1
|
Uslupehlivan M, Deveci R. Glycosylation analysis of transcription factor TFIIB using bioinformatics and experimental methods. J Biomol Struct Dyn 2024:1-11. [PMID: 39601751 DOI: 10.1080/07391102.2024.2434031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 11/29/2024]
Abstract
Transcription is a fundamental process involving the interaction of RNA polymerase II and related transcription factors. TFIIB is a transcription factor that plays a significant role in the formation and stability of the preinitiation complex in a precise orientation, as well as in the control of initiation and pre-elongation steps. At the initiation step, TFIIB interacts with three structures: the end of the TATA-binding protein, a GC-rich DNA sequence followed by the TATA box, and the C-terminal domain of RNA polymerase II. It is known that RNA polymerase II is a glycoprotein and contains O-GlcNAc sugar at the C-terminal domain during the initiation stage of transcription. However, it is unclear whether the transcription factors interacting with RNA polymerase II are glycoproteins or not. The study aims to determine the glycosylation (N- and/or O-linked glycosylations) of TFIIB by using bioinformatics in one invertebrate and seven vertebrate species and experimental methods in the sea urchin Paracentrotus lividus oocyte. Both bioinformatics and experimental analysis have shown that TFIIB is a glycoprotein. In addition, PNGase-F enzyme treatment, lectin blotting, and colloidal-gold conjugated lectin labeling results revealed that TFIIB contains O-linked GalNAc, mannose, GlcNAc, and α-2,3-linked sialic acid. Based on our results, we suggest that glycosylation modification may be involved in the transcription mechanism of the TFIIB protein.
Collapse
Affiliation(s)
- Muhammet Uslupehlivan
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Türkiye
| | - Remziye Deveci
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
4
|
Baughman HER, Narang D, Chen W, Villagrán Suárez AC, Lee J, Bachochin MJ, Gunther TR, Wolynes PG, Komives EA. An intrinsically disordered transcription activation domain increases the DNA binding affinity and reduces the specificity of NFκB p50/RelA. J Biol Chem 2022; 298:102349. [PMID: 35934050 PMCID: PMC9440430 DOI: 10.1016/j.jbc.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Many transcription factors contain intrinsically disordered transcription activation domains (TADs), which mediate interactions with coactivators to activate transcription. Historically, DNA-binding domains and TADs have been considered as modular units, but recent studies have shown that TADs can influence DNA binding. Whether these results can be generalized to more TADs is not clear. Here, we biophysically characterized the NFκB p50/RelA heterodimer including the RelA TAD and investigated the TAD's influence on NFκB-DNA interactions. In solution, we show the RelA TAD is disordered but compact, with helical tendency in two regions that interact with coactivators. We determined that the presence of the TAD increased the stoichiometry of NFκB-DNA complexes containing promoter DNA sequences with tandem κB recognition motifs by promoting the binding of NFκB dimers in excess of the number of κB sites. In addition, we measured the binding affinity of p50/RelA for DNA containing tandem κB sites and single κB sites. While the presence of the TAD enhanced the binding affinity of p50/RelA for all κB sequences tested, it also increased the affinity for nonspecific DNA sequences by over 10-fold, leading to an overall decrease in specificity for κB DNA sequences. In contrast, previous studies have generally reported that TADs decrease DNA-binding affinity and increase sequence specificity. Our results reveal a novel function of the RelA TAD in promoting binding to nonconsensus DNA, which sheds light on previous observations of extensive nonconsensus DNA binding by NFκB in vivo in response to strong inflammatory signals.
Collapse
Affiliation(s)
- Hannah E R Baughman
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Dominic Narang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Amalia C Villagrán Suárez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Joan Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Maxwell J Bachochin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tristan R Gunther
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
5
|
Beyond the canonical role of TFIIB in eukaryotic transcription. Curr Genet 2021; 68:61-67. [PMID: 34797379 PMCID: PMC8602988 DOI: 10.1007/s00294-021-01223-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
The role of general transcription factor TFIIB in transcription extends well beyond its evolutionarily conserved function in initiation. Chromatin localization studies demonstrating binding of TFIIB to both the 5’ and 3’ ends of genes in a diverse set of eukaryotes strongly suggested a rather unexpected role of the factor in termination. TFIIB indeed plays a role in termination of transcription. TFIIB occupancy of the 3’ end is possibly due to its interaction with the termination factors residing there. Interaction of the promoter-bound TFIIB with factors occupying the 3’ end of a gene may be the basis of transcription-dependent gene looping. The proximity of the terminator-bound factors with the promoter in a gene loop has the potential to terminate promoter-initiated upstream anti-sense transcription thereby conferring promoter directionality. TFIIB, therefore, is emerging as a factor with pleiotropic roles in the transcription cycle. This could be the reason for preferential targeting of TFIIB by viruses. Further studies are needed to understand the critical role of TFIIB in viral pathogenesis in the context of its newly identified roles in termination, gene looping and promoter directionality.
Collapse
|
6
|
Wu Y, Yang Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front Microbiol 2021; 12:668461. [PMID: 34163446 PMCID: PMC8215345 DOI: 10.3389/fmicb.2021.668461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Herpesviruses are extremely successful parasites that have evolved over millions of years to develop a variety of mechanisms to coexist with their hosts and to maintain host-to-host transmission and lifelong infection by regulating their life cycles. The life cycle of herpesviruses consists of two phases: lytic infection and latent infection. During lytic infection, active replication and the production of numerous progeny virions occur. Subsequent suppression of the host immune response leads to a lifetime latent infection of the host. During latent infection, the viral genome remains in an inactive state in the host cell to avoid host immune surveillance, but the virus can be reactivated and reenter the lytic cycle. The balance between these two phases of the herpesvirus life cycle is controlled by broad interactions among numerous viral and cellular factors. ICP22/ORF63 proteins are among these factors and are involved in transcription, nuclear budding, latency establishment, and reactivation. In this review, we summarized the various roles and complex mechanisms by which ICP22/ORF63 proteins regulate the life cycle of human herpesviruses and the complex relationships among host and viral factors. Elucidating the role and mechanism of ICP22/ORF63 in virus-host interactions will deepen our understanding of the viral life cycle. In addition, it will also help us to understand the pathogenesis of herpesvirus infections and provide new strategies for combating these infections.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
O'Brien MJ, Ansari A. Critical Involvement of TFIIB in Viral Pathogenesis. Front Mol Biosci 2021; 8:669044. [PMID: 33996913 PMCID: PMC8119876 DOI: 10.3389/fmolb.2021.669044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Viral infections and the harm they cause to their host are a perpetual threat to living organisms. Pathogenesis and subsequent spread of infection requires replication of the viral genome and expression of structural and non-structural proteins of the virus. Generally, viruses use transcription and translation machinery of the host cell to achieve this objective. The viral genome encodes transcriptional regulators that alter the expression of viral and host genes by manipulating initiation and termination steps of transcription. The regulation of the initiation step is often through interactions of viral factors with gene specific factors as well as general transcription factors (GTFs). Among the GTFs, TFIIB (Transcription Factor IIB) is a frequent target during viral pathogenesis. TFIIB is utilized by a plethora of viruses including human immunodeficiency virus, herpes simplex virus, vaccinia virus, Thogoto virus, hepatitis virus, Epstein-Barr virus and gammaherpesviruses to alter gene expression. A number of viral transcriptional regulators exhibit a direct interaction with host TFIIB in order to accomplish expression of their genes and to repress host transcription. Some viruses have evolved proteins with a three-dimensional structure very similar to TFIIB, demonstrating the importance of TFIIB for viral persistence. Upon viral infection, host transcription is selectively altered with viral transcription benefitting. The nature of viral utilization of TFIIB for expression of its own genes, along with selective repression of host antiviral genes and downregulation of general host transcription, makes TFIIB a potential candidate for antiviral therapies.
Collapse
Affiliation(s)
- Michael J O'Brien
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
8
|
Al-Husini N, Medler S, Ansari A. Crosstalk of promoter and terminator during RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194657. [PMID: 33246184 DOI: 10.1016/j.bbagrm.2020.194657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
The transcription cycle of RNAPII is comprised of three consecutive steps; initiation, elongation and termination. It has been assumed that the initiation and termination steps occur in spatial isolation, essentially as independent events. A growing body of evidence, however, has challenged this dogma. First, factors involved in initiation and termination exhibit both a genetic and a physical interaction during transcription. Second, the initiation and termination factors have been found to occupy both ends of a transcribing gene. Third, physical interaction of initiation and termination factors occupying distal ends of a gene sometime results in the entire terminator region of a genes looping back and contact its cognate promoter, thereby forming a looped gene architecture during transcription. A logical interpretation of these findings is that the initiation and termination steps of transcription do not occur in isolation. There is extensive communication of factors occupying promoter and terminator ends of a gene during transcription cycle. This review entails a discussion of the promoter-terminator crosstalk and its implication in the context of transcription.
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Scott Medler
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States of America.
| |
Collapse
|
9
|
Quintero-Cadena P, Lenstra TL, Sternberg PW. RNA Pol II Length and Disorder Enable Cooperative Scaling of Transcriptional Bursting. Mol Cell 2020; 79:207-220.e8. [DOI: 10.1016/j.molcel.2020.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
|
10
|
Di Gregorio SE, Duennwald ML. ALS Yeast Models-Past Success Stories and New Opportunities. Front Mol Neurosci 2018; 11:394. [PMID: 30425620 PMCID: PMC6218427 DOI: 10.3389/fnmol.2018.00394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
In the past two decades, yeast models have delivered profound insights into basic mechanisms of protein misfolding and the dysfunction of key cellular pathways associated with amyotrophic lateral sclerosis (ALS). Expressing ALS-associated proteins, such as superoxide dismutase (SOD1), TAR DNA binding protein 43 (TDP-43) and Fused in sarcoma (FUS), in yeast recapitulates major hallmarks of ALS pathology, including protein aggregation, mislocalization and cellular toxicity. Results from yeast have consistently been recapitulated in other model systems and even specimens from human patients, thus providing evidence for the power and validity of ALS yeast models. Focusing on impaired ribonucleic acid (RNA) metabolism and protein misfolding and their cytotoxic consequences in ALS, we summarize exemplary discoveries that originated from work in yeast. We also propose previously unexplored experimental strategies to modernize ALS yeast models, which will help to decipher the basic pathomechanisms underlying ALS and thus, possibly contribute to finding a cure.
Collapse
Affiliation(s)
- Sonja E Di Gregorio
- Schulich School of Medicine and Dentistry, Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Martin L Duennwald
- Schulich School of Medicine and Dentistry, Pathology and Laboratory Medicine, Western University, London, ON, Canada
| |
Collapse
|
11
|
Huang F, Shao W, Fujinaga K, Peterlin BM. Bromodomain-containing protein 4-independent transcriptional activation by autoimmune regulator (AIRE) and NF-κB. J Biol Chem 2018; 293:4993-5004. [PMID: 29463681 PMCID: PMC5892592 DOI: 10.1074/jbc.ra117.001518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Autoimmune regulator (AIRE) and nuclear factor-κB (NF-κB) are transcription factors (TFs) that direct the expression of individual genes and gene clusters. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that recognizes and binds to acetylated histones. BRD4 also has been reported to promote interactions between the positive transcription elongation factor b (P-TEFb) and AIRE or P-TEFb and NF-κB subunit p65. Here, we report that AIRE and p65 bind to P-TEFb independently of BRD4. JQ1, a compound that disrupts interactions between BRD4 and acetylated proteins, does not decrease transcriptional activities of AIRE or p65. Moreover, siRNA-mediated inactivation of BRD4 alone or in combination with JQ1 had no effects on AIRE- and NF-κB-targeted genes on plasmids and in chromatin and on interactions between P-TEFb and AIRE or NF-κB. Finally, ChIP experiments revealed that recruitment of P-TEFb to AIRE or p65 to transcription complexes was independent of BRD4. We conclude that direct interactions between AIRE, NF-κB, and P-TEFb result in efficient transcription of their target genes.
Collapse
Affiliation(s)
- Fang Huang
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Wei Shao
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - B Matija Peterlin
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
12
|
Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martínez-Gómez P. Prunus transcription factors: breeding perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:443. [PMID: 26124770 PMCID: PMC4464204 DOI: 10.3389/fpls.2015.00443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/29/2015] [Indexed: 05/18/2023]
Abstract
Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.
Collapse
Affiliation(s)
- Valmor J. Bianchi
- Department of Plant Physiology, Instituto de Biologia, Universidade Federal de PelotasPelotas-RS, Brazil
| | - Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | | | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA) - Centro di ricerca per la frutticolturaRoma, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, and Environment (DAFNAE). University of PaduaPadova, Italy
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
13
|
Strick TR, Hernandez N. Eeny meeny miny moe, catch a transcript by the toe, or how to enumerate eukaryotic transcripts. Genes Dev 2012; 26:1643-7. [PMID: 22855826 DOI: 10.1101/gad.199349.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this issue of Genes & Development, Revyakin and colleagues (pp. 1691-1702) measure the relation between individual RNA polymerase II transcription events and transcription factor assembly by counting RNA transcripts retained on the template DNA using single-molecule fluorescence.
Collapse
Affiliation(s)
- Terence R Strick
- Institut Jacques Monod, CNRS UMR, University of Paris-Diderot, France.
| | | |
Collapse
|
14
|
Abstract
Transcriptional regulation is a complex process that requires the integrated action of many multi-protein complexes. The way in which a living cell coordinates the action of these complexes in time and space is still poorly understood. Recent work has shown that nuclear pores, well known for their role in 3′ processing and export of transcripts, also participate in the control of transcriptional initiation. We have recently begun to explore how nuclear pores interface with the well-described machinery that regulates initiation. This work led to the discovery that specific nucleoporins are required for binding of the repressor protein Mig1 to its site in target promoters. Nuclear pores are therefore involved in repressing, as well as activating, transcription. Here we discuss in detail the main models explaining our result and consider what each implies about the roles that nuclear pores play in the regulation of gene expression.
Collapse
Affiliation(s)
- Nayan J Sarma
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
15
|
Kilpatrick AM, Koharudin LMI, Calero GA, Gronenborn AM. Structural and binding studies of the C-terminal domains of yeast TFIIF subunits Tfg1 and Tfg2. Proteins 2011; 80:519-29. [PMID: 22095626 DOI: 10.1002/prot.23217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/12/2011] [Accepted: 09/27/2011] [Indexed: 12/13/2022]
Abstract
The general transcription factor TFIIF plays essential roles at several steps during eukaryotic transcription. While several studies have offered insights into the structure/function relationship in human TFIIF, much less is known about the yeast system. Here, we describe the first NMR structural and binding studies of the C-terminal domains (CTDs) of Tfg1 and Tfg2 subunits of Saccharomyces cerevisiae TFIIF. We used the program CS-ROSETTA to determine the three-dimensional folds of these domains in solution, and performed binding studies with DNA and protein targets. CS-ROSETTA models indicate that the Tfg1 and Tfg2 C-terminal domains have winged-helix architectures, similar to the human homologs. We showed that both Tfg1 and Tfg2 CTDs interact with double-stranded DNA oligonucleotides, and mapped the DNA binding interfaces using solution NMR. Tfg1-CTD, but not Tfg2-CTD, also binds to yeast FCP1, an RNA polymerase II-specific phosphatase, and we delineated the interaction surface with the CTD of FCP1. Our results provide insights into the structural basis of yeast TFIIF function and the differential roles of Tfg1 and Tfg2 subunits during transcription.
Collapse
Affiliation(s)
- Adina M Kilpatrick
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | | | | | | |
Collapse
|
16
|
Cserzo M, Turu G, Varnai P, Hunyady L. Relating underrepresented genomic DNA patterns and tiRNAs: the rule behind the observation and beyond. Biol Direct 2010; 5:56. [PMID: 20860791 PMCID: PMC3583238 DOI: 10.1186/1745-6150-5-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background One of the central problems of post-genomic biology is the understanding of regulatory network of genes. Traditionally the problem is approached from the protein-DNA interaction perspective. In recent years various types of noncoding RNAs appeared on the scene as new potent players of the game. The exact role of these molecules in gene expression control is mostly unknown at present, while their importance is generally recognized. Results The Human and Mouse genomes have been screened with a statistical model for sequence patterns underrepresented in these genomes, and a subset of motifs, named spanions, has been identified. The common portion of the motif lists of the two species is 75% indicating evolutionary conservation of this feature. These motifs are arranged in clusters at close proximity of distinct genetic landmarks: 5' ends of genes, exon side of the exon/intron junctions and 5' ends of 3' UTRs. The length of the clusters is typically in the 20 to 25 bases range. The findings are in agreement with the known C/G bias of promoter regions while access much more sequential information than the simple composition based model. In the Human genome the recently reported transcription initiation RNAs (tiRNAs) are typically transcribed from these spanion clusters according to the presented results. The spanion clusters account for 70% of the published tiRNAs. Apparently, the model access the common statistical feature of this new and mostly uncharacterized non-coding RNA class and, in this way, supports the experimental observations with theoretical background. Conclusions The presented results seem to support the emerging model of the RNA-driven eukaryotic gene expression control. Beyond that, the model detects spanion clusters at genetic positions where no tiRNA counterpart was considered and reported. The GO-term analysis of genes with high concentration of spanion clusters in their promoter proximal region indicates involvement in gene regulatory processes. The results of the analysis suggest that the gene regulatory potential of the small non-coding RNAs is grossly underestimated at present. Reviewers This article was reviewed by Frank Eisenhaber, Sandor Pongor and Rotem Sorek (nominated by Doron Lancet).
Collapse
Affiliation(s)
- Miklos Cserzo
- Department of Physiology, Semmelweis University, Budapest, Tuzolto Street, 37-47, 1094, Hungary, EU.
| | | | | | | |
Collapse
|
17
|
Jaehning JA. The Paf1 complex: platform or player in RNA polymerase II transcription? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:379-88. [PMID: 20060942 DOI: 10.1016/j.bbagrm.2010.01.001] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/31/2009] [Accepted: 01/04/2010] [Indexed: 12/01/2022]
Abstract
The Paf1 complex (Paf1C), composed of the proteins Paf1, Ctr9, Cdc73, Rtf1, and Leo1, accompanies RNA polymerase II (pol II) from the promoter to the 3' end formation site of mRNA and snoRNA encoding genes; it is also found associated with RNA polymerase I (pol I) on rDNA. The Paf1C is found in simple and complex eukaryotes; in human cells hSki8 is also part of the complex. The Paf1C has been linked to a large and growing list of transcription related processes including: communication with transcriptional activators; recruitment and activation of histone modification factors; facilitation of elongation on chromatin templates; and the recruitment of 3' end-processing factors necessary for accurate termination of transcription. Absence of, or mutations in, Paf1C factors result in alterations in gene expression that can result in misregulation of developmental programs and loss of control of cell division leading to cancer in humans. This review considers recent information that may help to resolve whether the Paf1C is primarily a "platform" on pol II that coordinates the association of many critical transcription factors, or if the complex itself plays a more direct role in one or more steps in transcription.
Collapse
Affiliation(s)
- Judith A Jaehning
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
How transcription factors can adjust the gene expression floodgates. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 102:16-37. [PMID: 20025898 DOI: 10.1016/j.pbiomolbio.2009.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/17/2009] [Accepted: 12/07/2009] [Indexed: 12/18/2022]
Abstract
The rate of transcription initiation is the main level of quantitative control of gene expression, primarily responsible for the accumulation of mRNAs in the cell. Many, if not all, molecular actors involved in transcription initiation are known but the mechanisms underlying the frequency of initiations, remain elusive. To make the connection between transcription factors and the frequency of transcription initiation, intricated aspects of this complex activity are classified i) depending on whether or not the DNA-bound transcription factors directly activate the commitment to transcription and ii) on the destructive or non-destructive effect of transcription initiation on the stability of promoter complexes. Two possible sources of synergy allowing the combinatorial specificity of transcription factors action are compared, for binding to DNA and for recruiting transcription machineries. Tentative formulations are proposed to discriminate the different micro-reversible modes of DNA binding cooperativity modulating the specificity and dosage of transcription initiation.
Collapse
|
19
|
Palstra RJTS. Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:297-309. [PMID: 19535505 DOI: 10.1093/bfgp/elp016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transcriptional output of genes in higher eukaryotes is frequently modulated by cis-regulatory DNA elements like enhancers. On the linear chromatin template these elements can be located hundreds of kilobases away from their target gene and for a long time it was a mystery how these elements communicate. For example, in the beta-globin locus the main regulatory element, the Locus Control Region (LCR), is located up to 40-60 kb away from the beta-globin genes. Recently it was demonstrated that the LCR resides in close proximity to the active beta-globin genes while the intervening inactive chromatin loops out. Thus the chromatin fibre of the beta-globin locus adopts an erythroid-specific spatial organization referred to as the Active Chromatin Hub (ACH). This observation for the first time demonstrated a role for chromatin folding in transcriptional regulation. Since this first observation in the beta-globin locus, similar chromatin interactions between regulatory elements in several other gene loci have been observed. Chromatin loops also appear to be formed between promoters and 3'UTRs of genes and even trans-interactions between loci on different chromosomes have been reported. Although the occurrence of long-range chromatin contacts between regulatory elements is now firmly established it is still not clear how these long-range contacts are set up and how the transcriptional output of genes is modified by the proximity of cis-regulatory DNA elements. In this review I will discuss the relevance of interactions between cis-regulatory DNA elements in relation to transcription while using the beta-globin locus as a guideline.
Collapse
|