|
18
|
Jonas F, Yaakov G, Barkai N. Rtt109 promotes nucleosome replacement ahead of the replication fork. Genome Res 2022; 32:1089-1098. [PMID: 35609993 PMCID: PMC9248883 DOI: 10.1101/gr.276674.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
DNA replication perturbs chromatin by triggering the eviction, replacement, and incorporation of nucleosomes. How this dynamic is orchestrated in time and space is poorly understood. Here, we apply a genetically encoded sensor for histone exchange to follow the time-resolved histone H3 exchange profile in budding yeast cells undergoing slow synchronous replication in nucleotide-limiting conditions. We find that new histones are incorporated not only behind, but also ahead of the replication fork. We provide evidence that Rtt109, the S-phase-induced acetyltransferase, stabilizes nucleosomes behind the fork but promotes H3 replacement ahead of the fork. Increased replacement ahead of the fork is independent of the primary Rtt109 acetylation target H3K56 and rather results from Vps75-dependent Rtt109 activity toward the H3 N terminus. Our results suggest that, at least under nucleotide-limiting conditions, selective incorporation of differentially modified H3s behind and ahead of the replication fork results in opposing effects on histone exchange, likely reflecting the distinct challenges for genome stability at these different regions.
Collapse
Affiliation(s)
- Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
19
|
Zhao G, Rusche LN. Sirtuins in Epigenetic Silencing and Control of Gene Expression in Model and Pathogenic Fungi. Annu Rev Microbiol 2022; 76:157-178. [PMID: 35609947 DOI: 10.1146/annurev-micro-041020-100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi, including yeasts, molds, and mushrooms, proliferate on decaying matter and then adopt quiescent forms once nutrients are depleted. This review explores how fungi use sirtuin deacetylases to sense and respond appropriately to changing nutrients. Because sirtuins are NAD+-dependent deacetylases, their activity is sensitive to intracellular NAD+ availability. This allows them to transmit information about a cell's metabolic state on to the biological processes they influence. Fungal sirtuins are primarily known to deacetylate histones, repressing transcription and modulating genome stability. Their target genes include those involved in NAD+ homeostasis, metabolism, sporulation, secondary metabolite production, and virulence traits of pathogenic fungi. By targeting different genes over evolutionary time, sirtuins serve as rewiring points that allow organisms to evolve novel responses to low NAD+ stress by bringing relevant biological processes under the control of sirtuins. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guolei Zhao
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| | - Laura N Rusche
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| |
Collapse
|
20
|
Histone Chaperone Nrp1 Mutation Affects the Acetylation of H3K56 in Tetrahymena thermophila. Cells 2022; 11:cells11030408. [PMID: 35159218 PMCID: PMC8833950 DOI: 10.3390/cells11030408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Histone modification and nucleosome assembly are mainly regulated by various histone-modifying enzymes and chaperones. The roles of histone-modification enzymes have been well analyzed, but the molecular mechanism of histone chaperones in histone modification and nucleosome assembly is incompletely understood. We previously found that the histone chaperone Nrp1 is localized in the micronucleus (MIC) and the macronucleus (MAC) and involved in the chromatin stability and nuclear division of Tetrahymena thermophila. In the present work, we found that truncated C-terminal mutant HA-Nrp1TrC abnormally localizes in the cytoplasm. The truncated-signal-peptide mutants HA-Nrp1TrNLS1 and HA-Nrp1TrNLS2 are localized in the MIC and MAC. Overexpression of Nrp1TrNLS1 inhibited cellular proliferation and disrupted micronuclear mitosis during the vegetative growth stage. During sexual development, Nrp1TrNLS1 overexpression led to abnormal bouquet structures and meiosis arrest. Furthermore, Histone H3 was not transported into the nucleus; instead, it formed an abnormal speckled cytoplastic distribution in the Nrp1TrNLS1 mutants. The acetylation level of H3K56 in the mutants also decreased, leading to significant changes in the transcription of the genome of the Nrp1TrNLS1 mutants. The histone chaperone Nrp1 regulates the H3 nuclear import and acetylation modification of H3K56 and affects chromatin stability and genome transcription in Tetrahymena.
Collapse
|
21
|
Whale AJ, King M, Hull RM, Krueger F, Houseley J. Stimulation of adaptive gene amplification by origin firing under replication fork constraint. Nucleic Acids Res 2022; 50:915-936. [PMID: 35018465 PMCID: PMC8789084 DOI: 10.1093/nar/gkab1257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptive mutations can cause drug resistance in cancers and pathogens, and increase the tolerance of agricultural pests and diseases to chemical treatment. When and how adaptive mutations form is often hard to discern, but we have shown that adaptive copy number amplification of the copper resistance gene CUP1 occurs in response to environmental copper due to CUP1 transcriptional activation. Here we dissect the mechanism by which CUP1 transcription in budding yeast stimulates copy number variation (CNV). We show that transcriptionally stimulated CNV requires TREX-2 and Mediator, such that cells lacking TREX-2 or Mediator respond normally to copper but cannot acquire increased resistance. Mediator and TREX-2 can cause replication stress by tethering transcribed loci to nuclear pores, a process known as gene gating, and transcription at the CUP1 locus causes a TREX-2-dependent accumulation of replication forks indicative of replication fork stalling. TREX-2-dependent CUP1 gene amplification occurs by a Rad52 and Rad51-mediated homologous recombination mechanism that is enhanced by histone H3K56 acetylation and repressed by Pol32 and Pif1. CUP1 amplification is also critically dependent on late-firing replication origins present in the CUP1 repeats, and mutations that remove or inactivate these origins strongly suppress the acquisition of copper resistance. We propose that replicative stress imposed by nuclear pore association causes replication bubbles from these origins to collapse soon after activation, leaving a tract of H3K56-acetylated chromatin that promotes secondary recombination events during elongation after replication fork re-start events. The capacity for inefficient replication origins to promote copy number variation renders certain genomic regions more fragile than others, and therefore more likely to undergo adaptive evolution through de novo gene amplification.
Collapse
Affiliation(s)
- Alex J Whale
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Ryan M Hull
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
22
|
Ziane R, Camasses A, Radman-Livaja M. The asymmetric distribution of RNA polymerase II and nucleosomes on replicated daughter genomes is caused by differences in replication timing between the lagging and the leading strand. Genome Res 2022; 32:337-356. [PMID: 35042724 PMCID: PMC8805712 DOI: 10.1101/gr.275387.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/19/2021] [Indexed: 11/24/2022]
Abstract
Chromatin features are thought to have a role in the epigenetic transmission of transcription states from one cell generation to the next. It is unclear how chromatin structure survives disruptions caused by genomic replication or whether chromatin features are instructive of the transcription state of the underlying gene. We developed a method to monitor budding yeast replication, transcription, and chromatin maturation dynamics on each daughter genome in parallel, with which we identified clusters of secondary origins surrounding known origins. We found a difference in the timing of lagging and leading strand replication on the order of minutes at most yeast genes. We propose a model in which the majority of old histones and RNA polymerase II (RNAPII) bind to the gene copy that replicated first, while newly synthesized nucleosomes are assembled on the copy that replicated second. RNAPII enrichment then shifts to the sister copy that replicated second. The order of replication is largely determined by genic orientation: If transcription and replication are codirectional, the leading strand replicates first; if they are counterdirectional, the lagging strand replicates first. A mutation in the Mcm2 subunit of the replicative helicase Mcm2-7 that impairs Mcm2 interactions with histone H3 slows down replication forks but does not qualitatively change the asymmetry in nucleosome distribution observed in the WT. We propose that active transcription states are inherited simultaneously and independently of their underlying chromatin states through the recycling of the transcription machinery and old histones, respectively. Transcription thus actively contributes to the reestablishment of the active chromatin state.
Collapse
Affiliation(s)
- Rahima Ziane
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, CNRS, 34293 Montpellier Cedex 5, France.,Université de Montpellier, 34090 Montpellier, France
| | - Alain Camasses
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, CNRS, 34293 Montpellier Cedex 5, France.,Université de Montpellier, 34090 Montpellier, France
| | - Marta Radman-Livaja
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, CNRS, 34293 Montpellier Cedex 5, France.,Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
23
|
Bryll AR, Peterson CL. Functional interaction between the RNA exosome and the sirtuin deacetylase Hst3 maintains transcriptional homeostasis. Genes Dev 2021; 36:17-22. [PMID: 34916303 PMCID: PMC8763048 DOI: 10.1101/gad.348923.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
In this study, Bryll et al. found that inactivation of the RNA exosome leads to global reduction of nascent mRNA transcripts, and that this defect is accentuated by loss of deposition of histone variant H2A.Z. They identify the mRNA for the sirtuin deacetylase Hst3 as a key target for the RNA exosome that mediates communication between RNA degradation and transcription machineries. Eukaryotic cells maintain an optimal level of mRNAs through unknown mechanisms that balance RNA synthesis and degradation. We found that inactivation of the RNA exosome leads to global reduction of nascent mRNA transcripts, and that this defect is accentuated by loss of deposition of histone variant H2A.Z. We identify the mRNA for the sirtuin deacetylase Hst3 as a key target for the RNA exosome that mediates communication between RNA degradation and transcription machineries. These findings reveal how the RNA exosome and H2A.Z function together to control a deacetylase, ensuring proper levels of transcription in response to changes in RNA degradation.
Collapse
Affiliation(s)
- Alysia R Bryll
- Program of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.,Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Craig L Peterson
- Program of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
24
|
PCNA Loaders and Unloaders-One Ring That Rules Them All. Genes (Basel) 2021; 12:genes12111812. [PMID: 34828416 PMCID: PMC8618651 DOI: 10.3390/genes12111812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
During each cell duplication, the entirety of the genomic DNA in every cell must be accurately and quickly copied. Given the short time available for the chore, the requirement of many proteins, and the daunting amount of DNA present, DNA replication poses a serious challenge to the cell. A high level of coordination between polymerases and other DNA and chromatin-interacting proteins is vital to complete this task. One of the most important proteins for maintaining such coordination is PCNA. PCNA is a multitasking protein that forms a homotrimeric ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and acts as a landing platform for different proteins interacting with DNA and chromatin. Therefore, PCNA is a signaling hub that influences the rate and accuracy of DNA replication, regulates DNA damage repair, controls chromatin formation during the replication, and the proper segregation of the sister chromatids. With so many essential roles, PCNA recruitment and turnover on the chromatin is of utmost importance. Three different, conserved protein complexes are in charge of loading/unloading PCNA onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA during the S-phase. The Ctf18 and Elg1 (ATAD5 in mammalian) proteins form complexes similar to RFC, with particular functions in the cell’s nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast and mammals.
Collapse
|
25
|
Uruci S, Lo CSY, Wheeler D, Taneja N. R-Loops and Its Chro-Mates: The Strange Case of Dr. Jekyll and Mr. Hyde. Int J Mol Sci 2021; 22:ijms22168850. [PMID: 34445553 PMCID: PMC8396322 DOI: 10.3390/ijms22168850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/22/2022] Open
Abstract
Since their discovery, R-loops have been associated with both physiological and pathological functions that are conserved across species. R-loops are a source of replication stress and genome instability, as seen in neurodegenerative disorders and cancer. In response, cells have evolved pathways to prevent R-loop accumulation as well as to resolve them. A growing body of evidence correlates R-loop accumulation with changes in the epigenetic landscape. However, the role of chromatin modification and remodeling in R-loops homeostasis remains unclear. This review covers various mechanisms precluding R-loop accumulation and highlights the role of chromatin modifiers and remodelers in facilitating timely R-loop resolution. We also discuss the enigmatic role of RNA:DNA hybrids in facilitating DNA repair, epigenetic landscape and the potential role of replication fork preservation pathways, active fork stability and stalled fork protection pathways, in avoiding replication-transcription conflicts. Finally, we discuss the potential role of several Chro-Mates (chromatin modifiers and remodelers) in the likely differentiation between persistent/detrimental R-loops and transient/benign R-loops that assist in various physiological processes relevant for therapeutic interventions.
Collapse
Affiliation(s)
- Sidrit Uruci
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
| | - Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA;
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (S.U.); (C.S.Y.L.)
- Correspondence:
| |
Collapse
|
26
|
Ghugari R, Tsao S, Schmidt M, Bonneil É, Brenner C, Verreault A. Mechanisms to reduce the cytotoxicity of pharmacological nicotinamide concentrations in the pathogenic fungus Candida albicans. FEBS J 2021; 288:3478-3506. [PMID: 33155404 DOI: 10.1111/febs.15622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/13/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022]
Abstract
Candida albicans is a pathogenic fungus that causes systemic infections and mortality in immunosuppressed individuals. We previously showed that deacetylation of histone H3 lysine 56 by Hst3 is essential for C. albicans viability. Hst3 is a fungal-specific NAD+ -dependent protein deacetylase of the sirtuin family. In vivo, supraphysiological concentrations of nicotinamide (NAM) are required for Hst3 inhibition and cytotoxicity. This underscores the importance of identifying mechanisms by which C. albicans can modulate intracellular NAM concentrations. For the first time in a pathogenic fungus, we combine genetics, heavy isotope labeling, and targeted quantitative metabolomics to identify genes, pathways, and mechanisms by which C. albicans can reduce the cytotoxicity of high NAM concentrations. We discovered three distinct fates for supraphysiological NAM concentrations. First, upon transient exposure to NAM, high intracellular NAM concentrations rapidly return near the physiological levels observed in cells that are not exposed to NAM. Second, during the first step of a fungal-specific NAM salvage pathway, NAM is converted into nicotinic acid, a metabolite that cannot inhibit the sirtuin Hst3. Third, we provide evidence that NAM enters the NAD+ metabolome through a NAM exchange reaction that contributes to NAM-mediated inhibition of sirtuins. However, in contrast to the other fates of NAM, the NAM exchange reaction cannot cause a net decrease in the intracellular concentration of NAM. Therefore, this reaction cannot enhance resistance to NAM. In summary, we demonstrate that C. albicans possesses at least two mechanisms to attenuate the cytotoxicity of pharmacological NAM concentrations. It seems likely that those two mechanisms of resistance to cytotoxic NAM concentrations are conserved in many other pathogenic fungi.
Collapse
Affiliation(s)
- Rahul Ghugari
- Institute for Research in Immunology and Cancer, Université de Montréal, QC, Canada
- Programme de Biologie Moléculaire, Université de Montréal, QC, Canada
| | - Sarah Tsao
- Institute for Research in Immunology and Cancer, Université de Montréal, QC, Canada
| | - Mark Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, IA, USA
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, QC, Canada
| | - Charles Brenner
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, QC, Canada
| |
Collapse
|
27
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
28
|
Salim D, Bradford WD, Rubinstein B, Gerton JL. DNA replication, transcription, and H3K56 acetylation regulate copy number and stability at tandem repeats. G3-GENES GENOMES GENETICS 2021; 11:6174693. [PMID: 33729510 DOI: 10.1093/g3journal/jkab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022]
Abstract
Tandem repeats are inherently unstable and exhibit extensive copy number polymorphisms. Despite mounting evidence for their adaptive potential, the mechanisms associated with regulation of the stability and copy number of tandem repeats remain largely unclear. To study copy number variation at tandem repeats, we used two well-studied repetitive arrays in the budding yeast genome, the ribosomal DNA (rDNA) locus, and the copper-inducible CUP1 gene array. We developed powerful, highly sensitive, and quantitative assays to measure repeat instability and copy number and used them in multiple high-throughput genetic screens to define pathways involved in regulating copy number variation. These screens revealed that rDNA stability and copy number are regulated by DNA replication, transcription, and histone acetylation. Through parallel studies of both arrays, we demonstrate that instability can be induced by DNA replication stress and transcription. Importantly, while changes in stability in response to stress are observed within a few cell divisions, a change in steady state repeat copy number requires selection over time. Further, H3K56 acetylation is required for regulating transcription and transcription-induced instability at the CUP1 array, and restricts transcription-induced amplification. Our work suggests that the modulation of replication and transcription is a direct, reversible strategy to alter stability at tandem repeats in response to environmental stimuli, which provides cells rapid adaptability through copy number variation. Additionally, histone acetylation may function to promote the normal adaptive program in response to transcriptional stress. Given the omnipresence of DNA replication, transcription, and chromatin marks like histone acetylation, the fundamental mechanisms we have uncovered significantly advance our understanding of the plasticity of tandem repeats more generally.
Collapse
Affiliation(s)
- Devika Salim
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States of America.,Open University, Milton Keynes MK7 6BJ, United Kingdom
| | - William D Bradford
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States of America
| | - Boris Rubinstein
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States of America
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States of America.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| |
Collapse
|
29
|
Gershon L, Kupiec M. Histones on fire: the effect of Dun1 and Mrc1 on origin firing and replication of hyper-acetylated genomes. Curr Genet 2021; 67:501-510. [PMID: 33715066 DOI: 10.1007/s00294-021-01175-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022]
Abstract
As cells replicate their DNA, there is a need to synthesize new histones with which to wrap it. Newly synthesized H3 histones that are incorporated into the assembling chromatin behind the replication fork are acetylated at lysine 56. The acetylation is removed by two deacetylases, Hst3 and Hst4. This process is tightly regulated and any perturbation leads to genomic instability and replicative stress. We recently showed that Dun1, a kinase implicated mainly in the regulation of dNTPs, is vital in cells with hyper-acetylation, to counteract Rad53's inhibition on late-firing origins of replication. Our work showed that ∆hst3 ∆hst4 cells depend on late origin firing for survival, and are unable to prevent Rad53's inhibition when Dun1 is inactive. Thus, our work describes a role for Dun1 that is independent on its known function as a regulator of dNTP levels. Here we show that Mrc1 (Claspin in mammals), a protein that moves with the replicating fork and participates in both replication and checkpoint functions, plays also an essential role in the absence of H3K56Ac deacetylation. The sum of the results shown here and in our recent publication suggests that dormant origins are also utilized in these cells, making Mrc1, which regulates firing from these origins, also essential when histone H3 is hyper-acetylated. Thus, cells suffering from hyper-acetylation of H3K56 experience replication stress caused by a combination of prone-to-collapse forks and limited replication tracts. This combination makes both Dun1 and Mrc1, each acting on different targets, essential for viability.
Collapse
Affiliation(s)
- Lihi Gershon
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
30
|
The Amazing Acrobat: Yeast's Histone H3K56 Juggles Several Important Roles While Maintaining Perfect Balance. Genes (Basel) 2021; 12:genes12030342. [PMID: 33668997 PMCID: PMC7996553 DOI: 10.3390/genes12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.
Collapse
|
31
|
A novel role for Dun1 in the regulation of origin firing upon hyper-acetylation of H3K56. PLoS Genet 2021; 17:e1009391. [PMID: 33600490 PMCID: PMC7924802 DOI: 10.1371/journal.pgen.1009391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/02/2021] [Accepted: 02/01/2021] [Indexed: 01/27/2023] Open
Abstract
During DNA replication newly synthesized histones are incorporated into the chromatin of the replicating sister chromatids. In the yeast Saccharomyces cerevisiae new histone H3 molecules are acetylated at lysine 56. This modification is carefully regulated during the cell cycle, and any disruption of this process is a source of genomic instability. Here we show that the protein kinase Dun1 is necessary in order to maintain viability in the absence of the histone deacetylases Hst3 and Hst4, which remove the acetyl moiety from histone H3. This lethality is not due to the well-characterized role of Dun1 in upregulating dNTPs, but rather because Dun1 is needed in order to counteract the checkpoint kinase Rad53 (human CHK2) that represses the activity of late firing origins. Deletion of CTF18, encoding the large subunit of an alternative RFC-like complex (RLC), but not of components of the Elg1 or Rad24 RLCs, is enough to overcome the dependency of cells with hyper-acetylated histones on Dun1. We show that the detrimental function of Ctf18 depends on its interaction with the leading strand polymerase, Polε. Our results thus show that the main problem of cells with hyper-acetylated histones is the regulation of their temporal and replication programs, and uncover novel functions for the Dun1 protein kinase and the Ctf18 clamp loader. Within the cell’s nucleus the DNA is wrapped around proteins called histones. Upon DNA replication, newly synthesized H3 histones are acetylated at lysine 56. This acetylation is significant for the cell because when it is not removed in a timely manner it leads to genomic instability. We have investigated the source of this instability and discovered that the kinase Dun1, usually implicated in the regulation of dNTPs, the building blocks of DNA, has a novel, dNTP-independent, essential role when histones are hyper-acetylated. The essential role of Dun1 is in the regulation of the temporal program of DNA replication. Thus, our results uncover what the main defect is in cells unable to regulate the acetylation of histones, while revealing new functions for well-characterized proteins with roles in genome stability maintenance.
Collapse
|
32
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
33
|
Zhu X, Liao Y, Tang L. Targeting BRD9 for Cancer Treatment: A New Strategy. Onco Targets Ther 2020; 13:13191-13200. [PMID: 33380808 PMCID: PMC7769155 DOI: 10.2147/ott.s286867] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 01/01/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in multiple cancer types, by regulating tumor cell growth. The tumor biological functions of BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bromodomain recruits the ncBAF complex to the promoter to regulate gene transcription. This review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic potential of BRD9 has been exploited to some extent, research on the detailed biological mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great challenge.
Collapse
Affiliation(s)
- Xiuzuo Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Liling Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
34
|
Braberg H, Echeverria I, Bohn S, Cimermancic P, Shiver A, Alexander R, Xu J, Shales M, Dronamraju R, Jiang S, Dwivedi G, Bogdanoff D, Chaung KK, Hüttenhain R, Wang S, Mavor D, Pellarin R, Schneidman D, Bader JS, Fraser JS, Morris J, Haber JE, Strahl BD, Gross CA, Dai J, Boeke JD, Sali A, Krogan NJ. Genetic interaction mapping informs integrative structure determination of protein complexes. Science 2020; 370:eaaz4910. [PMID: 33303586 PMCID: PMC7946025 DOI: 10.1126/science.aaz4910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Determining structures of protein complexes is crucial for understanding cellular functions. Here, we describe an integrative structure determination approach that relies on in vivo measurements of genetic interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or exposed to environmental perturbations, followed by converting similarities between two profiles into an upper bound on the distance between the mutated residues. We determine the structure of the yeast histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the method to subunits Rpb1-Rpb2 of yeast RNA polymerase II and subunits RpoB-RpoC of bacterial RNA polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from both genetic interactions and cross-links further improves model accuracy and precision. The approach provides an efficient means to augment integrative structure determination with in vivo observations.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan Bohn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Peter Cimermancic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anthony Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Richard Alexander
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gajendradhar Dwivedi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Derek Bogdanoff
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kaitlin K Chaung
- Center for Advanced Technology, Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Shuyi Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Mavor
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dina Schneidman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James S Fraser
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John Morris
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Carol A Gross
- Department of Microbiology and Immunology and Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jef D Boeke
- NYU Langone Health, New York, NY 10016, USA.
- High Throughput Biology Center and Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
35
|
Hanasaki M, Yaku K, Yamauchi M, Nakagawa T, Masumoto H. Deletion of the GAPDH gene contributes to genome stability in Saccharomyces cerevisiae. Sci Rep 2020; 10:21146. [PMID: 33273685 PMCID: PMC7713361 DOI: 10.1038/s41598-020-78302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
Cellular metabolism is directly or indirectly associated with various cellular processes by producing a variety of metabolites. Metabolic alterations may cause adverse effects on cell viability. However, some alterations potentiate the rescue of the malfunction of the cell system. Here, we found that the alteration of glucose metabolism suppressed genome instability caused by the impairment of chromatin structure. Deletion of the TDH2 gene, which encodes glyceraldehyde 3-phospho dehydrogenase and is essential for glycolysis/gluconeogenesis, partially suppressed DNA damage sensitivity due to chromatin structure, which was persistently acetylated histone H3 on lysine 56 in cells with deletions of both HST3 and HST4, encoding NAD+-dependent deacetylases. tdh2 deletion also restored the short replicative lifespan of cells with deletion of sir2, another NAD+-dependent deacetylase, by suppressing intrachromosomal recombination in rDNA repeats increased by the unacetylated histone H4 on lysine 16. tdh2 deletion also suppressed recombination between direct repeats in hst3∆ hst4∆ cells by suppressing the replication fork instability that leads to both DNA deletions among repeats. We focused on quinolinic acid (QUIN), a metabolic intermediate in the de novo nicotinamide adenine dinucleotide (NAD+) synthesis pathway, which accumulated in the tdh2 deletion cells and was a candidate metabolite to suppress DNA replication fork instability. Deletion of QPT1, quinolinate phosphoribosyl transferase, elevated intracellular QUIN levels and partially suppressed the DNA damage sensitivity of hst3∆ hst4∆ cells as well as tdh2∆ cells. qpt1 deletion restored the short replicative lifespan of sir2∆ cells by suppressing intrachromosomal recombination among rDNA repeats. In addition, qpt1 deletion could suppress replication fork slippage between direct repeats. These findings suggest a connection between glucose metabolism and genomic stability.
Collapse
Affiliation(s)
- Miki Hanasaki
- Biomedical Research Support Center (BRSC), Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center (BRSC), Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
| |
Collapse
|
36
|
Shanmugam MK, Dharmarajan A, Warrier S, Bishayee A, Kumar AP, Sethi G, Ahn KS. Role of histone acetyltransferase inhibitors in cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:149-191. [PMID: 33931138 DOI: 10.1016/bs.apcsb.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of cancer is a complex phenomenon driven by various extrinsic as well as intrinsic risk factors including epigenetic modifications. These post-translational modifications are encountered in diverse cancer cells and appear for a relatively short span of time. These changes can significantly affect various oncogenic genes and proteins involved in cancer initiation and progression. Histone lysine acetylation and deacetylation processes are controlled by two opposing classes of enzymes that modulate gene regulation either by adding an acetyl moiety on a histone lysine residue by histone lysine acetyltransferases (KATs) or via removing it by histone deacetylases (KDACs). Deregulated KAT activity has been implicated in the development of several diseases including cancer and can be targeted for the development of anti-neoplastic drugs. Here, we describe the predominant epigenetic changes that can affect key KAT superfamily members during carcinogenesis and briefly highlight the pharmacological potential of employing lysine acetyltransferase inhibitors (KATi) for cancer therapy.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunasalam Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education & Research, Chennai, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Yuan YG, Wang JL, Mesalam A, Li L, Choi YJ, Talimur Reza AMM, Zhou D, Chen L, Qian C. Nicotinamide-induced mouse embryo developmental defect rescued by resveratrol and I-CBP112. Mol Reprod Dev 2020; 87:1009-1017. [PMID: 32818292 DOI: 10.1002/mrd.23405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
Cell cycle of mouse embryo could be delayed by nicotinamide (NAM). Histone H3 lysine 56 (H3K56ac) acetylation plays an important role in mammalian genomic stability and the function of this modification in mouse embryos is not known. Hence, we designed to study the effects of NAM-induced oxidative stress on the developmental ability of mouse embryos, on the acetylation of H3K56ac and the possible functions of this modification related to mouse embryo development. Treatment with NAM (10, 20, or 40 mmol/L for 24 or 48 hr) during in vitro culture significantly decreased developmental rate of blastocyst (24 hr: 90.2 vs. 81.2, 43.2, and 18.2, with p > .05, p < .01, respectively; 48 hr: 89.3 vs. 53.2%, 12.1%, and 0% with p < .05, respectively). NAM treatment (20 mmol/L) for 6 and 31 hr resulted in increased intracellular reactive oxygen species levels in two-cell embryos, and apoptotic cell numbers in blastocysts. Resveratrol (RSV) and I-CBP112 rescued the 20 mmol/L NAM-induced embryo developmental defects. RSV and I-CBP112 increased the level of Sirt1 and decreased the level of H3K56ac induced by NAM in two-cell embryos (p < .05). These data suggest that NAM treatment decreases the expression of Sirt1, which induces high levels of H3K56 acetylation that may be involved in oxidative stress-induced mouse embryo defects, which can be rescued by RSV and I-CBP112.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis/Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jia-Lin Wang
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ling Li
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yun-Jung Choi
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Abu Musa Md Talimur Reza
- Division of Bioinformatics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Dongjie Zhou
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Li Chen
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen Qian
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
38
|
Goodnight D, Rine J. S-phase-independent silencing establishment in Saccharomyces cerevisiae. eLife 2020; 9:58910. [PMID: 32687055 PMCID: PMC7398696 DOI: 10.7554/elife.58910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
The establishment of silent chromatin, a heterochromatin-like structure at HML and HMR in Saccharomyces cerevisiae, depends on progression through S phase of the cell cycle, but the molecular nature of this requirement has remained elusive despite intensive study. Using high-resolution chromatin immunoprecipitation and single-molecule RNA analysis, we found that silencing establishment proceeded via gradual repression of transcription in individual cells over several cell cycles, and that the cell-cycle-regulated step was downstream of Sir protein recruitment. In contrast to prior results, HML and HMR had identical cell-cycle requirements for silencing establishment, with no apparent contribution from a tRNA gene adjacent to HMR. We identified the cause of the S-phase requirement for silencing establishment: removal of transcription-favoring histone modifications deposited by Dot1, Sas2, and Rtt109. These results revealed that silencing establishment was absolutely dependent on the cell-cycle-regulated interplay between euchromatic and heterochromatic histone modifications.
Collapse
Affiliation(s)
- Davis Goodnight
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
39
|
Karányi Z, Hornyák L, Székvölgyi L. Histone H3 Lysine 56 Acetylation Is Required for Formation of Normal Levels of Meiotic DNA Breaks in S. cerevisiae. Front Cell Dev Biol 2020; 7:364. [PMID: 31998719 PMCID: PMC6970188 DOI: 10.3389/fcell.2019.00364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/12/2019] [Indexed: 01/27/2023] Open
Abstract
Meiotic recombination is initiated by Spo11-catalyzed DNA double-strand breaks (DSBs) that are promoted by histone modifications and histone modifying enzymes. Herein we investigated the role of histone H3 lysine 56 acetylation (H3K56ac) located near the entry/exit points of the DNA in the globular H3 domain. We generated a series of mutant cells (asf1Δ, rtt109Δ, hst3/4Δ, and H3K56A) in which the endogenous level of H3K56ac was manipulated and tracked during meiotic growth. We show that complete loss or increased abundance of H3K56ac in these mutants allows timely entry into meiosis and sporulation and does not impair S phase progression, first and second meiotic cell divisions, and spore viability. In the asf1Δ, rtt109Δ, hst3/4Δ mutants, DSBs and crossovers form normal levels with a short (60-min) delay at the HIS4-LEU2 artificial recombination hotspot, however, DSB formation shows a ∼threefold decrease in the H3K56A mutant at the natural BUD23-ARE1 hotspot. The latter DSB phenotype, showing significant DSB reduction in the H3K56A mutant, was also observed at DSB sites using genome-wide mapping of Rfa1-coated single-stranded DNA flanking DSBs (RPA ChIP). Parallel mapping of H3K56-acetylated histones in wild type cells revealed strong depletion of the H3K56ac ChIP signal over Spo11-oligo DSBs, albeit most H3K56-acetylated histones were enriched adjacent to the identified RPA ChIP binding sites. Taken together, these associations demonstrate a prominent role of H3 lysine 56 acetylation in the formation of DNA breaks within recombination hotspot regions.
Collapse
Affiliation(s)
- Zsolt Karányi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lilla Hornyák
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
40
|
Liao Z, Zhu Z, Li L, Wang L, Wang H, Jiang Y, Cao Y. Metabonomics on Candida albicans indicate the excessive H3K56ac is involved in the antifungal activity of Shikonin. Emerg Microbes Infect 2020; 8:1243-1253. [PMID: 31452461 PMCID: PMC6735332 DOI: 10.1080/22221751.2019.1657362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Development of antifungal agents with novel mechanism and low toxicity are essential due to the prevalence of the infectious diseases caused by Candida albicans. The current study employed a new research method, which combined the ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry, to investigate the intrinsic mechanism of Shikonin (SK) against C. albicans. The levels of 27 metabolites, which mainly involved in histone deacetylation, amino acid synthesis, lipid synthesis, nitrogen metabolism, tricarboxylic acid cycle, oxidative stress and glycolysis, were remarkably changed upon SK treatment. Specially, the down-regulation of nicotinamide (NAM) upon SK treatment indicated the suppression of the deacetylation of the histone H3 on lysine 56 residue (H3K56). Further experiment confirmed that the level of H3K56 acetylation (H3K56ac) was dramatically increased upon SK treatment which was mediated by HST3, the gene encoding the H3K56 deacetylase (Hst3p). Our results demonstrated that SK is the first natural compound reported to execute antifungal activity directly via boosting H3K56ac mediated by HST3. Importantly, this finding shed new light on the mechanisms to relieve the side effects or reverse the drug tolerance, as well as the development of agents for antifungal therapies.
Collapse
Affiliation(s)
- ZeBin Liao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University , Shanghai , People's Republic of China.,Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - ZhenYu Zhu
- School of Pharmacy, Second Military Medical University , Shanghai , People's Republic of China
| | - Ling Li
- School of Pharmacy, Second Military Medical University , Shanghai , People's Republic of China
| | - Liang Wang
- School of Pharmacy, Second Military Medical University , Shanghai , People's Republic of China
| | - Hui Wang
- School of Pharmacy, Second Military Medical University , Shanghai , People's Republic of China
| | - YuanYing Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
41
|
Distinct transcriptional roles for Histone H3-K56 acetylation during the cell cycle in Yeast. Nat Commun 2019; 10:4372. [PMID: 31558720 PMCID: PMC6763489 DOI: 10.1038/s41467-019-12400-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Dynamic disruption and reassembly of promoter-proximal nucleosomes is a conserved hallmark of transcriptionally active chromatin. Histone H3-K56 acetylation (H3K56Ac) enhances these turnover events and promotes nucleosome assembly during S phase. Here we sequence nascent transcripts to investigate the impact of H3K56Ac on transcription throughout the yeast cell cycle. We find that H3K56Ac is a genome-wide activator of transcription. While H3K56Ac has a major impact on transcription initiation, it also appears to promote elongation and/or termination. In contrast, H3K56Ac represses promiscuous transcription that occurs immediately following replication fork passage, in this case by promoting efficient nucleosome assembly. We also detect a stepwise increase in transcription as cells transit S phase and enter G2, but this response to increased gene dosage does not require H3K56Ac. Thus, a single histone mark can exert both positive and negative impacts on transcription that are coupled to different cell cycle events.
Collapse
|
42
|
Chakraborty U, Mackenroth B, Shalloway D, Alani E. Chromatin Modifiers Alter Recombination Between Divergent DNA Sequences. Genetics 2019; 212:1147-1162. [PMID: 31221666 PMCID: PMC6707472 DOI: 10.1534/genetics.119.302395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Recombination between divergent DNA sequences is actively prevented by heteroduplex rejection mechanisms. In baker's yeast, such antirecombination mechanisms can be initiated by the recognition of DNA mismatches in heteroduplex DNA by MSH proteins, followed by recruitment of the Sgs1-Top3-Rmi1 helicase-topoisomerase complex to unwind the recombination intermediate. We previously showed that the repair/rejection decision during single-strand annealing recombination is temporally regulated by MSH (MutShomolog) protein levels and by factors that excise nonhomologous single-stranded tails. These observations, coupled with recent studies indicating that mismatch repair (MMR) factors interact with components of the histone chaperone machinery, encouraged us to explore roles for epigenetic factors and chromatin conformation in regulating the decision to reject vs. repair recombination between divergent DNA substrates. This work involved the use of an inverted repeat recombination assay thought to measure sister chromatid repair during DNA replication. Our observations are consistent with the histone chaperones CAF-1 and Rtt106, and the histone deacetylase Sir2, acting to suppress heteroduplex rejection and the Rpd3, Hst3, and Hst4 deacetylases acting to promote heteroduplex rejection. These observations, and double-mutant analysis, have led to a model in which nucleosomes located at DNA lesions stabilize recombination intermediates and compete with MMR factors that mediate heteroduplex rejection.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
43
|
Feldman JL, Peterson CL. Yeast Sirtuin Family Members Maintain Transcription Homeostasis to Ensure Genome Stability. Cell Rep 2019; 27:2978-2989.e5. [PMID: 31167142 PMCID: PMC6640630 DOI: 10.1016/j.celrep.2019.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 01/08/2023] Open
Abstract
The mammalian sirtuin, SIRT6, is a key tumor suppressor that maintains genome stability and regulates transcription, though how SIRT6 family members control genome stability is unclear. Here, we use multiple genome-wide approaches to demonstrate that the yeast SIRT6 homologs, Hst3 and Hst4, prevent genome instability by tuning levels of both coding and noncoding transcription. While nascent RNAs are elevated in the absence of Hst3 and Hst4, a global impact on steady-state mRNAs is masked by the nuclear exosome, indicating that sirtuins and the exosome provide two levels of regulation to maintain transcription homeostasis. We find that, in the absence of Hst3 and Hst4, increased transcription is associated with excessive DNA-RNA hybrids (R-loops) that appear to lead to new DNA double-strand breaks. Importantly, dissolution of R-loops suppresses the genome instability phenotypes of hst3 hst4 mutants, suggesting that the sirtuins maintain genome stability by acting as a rheostat to prevent promiscuous transcription.
Collapse
Affiliation(s)
- Jessica L Feldman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
44
|
McCullough LL, Pham TH, Parnell TJ, Connell Z, Chandrasekharan MB, Stillman DJ, Formosa T. Establishment and Maintenance of Chromatin Architecture Are Promoted Independently of Transcription by the Histone Chaperone FACT and H3-K56 Acetylation in Saccharomyces cerevisiae. Genetics 2019; 211:877-892. [PMID: 30679261 PMCID: PMC6404263 DOI: 10.1534/genetics.118.301853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
FACT (FAcilitates Chromatin Transcription/Transactions) is a histone chaperone that can destabilize or assemble nucleosomes. Acetylation of histone H3-K56 weakens a histone-DNA contact that is central to FACT activity, suggesting that this modification could affect FACT functions. We tested this by asking how mutations of H3-K56 and FACT affect nucleosome reorganization activity in vitro, and chromatin integrity and transcript output in vivo Mimics of unacetylated or permanently acetylated H3-K56 had different effects on FACT activity as expected, but the same mutations had surprisingly similar effects on global transcript levels. The results are consistent with emerging models that emphasize FACT's importance in establishing global chromatin architecture prior to transcription, promoting transitions among different states as transcription profiles change, and restoring chromatin integrity after it is disturbed. Optimal FACT activity required the availability of both modified and unmodified states of H3-K56. Perturbing this balance was especially detrimental for maintaining repression of genes with high nucleosome occupancy over their promoters and for blocking antisense transcription at the +1 nucleosome. The results reveal a complex collaboration between H3-K56 modification status and multiple FACT functions, and support roles for nucleosome reorganization by FACT before, during, and after transcription.
Collapse
Affiliation(s)
- Laura L McCullough
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Trang H Pham
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Timothy J Parnell
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Zaily Connell
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
45
|
Rössl A, Denoncourt A, Lin MS, Downey M. A synthetic non-histone substrate to study substrate targeting by the Gcn5 HAT and sirtuin HDACs. J Biol Chem 2019; 294:6227-6239. [PMID: 30804216 DOI: 10.1074/jbc.ra118.006051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Gcn5 and sirtuins are highly conserved histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes that were first characterized as regulators of gene expression. Although histone tails are important substrates of these enzymes, they also target many nonhistone proteins that function in diverse biological processes. However, the mechanisms used by these enzymes to choose their nonhistone substrates are unknown. Previously, we used SILAC-based MS to identify novel nonhistone substrates of Gcn5 and sirtuins in yeast and found a shared target consensus sequence. Here, we use a synthetic biology approach to demonstrate that this consensus sequence can direct acetylation and deacetylation targeting by these enzymes in vivo Remarkably, fusion of the sequence to a nonsubstrate confers de novo acetylation that is regulated by both Gcn5 and sirtuins. We exploit this synthetic fusion substrate as a tool to define subunits of the Gcn5-containing SAGA and ADA complexes required for nonhistone protein acetylation. In particular, we find a key role for the Ada2 and Ada3 subunits in regulating acetylations on our fusion substrate. In contrast, other subunits tested were largely dispensable, including those required for SAGA stability. In an extended analysis, defects in proteome-wide acetylation observed in ada3Δ mutants mirror those in ada2Δ mutants. Altogether, our work argues that nonhistone protein acetylation by Gcn5 is determined in part by specific amino acids surrounding target lysines but that even optimal sequences require both Ada2 and Ada3 for robust acetylation. The synthetic fusion substrate we describe can serve as a tool to further dissect the regulation of both Gcn5 and sirtuin activities in vivo.
Collapse
Affiliation(s)
- Anthony Rössl
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| | - Alix Denoncourt
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| | | | - Michael Downey
- From the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, .,Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada, and
| |
Collapse
|
46
|
Zhang N, Sauve AA. Regulatory Effects of NAD + Metabolic Pathways on Sirtuin Activity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 154:71-104. [PMID: 29413178 DOI: 10.1016/bs.pmbts.2017.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD+ acts as a crucial regulator of cell physiology and as an integral participant in cellular metabolism. By virtue of a variety of signaling activities this central metabolite can exert profound effects on organism health status. Thus, while it serves as a well-known metabolic cofactor functioning as a redox-active substrate, it can also function as a substrate for signaling enzymes, such as sirtuins, poly (ADP-ribosyl) polymerases, mono (ADP-ribosyl) transferases, and CD38. Sirtuins function as NAD+-dependent protein deacetylases (deacylases) and catalyze the reaction of NAD+ with acyllysine groups to remove the acyl modification from substrate proteins. This deacetylation provides a regulatory function and integrates cellular NAD+ metabolism into a large spectrum of cellular processes and outcomes, such as cell metabolism, cell survival, cell cycle, apoptosis, DNA repair, mitochondrial homeostasis and mitochondrial biogenesis, and even lifespan. Increased attention to how regulated and pharmacologic changes in NAD+ concentrations can impact sirtuin activities has motivated openings of new areas of research, including investigations of how NAD+ levels are regulated at the subcellular level, and searches for more potent NAD+ precursors typified by nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). This review describes current results and thinking of how NAD+ metabolic pathways regulate sirtuin activities and how regulated NAD+ levels can impact cell physiology. In addition, NAD+ precursors are discussed, with attention to how these might be harnessed to generate novel therapeutic options to treat the diseases of aging.
Collapse
Affiliation(s)
- Ning Zhang
- Weill Cornell Medical College, New York, NY, United States
| | | |
Collapse
|
47
|
Probing the Function of Metazoan Histones with a Systematic Library of H3 and H4 Mutants. Dev Cell 2018; 48:406-419.e5. [PMID: 30595536 DOI: 10.1016/j.devcel.2018.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/15/2018] [Accepted: 11/28/2018] [Indexed: 11/21/2022]
Abstract
Replication-dependent histone genes often reside in tandemly arrayed gene clusters, hindering systematic loss-of-function analyses. Here, we used CRISPR/Cas9 and the attP/attB double-integration system to alter numbers and sequences of histone genes in their original genomic context in Drosophila melanogaster. As few as 8 copies of the histone gene unit supported embryo development and adult viability, whereas flies with 20 copies were indistinguishable from wild-types. By hierarchical assembly, 40 alanine-substitution mutations (covering all known modified residues in histones H3 and H4) were introduced and characterized. Mutations at multiple residues compromised viability, fertility, and DNA-damage responses. In particular, H4K16 was necessary for expression of male X-linked genes, male viability, and maintenance of ovarian germline stem cells, whereas H3K27 was essential for late embryogenesis. Simplified mosaic analysis showed that H3R26 is required for H3K27 trimethylation. We have developed a powerful strategy and valuable reagents to systematically probe histone functions in D. melanogaster.
Collapse
|
48
|
Abstract
The timely and precise repair of DNA damage, or more specifically DNA double-strand breaks (DSBs) - the most deleterious DNA lesions, is crucial for maintaining genome integrity and cellular homeostasis. An appropriate cellular response to DNA DSBs requires the integration of various factors, including the post-translational modifications (PTMs) of chromatin and chromatin-associated proteins. Notably, the PTMs of histones have been shown to play a fundamental role in initiating and regulating cellular responses to DNA DSBs. Here we review the role of the major histone PTMs, including phosphorylation, ubiquitination, methylation and acetylation, and their interactions during DNA DSB-induced responses.
Collapse
Affiliation(s)
- Hieu T Van
- a Department of Epigenetics and Molecular Carcinogenesis , University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Margarida A Santos
- a Department of Epigenetics and Molecular Carcinogenesis , University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
49
|
Cai Q, Wang JJ, Shao W, Ying SH, Feng MG. Rtt109-dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of Beauveria bassiana. PEST MANAGEMENT SCIENCE 2018; 74:2626-2635. [PMID: 29704296 DOI: 10.1002/ps.5054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Rtt109 is a histone acetyltransferase that catalyzes histone H3K56 acetylation required for genomic stability, DNA damage repair and virulence-related gene activity in yeast-like human pathogens but remains functionally unknown in fungal insect pathogens. This study seeks to elucidate the catalytic activity of a Rtt109 orthologue and its possible role in sustaining the biological control potential of Beauveria bassiana, a fungal entomopathogen. RESULTS Deletion of rtt109 in B. bassiana abolished histone H3K56 acetylation and triggered histone H2A-S129 phosphorylation. Consequently, the deletion mutant showed increased sensitivity to the stresses of DNA damage, oxidation, cell wall perturbation, high osmolarity and heat shock during colony growth, severe conidiation defects under normal culture conditions, reduced conidial hydrophobicity, decreased conidial UV-B resistance, and attenuated virulence through normal cuticle infection. These phenotypic changes correlated well with reduced transcript levels of many genes that encode the families of H2A-S129 dephosphorylation-related protein phosphatases, DNA damage-repairing factors, antioxidant enzymes, heat-shock proteins, key developmental activators, hydrophobins and cuticle-degrading Pr1 proteases respectively. CONCLUSION Rtt109 can acetylate H3K56 and dephosphorylate H2A-S129 in direct and indirect ways respectively, and hence has an essential role in sustaining the genomic stability and global gene activity required for conidiation capacity, environmental fitness and pest control potential in B. bassiana. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Juan-Juan Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- School of Biological Science and Biotechnology, University of Jinan, Jinan, People's Republic of China
| | - Wei Shao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
50
|
Voichek Y, Mittelman K, Gordon Y, Bar-Ziv R, Lifshitz Smit D, Shenhav R, Barkai N. Epigenetic Control of Expression Homeostasis during Replication Is Stabilized by the Replication Checkpoint. Mol Cell 2018; 70:1121-1133.e9. [PMID: 29910110 DOI: 10.1016/j.molcel.2018.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022]
Abstract
DNA replication introduces a dosage imbalance between early and late replicating genes. In budding yeast, buffering gene expression against this imbalance depends on marking replicated DNA by H3K56 acetylation (H3K56ac). Whether additional processes are required for suppressing transcription from H3K56ac-labeled DNA remains unknown. Here, using a database-guided candidate screen, we find that COMPASS, the H3K4 methyltransferase, and its upstream effector, PAF1C, act downstream of H3K56ac to buffer expression. Replicated genes show reduced abundance of the transcription activating mark H3K4me3 and accumulate the transcription inhibitory mark H3K4me2 near transcription start sites. Notably, in hydroxyurea-exposed cells, the S phase checkpoint stabilizes H3K56ac and becomes essential for buffering. We suggest that H3K56ac suppresses transcription of replicated genes by interfering with post-replication recovery of epigenetic marks and assign a new function for the S phase checkpoint in stabilizing this mechanism during persistent dosage imbalance.
Collapse
Affiliation(s)
- Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karin Mittelman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yulia Gordon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raz Bar-Ziv
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Lifshitz Smit
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rom Shenhav
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|