1
|
Rahman MM, Balachandran RS, Stevenson JB, Kim Y, Proenca RB, Hedgecock EM, Kipreos ET. The Caenorhabditis elegans cullin-RING ubiquitin ligase CRL4DCAF-1 is required for proper germline nucleolus morphology and male development. Genetics 2023; 225:iyad126. [PMID: 37433110 PMCID: PMC10686702 DOI: 10.1093/genetics/iyad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/08/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
Cullin-RING ubiquitin ligases (CRLs) are the largest class of ubiquitin ligases with diverse functions encompassing hundreds of cellular processes. Inactivation of core components of the CRL4 ubiquitin ligase produces a germ cell defect in Caenorhabditis elegans that is marked by abnormal globular morphology of the nucleolus and fewer germ cells. We identified DDB1 Cullin4 associated factor (DCAF)-1 as the CRL4 substrate receptor that ensures proper germ cell nucleolus morphology. We demonstrate that the dcaf-1 gene is the ncl-2 (abnormal nucleoli) gene, whose molecular identity was not previously known. We also observed that CRL4DCAF-1 is required for male tail development. Additionally, the inactivation of CRL4DCAF-1 results in a male-specific lethality in which a percentage of male progeny arrest as embryos or larvae. Analysis of the germ cell nucleolus defect using transmission electron microscopy revealed that dcaf-1 mutant germ cells possess significantly fewer ribosomes, suggesting a defect in ribosome biogenesis. We discovered that inactivation of the sperm-fate specification gene fog-1 (feminization of the germ line-1) or its protein-interacting partner, fog-3, rescues the dcaf-1 nucleolus morphology defect. Epitope-tagged versions of both FOG-1 and FOG-3 proteins are aberrantly present in adult dcaf-1(RNAi) animals, suggesting that DCAF-1 negatively regulates FOG-1 and FOG-3 expression. Murine CRL4DCAF-1 targets the degradation of the ribosome assembly factor periodic trptophan protein 1 (PWP1). We observed that the inactivation of Caenorhabditis elegansDCAF-1 increases the nucleolar levels of PWP1 in the germ line, intestine, and hypodermis. Reducing the level of PWP-1 rescues the dcaf-1 mutant defects of fewer germ cell numbers and abnormal nucleolus morphology, suggesting that the increase in PWP-1 levels contributes to the dcaf-1 germline defect. Our results suggest that CRL4DCAF-1 has an evolutionarily ancient role in regulating ribosome biogenesis including a conserved target in PWP1.
Collapse
Affiliation(s)
- Mohammad M Rahman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Riju S Balachandran
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Youngjo Kim
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rui B Proenca
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Edward M Hedgecock
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Edward T Kipreos
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Alleva B, Clausen S, Koury E, Hefel A, Smolikove S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008486. [PMID: 31738749 PMCID: PMC6886871 DOI: 10.1371/journal.pgen.1008486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/02/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
To maintain the integrity of the genome, meiotic DNA double strand breaks (DSBs) need to form by the meiosis-specific nuclease Spo11 and be repaired by homologous recombination. One class of products formed by recombination are crossovers, which are required for proper chromosome segregation in the first meiotic division. The synaptonemal complex (SC) is a protein structure that connects homologous chromosomes during meiotic prophase I. The proper assembly of the SC is important for recombination, crossover formation, and the subsequent chromosome segregation. Here we identify the components of Cullin RING E3 ubiquitin ligase 4 (CRL4) that play a role in SC assembly in Caenorhabditis elegans. Mutants of the CRL4 complex (cul-4, ddb-1, and gad-1) show defects in SC assembly manifested in the formation of polycomplexes (PCs), impaired progression of meiotic recombination, and reduction in crossover numbers. PCs that are formed in cul-4 mutants lack the mobile properties of wild type SC, but are likely not a direct target of ubiquitination. In C. elegans, SC assembly does not require recombination and there is no evidence that PC formation is regulated by recombination as well. However, in one cul-4 mutant PC formation is dependent upon early meiotic recombination, indicating that proper assembly of the SC can be diminished by recombination in some scenarios. Lastly, our studies suggest that CUL-4 deregulation leads to transposition of the Tc3 transposable element, and defects in formation of SPO-11-mediated DSBs. Our studies highlight previously unknown functions of CRL4 in C. elegans meiosis and show that CUL-4 likely plays multiple roles in meiosis that are essential for maintaining genome integrity. Defects in the formation of the structure named the synaptonemal complex (SC) lead to the missegregation of chromosomes in the divisions that generate sperm and egg cells. In humans, this chromosome missegregation is associated with infertility and developmental disabilities of the surviving progeny. Abnormal SC structures composed of misfolded and aggregated SC proteins are associated with an inability to properly repair DNA damage and accurately segregate meiotic chromosomes. How SC proteins assemble such that they do not form misfolded protein aggregates is poorly understood. The germlines of nematodes (Caenorhabditis elegans) that lack protein components of the Cullin 4 E3 Ubiquitin ligase complex (CRL4), have defects in the formation of the SC that can be due to misfolding of SC proteins and their aggregation. CRL4 appears to be involved in other germline functions that directly affect chromosome stability (DNA damage repair and transposition), indicating that CRL4 has a central function in the formation of functional sperm and egg cells.
Collapse
Affiliation(s)
- Benjamin Alleva
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Clausen
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Emily Koury
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam Hefel
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sarit Smolikove
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
3
|
Developmental Control of the Cell Cycle: Insights from Caenorhabditis elegans. Genetics 2019; 211:797-829. [PMID: 30846544 PMCID: PMC6404260 DOI: 10.1534/genetics.118.301643] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
During animal development, a single fertilized egg forms a complete organism with tens to trillions of cells that encompass a large variety of cell types. Cell cycle regulation is therefore at the center of development and needs to be carried out in close coordination with cell differentiation, migration, and death, as well as tissue formation, morphogenesis, and homeostasis. The timing and frequency of cell divisions are controlled by complex combinations of external and cell-intrinsic signals that vary throughout development. Insight into how such controls determine in vivo cell division patterns has come from studies in various genetic model systems. The nematode Caenorhabditis elegans has only about 1000 somatic cells and approximately twice as many germ cells in the adult hermaphrodite. Despite the relatively small number of cells, C. elegans has diverse tissues, including intestine, nerves, striated and smooth muscle, and skin. C. elegans is unique as a model organism for studies of the cell cycle because the somatic cell lineage is invariant. Somatic cells divide at set times during development to produce daughter cells that adopt reproducible developmental fates. Studies in C. elegans have allowed the identification of conserved cell cycle regulators and provided insights into how cell cycle regulation varies between tissues. In this review, we focus on the regulation of the cell cycle in the context of C. elegans development, with reference to other systems, with the goal of better understanding how cell cycle regulation is linked to animal development in general.
Collapse
|
4
|
van Rijnberk LM, van der Horst SEM, van den Heuvel S, Ruijtenberg S. A dual transcriptional reporter and CDK-activity sensor marks cell cycle entry and progression in C. elegans. PLoS One 2017; 12:e0171600. [PMID: 28158315 PMCID: PMC5291519 DOI: 10.1371/journal.pone.0171600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit.
Collapse
Affiliation(s)
- Lotte M. van Rijnberk
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands
| | - Suzanne E. M. van der Horst
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands
| | - Suzan Ruijtenberg
- Developmental Biology, Department of Biology, Faculty of Science, Utrecht University Padualaan 8, CH Utrecht, The Netherlands
| |
Collapse
|
5
|
Swanson CI, Meserve JH, McCarter PC, Thieme A, Mathew T, Elston TC, Duronio RJ. Expression of an S phase-stabilized version of the CDK inhibitor Dacapo can alter endoreplication. Development 2015; 142:4288-98. [PMID: 26493402 DOI: 10.1242/dev.115006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
In developing organisms, divergence from the canonical cell division cycle is often necessary to ensure the proper growth, differentiation, and physiological function of a variety of tissues. An important example is endoreplication, in which endocycling cells alternate between G and S phase without intervening mitosis or cytokinesis, resulting in polyploidy. Although significantly different from the canonical cell cycle, endocycles use regulatory pathways that also function in diploid cells, particularly those involved in S phase entry and progression. A key S phase regulator is the Cyclin E-Cdk2 kinase, which must alternate between periods of high (S phase) and low (G phase) activity in order for endocycling cells to achieve repeated rounds of S phase and polyploidy. The mechanisms that drive these oscillations of Cyclin E-Cdk2 activity are not fully understood. Here, we show that the Drosophila Cyclin E-Cdk2 inhibitor Dacapo (Dap) is targeted for destruction during S phase via a PIP degron, contributing to oscillations of Dap protein accumulation during both mitotic cycles and endocycles. Expression of a PIP degron mutant Dap attenuates endocycle progression but does not obviously affect proliferating diploid cells. A mathematical model of the endocycle predicts that the rate of destruction of Dap during S phase modulates the endocycle by regulating the length of G phase. We propose from this model and our in vivo data that endo S phase-coupled destruction of Dap reduces the threshold of Cyclin E-Cdk2 activity necessary to trigger the subsequent G-S transition, thereby influencing endocycle oscillation frequency and the extent of polyploidy.
Collapse
Affiliation(s)
- Christina I Swanson
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joy H Meserve
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrick C McCarter
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alexis Thieme
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tony Mathew
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy C Elston
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Re-replication of a centromere induces chromosomal instability and aneuploidy. PLoS Genet 2015; 11:e1005039. [PMID: 25901968 PMCID: PMC4406714 DOI: 10.1371/journal.pgen.1005039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
The faithful inheritance of chromosomes during cell division requires their precise replication and segregation. Numerous mechanisms ensure that each of these fundamental cell cycle events is performed with a high degree of fidelity. The fidelity of chromosomal replication is maintained in part by re-replication controls that ensure there are no more than two copies of every genomic segment to distribute to the two daughter cells. This control is enforced by inhibiting replication initiation proteins from reinitiating replication origins within a single cell cycle. Here we show in Saccharomyces cerevisiae that re-replication control is important for the fidelity of chromosome segregation. In particular, we demonstrate that transient re-replication of centromeric DNA due to disruption of re-replication control greatly induces aneuploidy of the re-replicated chromosome. Some of this aneuploidy arises from missegregation of both sister chromatids to one daughter cell. Aneuploidy can also arise from the generation of an extra sister chromatid via homologous recombination, suggesting that centromeric re-replication can trigger breakage and repair events that expand chromosome number without causing chromosomal rearrangements. Thus, we have identified a potential new non-mitotic source of aneuploidy that can arise from a defect in re-replication control. Given the emerging connections between the deregulation of replication initiation proteins and oncogenesis, this finding may be relevant to the aneuploidy that is prevalent in cancer. The stable inheritance of genetic information requires an elaborate mitotic machinery that acts on the centromeres of chromosomes to ensure their precise segregation. Errors in this segregation can lead to aneuploidy, an unbalanced chromosomal state in which some chromosomes have different copy number than others. Because aneuploidy is associated with developmental abnormalities and diseases such as cancer, there is considerable interest in understanding how these segregation errors arise. Much of this interest has focused on identifying defects in proteins that make up the mitotic machinery. Here, we show that defects in a completely separate process, the control of DNA replication initiation, can lead to chromosome segregation errors as a result of inappropriate re-replication of centromeres. Similar deregulation of replication initiation proteins has been observed in primary human tumors and shown to promote oncogenesis in mouse models. Together, these results raise the possibility that centromeric re-replication may be an additional source of aneuploidy in cancer. In combination with our previous work showing that re-replication is a potent inducer of gene amplification, these results also highlight the versatility of re-replication as a source of genomic instability.
Collapse
|
7
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
8
|
Hwang IS, Woo SU, Park JW, Lee SK, Yim H. Two nuclear export signals of Cdc6 are differentially associated with CDK-mediated phosphorylation residues for cytoplasmic translocation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:223-33. [PMID: 24216307 DOI: 10.1016/j.bbamcr.2013.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 10/25/2013] [Accepted: 10/31/2013] [Indexed: 11/16/2022]
Abstract
Cdc6 is cleaved at residues 442 and 290 by caspase-3 during apoptosis producing p49-tCdc6 and p32-tCdc6, respectively. While p32-tCdc6 is unable to translocate into the cytoplasm, p49-tCdc6 retains cytoplasmic translocation activity, but it has a lower efficiency than wild-type Cdc6. We hypothesized that a novel nuclear export signal (NES) sequence exists between amino acids 290 and 442. Cdc6 contains a novel NES in the region of amino acids 300-315 (NES2) that shares sequence similarity with NES1 at residues 462-476. In mutant versions of Cdc6, we replaced leucine with alanine in NES1 and NES2 and co-expressed the mutant constructs with cyclin A. We observed that the cytoplasmic translocation of these mutants was reduced in comparison to wild-type Cdc6. Moreover, the cytoplasmic translocation of a mutant in which all four leucine residues were mutated to alanine was significantly inhibited in comparison to the translocation of wild-type Cdc6. The Crm1 binding activities of Cdc6 NES mutants were consistent with the efficiency of its cytoplasmic translocation. Further studies have revealed that L468 and L470 of NES1 are required for cytoplasmic translocation of Cdc6 phosphorylated at S74, while L311 and L313 of NES2 accelerate the cytoplasmic translocation of Cdc6 phosphorylated at S54. These results suggest that the two NESs of Cdc6 work cooperatively and distinctly for the cytoplasmic translocation of Cdc6 phosphorylated at S74 and S54 by cyclin A/Cdk2.
Collapse
Affiliation(s)
- In Sun Hwang
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Uk Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Ji-Woong Park
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Ki Lee
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea.
| |
Collapse
|
9
|
Adenovirus E1A oncogene induces rereplication of cellular DNA and alters DNA replication dynamics. J Virol 2013; 87:8767-78. [PMID: 23740993 DOI: 10.1128/jvi.00879-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic property of the adenovirus (Ad) transforming E1A protein is linked to its capacity to induce cellular DNA synthesis which occurs as a result of its interaction with several host proteins, including pRb and p300/CBP. While the proteins that contribute to the forced induction of cellular DNA synthesis have been intensively studied, the nature of the cellular DNA replication that is induced by E1A in quiescent cells is not well understood. Here we show that E1A expression in quiescent cells leads to massive cellular DNA rereplication in late S phase. Using a single-molecule DNA fiber assay, we studied the cellular DNA replication dynamics in E1A-expressing cells. Our studies show that the DNA replication pattern is dramatically altered in E1A-expressing cells, with increased replicon length, fork velocity, and interorigin distance. The interorigin distance increased by about 3-fold, suggesting that fewer DNA replication origins are used in E1A-expressing cells. These aberrant replication events led to replication stress, as evidenced by the activation of the DNA damage response. In earlier studies, we showed that E1A induces c-Myc as a result of E1A binding to p300. Using an antisense c-Myc to block c-Myc expression, our results indicate that induction of c-Myc in E1A-expressing cells contributes to the induction of host DNA replication. Together, our results suggest that the E1A oncogene-induced cellular DNA replication stress is due to dramatically altered cellular replication events and that E1A-induced c-Myc may contribute to these events.
Collapse
|
10
|
Abstract
Cullin/RING ubiquitin ligases (CRL) comprise the largest subfamily of ubiquitin ligases. CRLs are involved in cell cycle regulation, DNA replication, DNA damage response (DDR), development, immune response, transcriptional regulation, circadian rhythm, viral infection, and protein quality control. One of the main functions of CRLs is to regulate the DDR, a fundamental signaling cascade that maintains genome integrity. In this review, we will discuss the regulation of CRL ubiquitin ligases and their roles in control of the DDR.
Collapse
Affiliation(s)
- Ju-Mei Li
- Department of Biochemistry and Molecular Biology, Medical School, The University of Texas Health Science Center at Houston Houston, TX, USA
| | | |
Collapse
|
11
|
Diffley JFX. Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond B Biol Sci 2012; 366:3545-53. [PMID: 22084381 PMCID: PMC3203456 DOI: 10.1098/rstb.2011.0073] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Origins of DNA replication must be regulated to ensure that the entire genome is replicated precisely once in each cell cycle. In human cells, this requires that tens of thousands of replication origins are activated exactly once per cell cycle. Failure to do so can lead to cell death or genome rearrangements such as those associated with cancer. Systems ensuring efficient initiation of replication, while also providing a robust block to re-initiation, play a crucial role in genome stability. In this review, I will discuss some of the strategies used by cells to ensure once per cell cycle replication and provide a quantitative framework to evaluate the relative importance and efficiency of individual pathways involved in this regulation.
Collapse
Affiliation(s)
- John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| |
Collapse
|
12
|
Sonneville R, Querenet M, Craig A, Gartner A, Blow JJ. The dynamics of replication licensing in live Caenorhabditis elegans embryos. J Cell Biol 2012; 196:233-46. [PMID: 22249291 PMCID: PMC3265957 DOI: 10.1083/jcb.201110080] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/13/2011] [Indexed: 01/07/2023] Open
Abstract
Accurate DNA replication requires proper regulation of replication licensing, which entails loading MCM-2-7 onto replication origins. In this paper, we provide the first comprehensive view of replication licensing in vivo, using video microscopy of Caenorhabditis elegans embryos. As expected, MCM-2-7 loading in late M phase depended on the prereplicative complex (pre-RC) proteins: origin recognition complex (ORC), CDC-6, and CDT-1. However, many features we observed have not been described before: GFP-ORC-1 bound chromatin independently of ORC-2-5, and CDC-6 bound chromatin independently of ORC, whereas CDT-1 and MCM-2-7 DNA binding was interdependent. MCM-3 chromatin loading was irreversible, but CDC-6 and ORC turned over rapidly, consistent with ORC/CDC-6 loading multiple MCM-2-7 complexes. MCM-2-7 chromatin loading further reduced ORC and CDC-6 DNA binding. This dynamic behavior creates a feedback loop allowing ORC/CDC-6 to repeatedly load MCM-2-7 and distribute licensed origins along chromosomal DNA. During S phase, ORC and CDC-6 were excluded from nuclei, and DNA was overreplicated in export-defective cells. Thus, nucleocytoplasmic compartmentalization of licensing factors ensures that DNA replication occurs only once.
Collapse
Affiliation(s)
- Remi Sonneville
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
13
|
Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors. Trends Cell Biol 2011; 22:33-41. [PMID: 22154077 DOI: 10.1016/j.tcb.2011.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 01/06/2023]
Abstract
The mammalian CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors (CKIs) comprises three proteins--p21(Cip1/WAF1), p27(Kip1), and p57(Kip2)--that bind and inhibit cyclin-CDK complexes, which are key regulators of the cell cycle. CIP/KIP CKIs have additional independent functions in regulating transcription, apoptosis and actin cytoskeletal dynamics. These divergent functions are performed in distinct cellular compartments and contribute to the seemingly contradictory observation that the CKIs can both suppress and promote cancer. Multiple ubiquitin ligases (E3s) direct the proteasome-mediated degradation of p21, p27 and p57. This review analyzes recent data highlighting our current understanding of how distinct E3 pathways regulate subpopulations of the CKIs to control their diverse functions.
Collapse
|
14
|
Caenorhabditis elegans cyclin D/CDK4 and cyclin E/CDK2 induce distinct cell cycle re-entry programs in differentiated muscle cells. PLoS Genet 2011; 7:e1002362. [PMID: 22102824 PMCID: PMC3213155 DOI: 10.1371/journal.pgen.1002362] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
Abstract
Cell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model. We found that expression of a G1 Cyclin and CDK initiates cell cycle re-entry in muscle cells without interfering with the differentiated state. Cyclin D/CDK4 (CYD-1/CDK-4) expression was sufficient to induce DNA synthesis in muscle cells, in contrast to Cyclin E/CDK2 (CYE-1/CDK-2), which triggered mitotic events. Tissue-specific gene-expression profiling and single molecule FISH experiments revealed that Cyclin D and E kinases activate an extensive and overlapping set of cell cycle genes in muscle, yet failed to induce some key activators of G1/S progression. Surprisingly, CYD-1/CDK-4 also induced an additional set of genes primarily associated with growth and metabolism, which were not activated by CYE-1/CDK-2. Moreover, CYD-1/CDK-4 expression also down-regulated a large number of genes enriched for catabolic functions. These results highlight distinct functions for the two G1 Cyclin/CDK complexes and reveal a previously unknown activity of Cyclin D/CDK-4 in regulating metabolic gene expression. Furthermore, our data demonstrate that many cell cycle genes can still be transcriptionally induced in post-mitotic muscle cells, while maintenance of the post-mitotic state might depend on stable repression of a limited number of critical cell cycle regulators. During development, cells face the important decision whether to continue to proliferate, or to exit the cell-division cycle and fully differentiate. Improved insight into the molecular mechanisms that arrest the cell cycle during terminal differentiation is important for our understanding of normal development, as well as for cancer research and regenerative medicine. To investigate the arrested state of terminally differentiated cells, we examined muscle cells in the model organism C. elegans, which is known for its reproducible cell-division pattern. We found that expression of a single cell cycle kinase with its regulatory partner (Cyclin) induced many cell division genes in muscle. While Cyclin D and E kinases often act similarly, only Cyclin D with CDK-4 triggered DNA replication in muscle, and this combination induced a much broader transcriptional response than Cyclin E/CDK-2. Despite activation of a substantial cell cycle program, Cyclin/CDK expression did not induce complete muscle cell division and failed to induce some key cell cycle regulators. Our results highlight distinct activities of Cyclin D and Cyclin E kinases, and they indicate that cell-cycle gene expression remains remarkably flexible in differentiated cells. We propose that the post-mitotic state of differentiated cells is maintained by tight control of a few regulatory genes.
Collapse
|
15
|
Abstract
Eukaryotic cell cycle transitions are driven by E3 ubiquitin ligases that catalyze the ubiquitylation and destruction of specific protein targets. For example, the anaphase-promoting complex/cyclosome (APC/C) promotes the exit from mitosis via destruction of securin and mitotic cyclins, whereas CRL1(Skp2) allows entry into S phase by targeting the destruction of the cyclin-dependent kinase (CDK) inhibitor p27. Recently, an E3 ubiquitin ligase called CRL4(Cdt2) has been characterized, which couples proteolysis to DNA synthesis via an unusual mechanism that involves display of substrate degrons on the DNA polymerase processivity factor PCNA. Through its destruction of Cdt1, p21, and Set8, CRL4(Cdt2) has emerged as a master regulator that prevents rereplication in S phase. In addition, it also targets other factors such as E2F and DNA polymerase η. In this review, we discuss our current understanding of the molecular mechanism of substrate recognition by CRL4(Cdt2) and how this E3 ligase helps to maintain genome integrity.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
16
|
Fox PM, Vought VE, Hanazawa M, Lee MH, Maine EM, Schedl T. Cyclin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline. Development 2011; 138:2223-34. [PMID: 21558371 DOI: 10.1242/dev.059535] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The C. elegans germline provides an excellent model for analyzing the regulation of stem cell activity and the decision to differentiate and undergo meiotic development. The distal end of the adult hermaphrodite germline contains the proliferative zone, which includes a population of mitotically cycling cells and cells in meiotic S phase, followed by entry into meiotic prophase. The proliferative fate is specified by somatic distal tip cell (DTC) niche-germline GLP-1 Notch signaling through repression of the redundant GLD-1 and GLD-2 pathways that promote entry into meiosis. Here, we describe characteristics of the proliferative zone, including cell cycle kinetics and population dynamics, as well as the role of specific cell cycle factors in both cell cycle progression and the decision between the proliferative and meiotic cell fate. Mitotic cell cycle progression occurs rapidly, continuously, with little or no time spent in G1, and with cyclin E (CYE-1) levels and activity high throughout the cell cycle. In addition to driving mitotic cell cycle progression, CYE-1 and CDK-2 also play an important role in proliferative fate specification. Genetic analysis indicates that CYE-1/CDK-2 promotes the proliferative fate downstream or in parallel to the GLD-1 and GLD-2 pathways, and is important under conditions of reduced GLP-1 signaling, possibly corresponding to mitotically cycling proliferative zone cells that are displaced from the DTC niche. Furthermore, we find that GLP-1 signaling regulates a third pathway, in addition to the GLD-1 and GLD-2 pathways and also independent of CYE-1/CDK-2, to promote the proliferative fate/inhibit meiotic entry.
Collapse
Affiliation(s)
- Paul M Fox
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle. Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication, which can cause genome instability and tumorigenesis. Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects. These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints. Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells, indicating that proper functioning of these pathways is essential for maintaining genome stability. In this review, we discuss the regulatory mechanisms of licensing control, the deleterious consequences when both licensing and checkpoints are compromised, and present possible mechanisms to prevent re-replication in order to maintain genome stability.
Collapse
Affiliation(s)
- Lan N Truong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
18
|
Yin Y, Lin C, Kim ST, Roig I, Chen H, Liu L, Veith GM, Jin RU, Keeney S, Jasin M, Moley K, Zhou P, Ma L. The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis. Dev Biol 2011; 356:51-62. [PMID: 21624359 DOI: 10.1016/j.ydbio.2011.05.661] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 12/29/2022]
Abstract
The Cullin-RING ubiquitin-ligase CRL4 controls cell cycle and DNA damage checkpoint response and ensures genomic integrity. Inactivation of the Cul4 component of the CRL4 E3 ligase complex in Caenorhabditis elegans by RNA interference results in massive mitotic DNA re-replication in the blast cells, largely due to failed degradation of the DNA licensing protein, CDT-1, and premature spermatogenesis. Here we show that inactivation of Cul4a by gene-targeting in mice only affected male but not female fertility. This male infertility phenotype resulted from a combination of decreased spermatozoa number, reduced sperm motility and defective acrosome formation. Agenesis of the mutant germ cells was accompanied by increased cell death in pachytene/diplotene cells with markedly elevated levels of phospho-p53 and CDT-1. Despite apparent normal assembly of synaptonemal complexes and DNA double strand break repair, dissociation of MLH1, a component of the late recombination nodule, was delayed in Cul4a -/- diplotene spermatocytes, which potentially led to subsequent disruptions in meiosis II and spermiogenesis. Together, our study revealed an indispensable role for Cul4a during male germ cell meiosis.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Milhollen MA, Narayanan U, Soucy TA, Veiby PO, Smith PG, Amidon B. Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover. Cancer Res 2011; 71:3042-51. [PMID: 21487042 DOI: 10.1158/0008-5472.can-10-2122] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of NEDD8-activating enzyme (NAE) function by siRNA knockdown or inhibition by the small molecule NAE inhibitor MLN4924 leads to increased steady-state levels of direct Cullin-RING ligase (CRL) substrates by preventing their ubiquitination and proteasome-dependent degradation. Many of these CRL substrates are involved in cell cycle progression, including a critical DNA replication licensing factor CDT1. Cell cycle analysis of asynchronous and synchronous cultures after NAE inhibition revealed effects on cell cycle distribution and activation of DNA break repair signaling pathways similar to that reported for CDT1 overexpression. The siRNA knockdown of cullins critical for the turnover of CDT1 recapitulated the aberrant rereplication phenotype while CDT1 knockdown was suppressing. Although NAE inhibition leads to deregulation of many CRL substrates, these data demonstrate that CDT1 accumulation mediates the DNA rereplication phenotype resulting from loss of NAE function. DNA rereplication is an unrecoverable cellular insult and the small molecule inhibitor MLN4924, currently in phase I trials, represents an unprecedented opportunity to explore this mechanism of cytotoxicity for the treatment of cancer.
Collapse
Affiliation(s)
- Michael A Milhollen
- Discovery, Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Korzelius J, The I, Ruijtenberg S, Portegijs V, Xu H, Horvitz HR, van den Heuvel S. C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability. Dev Biol 2011; 350:358-69. [PMID: 21146520 PMCID: PMC3322639 DOI: 10.1016/j.ydbio.2010.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 11/22/2022]
Abstract
DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements.
Collapse
Affiliation(s)
- Jerome Korzelius
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Inge The
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Suzan Ruijtenberg
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Vincent Portegijs
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Huihong Xu
- Department of Pathology and Laboratory Medicine. Boston University School of Medicine and Boston Medical Center. 670 Albany Street, Boston MA, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA, United States of America
| | - Sander van den Heuvel
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
21
|
Abbas T, Dutta A. CRL4Cdt2: master coordinator of cell cycle progression and genome stability. Cell Cycle 2011; 10:241-9. [PMID: 21212733 DOI: 10.4161/cc.10.2.14530] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polyubiquitin-mediated degradation of proteins plays an essential role in various physiological processes including cell cycle progression, transcription and DNA replication and repair. Increasing evidence supports a vital role for the E3 ubiquitin ligase cullin-4, in conjunction with the substrate recognition factor Cdt2 (CRL4Cdt2), for the degradation of multiple cell cycle-regulated proteins to prevent genomic instability. In addition, it is critical for normal cell cycle progression by ensuring the timely destruction of various cell cycle proteins whose deregulated expression impairs cell cycle progression. Here, we summarize our current knowledge about the various roles of the CRL4Cdt2 E3 ubiquitin ligase, and how its activity contributes both to the preservation of genome integrity and to normal cell cycle progression, and how its deregulation may contribute to human cancer.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
22
|
Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A, Jin J, Dyson NJ, Walter JC, Zou L. CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell 2010; 40:22-33. [PMID: 20932472 DOI: 10.1016/j.molcel.2010.09.015] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/13/2010] [Accepted: 09/16/2010] [Indexed: 11/18/2022]
Abstract
The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.
Collapse
Affiliation(s)
- Richard C Centore
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ding Q, MacAlpine DM. Preferential re-replication of Drosophila heterochromatin in the absence of geminin. PLoS Genet 2010; 6:e1001112. [PMID: 20838463 PMCID: PMC2936543 DOI: 10.1371/journal.pgen.1001112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 08/05/2010] [Indexed: 01/04/2023] Open
Abstract
To ensure genomic integrity, the genome must be duplicated exactly once per cell cycle. Disruption of replication licensing mechanisms may lead to re-replication and genomic instability. Cdt1, also known as Double-parked (Dup) in Drosophila, is a key regulator of the assembly of the pre-replicative complex (pre-RC) and its activity is strictly limited to G1 by multiple mechanisms including Cul4-Ddb1 mediated proteolysis and inhibition by geminin. We assayed the genomic consequences of disregulating the replication licensing mechanisms by RNAi depletion of geminin. We found that not all origins of replication were sensitive to geminin depletion and that heterochromatic sequences were preferentially re-replicated in the absence of licensing mechanisms. The preferential re-activation of heterochromatic origins of replication was unexpected because these are typically the last sequences to be duplicated in a normal cell cycle. We found that the re-replication of heterochromatin was regulated not at the level of pre-RC activation, but rather by the formation of the pre-RC. Unlike the global assembly of the pre-RC that occurs throughout the genome in G1, in the absence of geminin, limited pre-RC assembly was restricted to the heterochromatin by elevated cyclin A-CDK activity. These results suggest that there are chromatin and cell cycle specific controls that regulate the re-assembly of the pre-RC outside of G1. Catastrophic consequences may occur if the cell fails to either completely copy the genome or if it duplicates some regions of the genome more than once in a cell cycle. The cell must coordinate thousands of DNA replication start sites (origins) to ensure that the entire genome is copied and that no replication origin is activated more than once in a cell cycle. The cell accomplishes this coordination by confining the selection and activation of replication origins to discrete phases of the cell cycle. Start sites can only be selected or ‘licensed’ for DNA replication in G1 and similarly, they can only be activated for the initiation of DNA replication in S phase. Disruption of the mechanisms that regulate this ‘licensing’ process have been shown to result in extensive re-replication, genomic instability and tumorigenesis in a variety of eukaryotic systems. Here we use genomic approaches in Drosophila to identify which origins of replication are susceptible to re-initiation of DNA replication in the absence of replication licensing controls. Unexpectedly, we find that sequences in the heterochromatin, which were thought to contain only inefficient origins of replication, are preferentially re-replicated. These results provide insights into how origins of replication are selected and regulated in distinct chromatin environments to maintain genomic stability.
Collapse
Affiliation(s)
- Queying Ding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bosu DR, Feng H, Min K, Kim Y, Wallenfang MR, Kipreos ET. C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues. Dev Biol 2010; 346:113-26. [PMID: 20659444 DOI: 10.1016/j.ydbio.2010.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 07/14/2010] [Accepted: 07/18/2010] [Indexed: 11/26/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are critical regulators of multiple developmental and cellular processes in eukaryotes. CAND1 is a biochemical inhibitor of CRLs, yet has been shown to promote CRL activity in plant and mammalian cells. Here we analyze CAND1 function in the context of a developing metazoan organism. Caenorhabditis elegans CAND-1 is capable of binding to all of the cullins, and we show that it physically interacts with CUL-2 and CUL-4 in vivo. The covalent attachment of the ubiquitin-like protein Nedd8 is required for cullin activity in animals and plants. In cand-1 mutants, the levels of the neddylated isoforms of CUL-2 and CUL-4 are increased, indicating that CAND-1 is a negative regulator of cullin neddylation. cand-1 mutants are hypersensitive to the partial loss of cullin activity, suggesting that CAND-1 facilitates CRL functions. cand-1 mutants exhibit impenetrant phenotypes, including developmental arrest, morphological defects of the vulva and tail, and reduced fecundity. cand-1 mutants share with cul-1 and lin-23 mutants the phenotypes of supernumerary seam cell divisions, defective alae formation, and the accumulation of the SCF(LIN-23) target the glutamate receptor GLR-1. The observation that cand-1 mutants have phenotypes associated with the loss of the SCF(LIN-23) complex, but lack phenotypes associated with other specific CRL complexes, suggests that CAND-1 is differentially required for the activity of distinct CRL complexes.
Collapse
Affiliation(s)
- Dimple R Bosu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
26
|
Li C, Jin J. DNA replication licensing control and rereplication prevention. Protein Cell 2010; 1:227-36. [PMID: 21203969 DOI: 10.1007/s13238-010-0032-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 01/18/2010] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic DNA replication is tightly restricted to only once per cell cycle in order to maintain genome stability. Cells use multiple mechanisms to control the assembly of the prereplication complex (pre-RC), a process known as replication licensing. This review focuses on the regulation of replication licensing by posttranslational modifications of the licensing factors, including phosphorylation, ubiquitylation and acetylation. These modifications are critical in establishing the pre-RC complexes as well as preventing rereplication in each cell cycle. The relationship between rereplication and diseases, including cancer and virus infection, is discussed as well.
Collapse
Affiliation(s)
- Chonghua Li
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
27
|
Raina D, Ahmad R, Chen D, Kumar S, Kharbanda S, Kufe D. MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway. Cancer Biol Ther 2008; 7:1959-67. [PMID: 18981727 DOI: 10.4161/cbt.7.12.6956] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The MUC1 oncoprotein interacts with the c-Abl tyrosine kinase and blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. Mutation of the MUC1 cytoplasmic domain at Tyr-60 disrupts the MUC1-c-Abl interaction. The present results demonstrate that the MUC1(Y60F) mutant is a potent inducer of the ARF tumor suppressor. MUC1(Y60F) induces transcription of the ARF locus by a c-Abl-dependent mechanism that promotes CUL-4A-mediated nuclear export of the replication protein Cdc6. The functional significance of these findings is that MUC1(Y60F)-induced ARF expression and thereby inhibition of MDM2 results in the upregulation of p53 and the homeodomain interacting protein kinase 2 (HIPK2) serine/threonine kinase. HIPK2-mediated phosphorylation of p53 on Ser-46 was further associated with a shift from expression of the cell cycle arrest-related p21 gene to the apoptosis-related PUMA gene. We also show that the MUC1(Y60F) mutant functions as dominant negative inhibitor of tumorigenicity. These findings indicate that the oncogenic function of MUC1 is conferred by suppressing activation of the ARF-MDM2-p53 pathway.
Collapse
Affiliation(s)
- Deepak Raina
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kim Y, Starostina NG, Kipreos ET. The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 2008; 22:2507-19. [PMID: 18794348 DOI: 10.1101/gad.1703708] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The faithful replication of genomic DNA is crucial for maintaining genome stability. In eukaryotes, DNA rereplication is prevented by the temporal regulation of replication licensing. Replication-licensing factors are required to form prereplicative complexes during G1 phase, but are inactivated in S phase to prevent rereplication. A vertebrate CUL4 CRL ubiquitin ligase (CRL4) complex containing Cdt2 as the substrate recognition subunit promotes proper DNA replication, in part, by degrading the replication-licensing factor Cdt1 during S phase. We show that the Caenorhabditis elegans CRL4(Cdt2) complex has a conserved role in degrading Cdt1. Furthermore, we show that CRL4(Cdt2) restrains replication licensing in both C. elegans and humans by targeting the degradation of the cyclin-dependent kinase (CDK) inhibitors CKI-1 and p21(Cip1), respectively. Human CRL4(Cdt2) targets the degradation of p21 in S phase, with the in vivo ubiquitylation of p21 by CRL4(Cdt2) dependent on p21 binding to PCNA. Inactivation of Cdt2 induces rereplication, which requires the presence of the CDK inhibitor p21. Strikingly, coinactivation of CRL4(Cdt2) and SCF(Skp2) (which redundantly targets p21 degradation) prevents the nuclear export of the replication-licensing factor Cdc6 during S phase, and the block on nuclear export is dependent on p21. Our work defines the degradation of p21 as a critical aspect of replication licensing in human cells.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602 USA
| | | | | |
Collapse
|
29
|
Abstract
Correct regulation of the replication licensing system ensures that chromosomal DNA is precisely duplicated in each cell division cycle. Licensing proteins are inappropriately expressed at an early stage of tumorigenesis in a wide variety of cancers. Here we discuss evidence that misregulation of replication licensing is a consequence of oncogene-induced cell proliferation. This misregulation can cause either under- or over-replication of chromosomal DNA, and could explain the genetic instability commonly seen in cancer cells.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, DD1 5EH, UK.
| | | |
Collapse
|
30
|
Waning DL, Li B, Jia N, Naaldijk Y, Goebel WS, HogenEsch H, Chun KT. Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis. Blood 2008; 112:320-329. [PMID: 18339895 PMCID: PMC2442743 DOI: 10.1182/blood-2007-11-126300] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/03/2008] [Indexed: 12/11/2022] Open
Abstract
In vitro studies indicate that Cul4A ubiquitin ligases target for ubiquitin-mediated proteolysis regulators of cell-cycle progression, apoptosis, development, and DNA repair. In hematopoietic cell lines, studies by our group and others showed that Cul4A ligases regulate proliferation and differentiation in maturing myeloid and erythroid cells. In vivo, Cul4A-deficient embryos die in utero. Cul4A haploinsufficient mice are viable but have fewer erythroid and primitive myeloid progenitors. Yet, little more is known about Cul4A function in vivo. To examine Cul4A function in adults, we generated mice with interferon-inducible deletion of Cul4A. Cul4A deficiency resulted in DNA damage and apoptosis of rapidly dividing cells, and mutant mice died within 3 to 10 days after induction with dramatic atrophy of the intestinal villi, bone marrow, and spleen, and with hematopoietic failure. Cul4A deletion in vivo specifically increased cellular levels of the Cul4A ligase targets Cdt1 and p27(Kip1) but not other known targets. Bone marrow transplantation studies with Cul4A deletion in engrafted cells specifically isolated analysis of Cul4A function to hematopoietic cells and resulted in hematopoietic failure. These recipients died within 9 to 11 days, demonstrating that in hematopoietic cells, Cul4A is essential for survival.
Collapse
Affiliation(s)
- David L Waning
- Herman B Wells Center for Pediatric Research, Section of Pediatric Hematology/Oncology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
All eukaryotes use multiple controls to restrict DNA replication to once per cell cycle. Nevertheless, inactivation of a single gene, cul-4, causes massive re-replication in Caenorhabditis elegans. A novel study explains this dramatic phenotype by demonstrating that the CUL-4 E3 ligase simultaneously controls two critical licensing factors: CDT-1 and CDC-6.
Collapse
Affiliation(s)
- Jerome Korzelius
- Division of Developmental Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
32
|
Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites. Proc Natl Acad Sci U S A 2007; 104:17713-8. [PMID: 17978194 PMCID: PMC2077061 DOI: 10.1073/pnas.0700997104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Evolutionary change in gene regulation is a key mechanism underlying the genetic component of organismal diversity. Here, we study evolution of regulation at the posttranslational level by examining the evolution of cyclin-dependent kinase (CDK) consensus phosphorylation sites in the protein subunits of the pre-replicative complex (RC). The pre-RC, an assembly of proteins formed during an early stage of DNA replication, is believed to be regulated by CDKs throughout the animals and fungi. Interestingly, although orthologous pre-RC components often contain clusters of CDK consensus sites, the positions and numbers of sites do not seem conserved. By analyzing protein sequences from both distantly and closely related species, we confirm that consensus sites can turn over rapidly even when the local cluster of sites is preserved, consistent with the notion that precise positioning of phosphorylation events is not required for regulation. We also identify evolutionary changes in the clusters of sites and further examine one replication protein, Mcm3, where a cluster of consensus sites near a nucleocytoplasmic transport signal is confined to a specific lineage. We show that the presence or absence of the cluster of sites in different species is associated with differential regulation of the transport signal. These findings suggest that the CDK regulation of MCM nuclear localization was acquired in the lineage leading to Saccharomyces cerevisiae after the divergence with Candida albicans. Our results begin to explore the dynamics of regulatory evolution at the posttranslational level and show interesting similarities to recent observations of regulatory evolution at the level of transcription.
Collapse
|
33
|
Kim Y, Kipreos ET. Cdt1 degradation to prevent DNA re-replication: conserved and non-conserved pathways. Cell Div 2007; 2:18. [PMID: 17565698 PMCID: PMC1913051 DOI: 10.1186/1747-1028-2-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 06/12/2007] [Indexed: 11/10/2022] Open
Abstract
In eukaryotes, DNA replication is strictly regulated so that it occurs only once per cell cycle. The mechanisms that prevent excessive DNA replication are focused on preventing replication origins from being reused within the same cell cycle. This regulation involves the temporal separation of the formation of the pre-replicative complex (pre-RC) from the initiation of DNA replication. The replication licensing factors Cdt1 and Cdc6 recruit the presumptive replicative helicase, the Mcm2-7 complex, to replication origins in late M or G1 phase to form pre-RCs. In fission yeast and metazoa, the Cdt1 licensing factor is degraded at the start of S phase by ubiquitin-mediated proteolysis to prevent the reassembly of pre-RCs. In humans, two E3 complexes, CUL4-DDB1CDT2 and SCFSkp2, are redundantly required for Cdt1 degradation. The two E3 complexes use distinct mechanisms to target Cdt1 ubiquitination. Current data suggests that CUL4-DDB1CDT2-mediated degradation of Cdt1 is S-phase specific, while SCFSkp2-mediated Cdt1 degradation occurs throughout the cell cycle. The degradation of Cdt1 by the CUL4-DDB1CDT2 E3 complex is an evolutionarily ancient pathway that is active in fungi and metazoa. In contrast, SCFSkp2-mediated Cdt1 degradation appears to have arisen relatively recently. A role for Skp2 in Cdt1 degradation has only been demonstrated in humans, and the pathway is not conserved in yeast, invertebrates, or even among other vertebrates.
Collapse
Affiliation(s)
- Youngjo Kim
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607 USA
| | - Edward T Kipreos
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607 USA
| |
Collapse
|