1
|
Hasan MK, Jeannine Brady L. Nucleic acid-binding KH domain proteins influence a spectrum of biological pathways including as part of membrane-localized complexes. J Struct Biol X 2024; 10:100106. [PMID: 39040530 PMCID: PMC11261784 DOI: 10.1016/j.yjsbx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
K-Homology domain (KH domain) proteins bind single-stranded nucleic acids, influence protein-protein interactions of proteins that harbor them, and are found in all kingdoms of life. In concert with other functional protein domains KH domains contribute to a variety of critical biological activities, often within higher order machineries including membrane-localized protein complexes. Eukaryotic KH domain proteins are linked to developmental processes, morphogenesis, and growth regulation, and their aberrant expression is often associated with cancer. Prokaryotic KH domain proteins are involved in integral cellular activities including cell division and protein translocation. Eukaryotic and prokaryotic KH domains share structural features, but are differentiated based on their structural organizations. In this review, we explore the structure/function relationships of known examples of KH domain proteins, and highlight cases in which they function within or at membrane surfaces. We also summarize examples of KH domain proteins that influence bacterial virulence and pathogenesis. We conclude the article by discussing prospective research avenues that could be pursued to better investigate this largely understudied protein category.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
3
|
Chang Y, Sun W, Murchie AIH, Chen D. Genome-wide identification of Kanamycin B binding RNA in Escherichia coli. BMC Genomics 2023; 24:120. [PMID: 36927548 PMCID: PMC10018874 DOI: 10.1186/s12864-023-09234-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in Escherichia coli has not been determined. Here, we report genome-wide identification and verification of the aminoglycoside Kanamycin B binding to Escherichia coli RNAs. Immobilized Kanamycin B beads in pull-down assays were used for transcriptome-profiling analysis (RNA-seq). RESULTS Over two hundred Kanamycin B binding RNAs were identified. Functional classification analysis of the RNA sequence related genes revealed a wide range of cellular functions. Small RNA fragments (ncRNA, tRNA and rRNA) or small mRNA was used to verify the binding with Kanamycin B in vitro. Kanamycin B and ibsC mRNA was analysed by chemical probing. CONCLUSIONS The results will provide biochemical evidence and understanding of potential extra-antibiotic cellular functions of aminoglycosides in Escherichia coli.
Collapse
Affiliation(s)
- Yaowen Chang
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wenxia Sun
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Alastair I H Murchie
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Dongrong Chen
- Fudan University Pudong Medical Center, and Institute of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, 200032, Shanghai, China. .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Essential Role for an Isoform of Escherichia coli Translation Initiation Factor IF2 in Repair of Two-Ended DNA Double-Strand Breaks. J Bacteriol 2022; 204:e0057121. [PMID: 35343794 DOI: 10.1128/jb.00571-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In Escherichia coli, three isoforms of the essential translation initiation factor IF2 (IF2-1, IF2-2, and IF2-3) are generated from separate in-frame initiation codons in infB. The isoforms have earlier been suggested to additionally participate in DNA damage repair and replication restart. It is also known that the proteins RecA and RecBCD are needed for repair of DNA double-strand breaks (DSBs) in E. coli. Here, we show that strains lacking IF2-1 are profoundly sensitive to two-ended DSBs in DNA generated by radiomimetic agents phleomycin or bleomycin, or by endonuclease I-SceI. However, these strains remained tolerant to other DSB-generating genotoxic agents or perturbations to which recA and recBC mutants remained sensitive, such as to mitomycin C, type-2 DNA topoisomerase inhibitors, or DSB caused by palindrome cleavage behind a replication fork. Data from genome-wide copy number analyses following I-SceI cleavage at a single chromosomal locus suggested that, in a strain lacking IF2-1, the magnitude of recombination-dependent replication through replication restart mechanisms is largely preserved but the extent of DNA resection around the DSB site is reduced. We propose that in the absence of IF2-1 it is the synapsis of a RecA nucleoprotein filament to its homologous target that is weakened, which in turn leads to a specific failure in assembly of Ter-to-oriC directed replisomes needed for consummation of two-ended DSB repair. IMPORTANCE Double-strand breaks (DSBs) in DNA are major threats to genome integrity. In Escherichia coli, DSBs are repaired by RecA- and RecBCD-mediated homologous recombination (HR). This study demonstrates a critical role for an isoform (IF2-1) of the translation initiation factor IF2 in the repair of two-ended DSBs in E. coli (that can be generated by ionizing radiation, certain DNA-damaging chemicals, or endonuclease action). It is proposed that IF2-1 acts to facilitate the function of RecA in the synapsis between a pair of DNA molecules during HR.
Collapse
|
5
|
Inactivation of UmuC Protein Significantly Reduces Resistance to Ciprofloxacin and SOS Mutagenesis in Escherichia coli Mutants Harboring Intact umuD Gene. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Ciprofloxacin induces SOS response and mutagenesis by activation of UmuD’2C (DNA polymerase V) and DinB (DNA polymerase IV) in Escherichia coli, leading to antibiotic resistance during therapy. Inactivation of DNA polymerase V can result in the inhibition of mutagenesis in E. coli. Objectives: The aim of this research was to investigate the effect of UmuC inactivation on resistance to ciprofloxacin and SOS mutagenesis in E. coli mutants. Methods: Ciprofloxacin-resistant mutants were produced in a umuC- genetic background in the presence of increasing concentrations of ciprofloxacin. The minimum inhibitory concentration of umuC-mutants was measured by broth dilution method. Alterations in the rifampin resistance-determing region of rpoB gene were assessed by PCR amplification and DNA sequencing. The expression of SOS genes was measured by quantitative real-time PCR assay. Results: Results showed that despite the induction of SOS response (overexpression of recA, dinB, and umuD genes) following exposure to ciprofloxacin in E. coli umuC mutants, resistance to ciprofloxacin and SOS mutagenesis significantly decreased. However, rifampicin-resistant clones emerged in this genetic background. One of these clones showed mutations in the rifampicin resistance-determining region of rpoB (cluster II). The low mutation frequency of E. coli might be associated with the presence and overexpression of umuD gene, which could somehow limit the activity of DinB, the location and type of mutations in the β subunit of RNA polymerase. Conclusions: In conclusion, for increasing the efficiency of ciprofloxacin against Gram-negative bacteria, use of an inhibitor of umuC, along with ciprofloxacin, would be helpful.
Collapse
|
6
|
Neves HI, Machado GT, Ramos TCDS, Yang HM, Yagil E, Spira B. Competition for nutritional resources masks the true frequency of bacterial mutants. BMC Biol 2020; 18:194. [PMID: 33317515 PMCID: PMC7737367 DOI: 10.1186/s12915-020-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background It is widely assumed that all mutant microorganisms present in a culture are able to grow and form colonies, provided that they express the features required for selection. Unlike wild-type Escherichia coli, PHO-constitutive mutants overexpress alkaline phosphatase and hence can hydrolyze glycerol-2-phosphate (G2P) to glycerol and form colonies on plates having G2P as the sole carbon source. These mutations mostly occur in the pst operon. However, the frequency of PHO-constitutive colonies on the G2P selective plate is exceptionally low. Results We show that the rate in which spontaneous PHO-constitutive mutations emerge is about 8.0 × 10−6/generation, a relatively high rate, but the growth of most existing mutants is inhibited by their neighboring wild-type cells. This inhibition is elicited only by non-mutant viable bacteria that can take up and metabolize glycerol formed by the mutants. Evidence indicates that the few mutants that do form colonies derive from microclusters of mutants on the selective plate. A mathematical model that describes the fate of the wild-type and mutant populations under these circumstances supports these results. Conclusion This scenario in which neither the wild-type nor the majority of the mutants are able to grow resembles an unavoidable “tragedy of the commons” case which results in the collapse of the majority of the population. Cooperation between rare adjacent mutants enables them to overcome the competition and eventually form mutant colonies. The inhibition of PHO-constitutive mutants provides an example of mutant frequency masked by orders of magnitude due to a competition between mutants and their ancestral wild-type cells. Similar “tragedy of the commons-like” cases may occur in other settings and should be taken into consideration while estimating true mutant frequencies and mutation rates. Supplementary Information The online version contains supplementary material available at (doi:10.1186/s12915-020-00913-1).
Collapse
Affiliation(s)
- Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriella Trombini Machado
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Hyun Mo Yang
- Departamento de Matemática Aplicada, Instituto de Matemática, Estatística e Computação Científica, Campinas, SP, Brazil
| | - Ezra Yagil
- Departament of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Henrikus SS, Henry C, McGrath AE, Jergic S, McDonald J, Hellmich Y, Bruckbauer ST, Ritger ML, Cherry M, Wood EA, Pham PT, Goodman MF, Woodgate R, Cox MM, van Oijen AM, Ghodke H, Robinson A. Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV in double strand break repair. Nucleic Acids Res 2020; 48:8490-8508. [PMID: 32687193 PMCID: PMC7470938 DOI: 10.1093/nar/gkaa597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 01/09/2023] Open
Abstract
Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Amy E McGrath
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe Universität, Frankfurt 3MR4+W2, Germany
| | | | - Matthew L Ritger
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Megan E Cherry
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Phuong T Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Harshad Ghodke
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Role of Mfd and GreA in Bacillus subtilis Base Excision Repair-Dependent Stationary-Phase Mutagenesis. J Bacteriol 2020; 202:JB.00807-19. [PMID: 32041798 DOI: 10.1128/jb.00807-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
We report that the absence of an oxidized guanine (GO) system or the apurinic/apyrimidinic (AP) endonucleases Nfo, ExoA, and Nth promoted stress-associated mutagenesis (SAM) in Bacillus subtilis YB955 (hisC952 metB5 leuC427). Moreover, MutY-promoted SAM was Mfd dependent, suggesting that transcriptional transactions over nonbulky DNA lesions promoted error-prone repair. Here, we inquired whether Mfd and GreA, which control transcription-coupled repair and transcription fidelity, influence the mutagenic events occurring in nutritionally stressed B. subtilis YB955 cells deficient in the GO or AP endonuclease repair proteins. To this end, mfd and greA were disabled in genetic backgrounds defective in the GO and AP endonuclease repair proteins, and the strains were tested for growth-associated and stress-associated mutagenesis. The results revealed that disruption of mfd or greA abrogated the production of stress-associated amino acid revertants in the GO and nfo exoA nth strains, respectively. These results suggest that in nutritionally stressed B. subtilis cells, spontaneous nonbulky DNA lesions are processed in an error-prone manner with the participation of Mfd and GreA. In support of this notion, stationary-phase ΔytkD ΔmutM ΔmutY (referred to here as ΔGO) and Δnfo ΔexoA Δnth (referred to here as ΔAP) cells accumulated 8-oxoguanine (8-OxoG) lesions, which increased significantly following Mfd disruption. In contrast, during exponential growth, disruption of mfd or greA increased the production of His+, Met+, or Leu+ prototrophs in both DNA repair-deficient strains. Thus, in addition to unveiling a role for GreA in mutagenesis, our results suggest that Mfd and GreA promote or prevent mutagenic events driven by spontaneous genetic lesions during the life cycle of B. subtilis IMPORTANCE In this paper, we report that spontaneous genetic lesions of an oxidative nature in growing and nutritionally stressed B. subtilis strain YB955 (hisC952 metB5 leuC427) cells drive Mfd- and GreA-dependent repair transactions. However, whereas Mfd and GreA elicit faithful repair events during growth to maintain genome fidelity, under starving conditions, both factors promote error-prone repair to produce genetic diversity, allowing B. subtilis to escape from growth-limiting conditions.
Collapse
|
10
|
Martin HA, Kidman AA, Socea J, Vallin C, Pedraza-Reyes M, Robleto EA. The Bacillus Subtilis K-State Promotes Stationary-Phase Mutagenesis via Oxidative Damage. Genes (Basel) 2020; 11:genes11020190. [PMID: 32053972 PMCID: PMC7073564 DOI: 10.3390/genes11020190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial cells develop mutations in the absence of cellular division through a process known as stationary-phase or stress-induced mutagenesis. This phenomenon has been studied in a few bacterial models, including Escherichia coli and Bacillus subtilis; however, the underlying mechanisms between these systems differ. For instance, RecA is not required for stationary-phase mutagenesis in B. subtilis like it is in E. coli. In B. subtilis, RecA is essential to the process of genetic transformation in the subpopulation of cells that become naturally competent in conditions of stress. Interestingly, the transcriptional regulator ComK, which controls the development of competence, does influence the accumulation of mutations in stationary phase in B. subtilis. Since recombination is not involved in this process even though ComK is, we investigated if the development of a subpopulation (K-cells) could be involved in stationary-phase mutagenesis. Using genetic knockout strains and a point-mutation reversion system, we investigated the effects of ComK, ComEA (a protein involved in DNA transport during transformation), and oxidative damage on stationary-phase mutagenesis. We found that stationary-phase revertants were more likely to have undergone the development of competence than the background of non-revertant cells, mutations accumulated independently of DNA uptake, and the presence of exogenous oxidants potentiated mutagenesis in K-cells. Therefore, the development of the K-state creates conditions favorable to an increase in the genetic diversity of the population not only through exogenous DNA uptake but also through stationary-phase mutagenesis.
Collapse
Affiliation(s)
- Holly A. Martin
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
| | - Amanda A. Kidman
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
| | - Jillian Socea
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
| | - Carmen Vallin
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, P.O. Box 187, Guanajuato Gto. 36050, Mexico;
| | - Eduardo A. Robleto
- University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA; (H.A.M.); (A.A.K.); (J.S.); (C.V.)
- Correspondence: ; Tel.: +1-702-895-2496
| |
Collapse
|
11
|
Wang C, Cui Y, Qu X. Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol 2018; 200:1381-1393. [PMID: 30022229 DOI: 10.1007/s00203-018-1552-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022]
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is currently one of the most valuable lactic acid bacteria (LAB) and widely used in global dairy industry. The acid tolerance and adaptation ability of LAB is the key point of their survival and proliferation during fermentation process and in gastrointestinal tract of human body. Two component system (TCS) is one of the most important mechanisms to allow bacteria to sense and respond to changes of environmental conditions. TCS typically consists of a histidine protein kinase (HPK) and a corresponding response regulator (RR). Our previous study indicated a TCS (JN675228/JN675229) was involved in acid adaptation in L. bulgaricus. To reveal the role of JN675228 (HPK1)/JN675229 (RR1) in acid adaptation, the target genes of JN675228 (HPK1)/JN675229 (RR1) were identified by means of a proteomic approach complemented with transcription data in the present study. The results indicated that HPK1/RR1 regulated the acid adaptation ability of bacteria by means of many pathways, including the proton pump related protein, classical stress shock proteins, carbohydrate metabolism, nucleotide biosynthesis, DNA repair, transcription and translation, peptide transport and degradation, and cell wall biosynthesis, etc. To our knowledge, this is the first report with the effect of acid adaptation-related TCS HPK1/RR1 on its target genes. This study will offer experimental basis for clarifying the acid adaptation regulation mechanism of L. bulgaricus, and provide a theoretical basis for this bacterium in industry application.
Collapse
Affiliation(s)
- Chao Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yanhua Cui
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, People's Republic of China
| |
Collapse
|
12
|
Henrikus SS, Wood EA, McDonald JP, Cox MM, Woodgate R, Goodman MF, van Oijen AM, Robinson A. DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli. PLoS Genet 2018; 14:e1007161. [PMID: 29351274 PMCID: PMC5792023 DOI: 10.1371/journal.pgen.1007161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/31/2018] [Accepted: 12/19/2017] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5–10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90–180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites. Translesion DNA polymerases play a critical role in DNA damage tolerance in all cells. In Escherichia coli, the translesion polymerases include DNA polymerases II, IV, and V. At stalled replication forks, DNA polymerase IV is thought to compete with, and perhaps displace the polymerizing subunits of DNA polymerase III to facilitate translesion replication. The results of the current fluorescence microscopy study challenge that view. The results indicate that DNA polymerase IV acts predominantly at sites away from the replisome. These sites may include recombination intermediates, stalled transcription complexes, and single-stranded gaps left in the wake of DNA polymerase III replisomes that re-initiate replication downstream of a lesion.
Collapse
Affiliation(s)
- Sarah S. Henrikus
- School of Chemistry, University of Wollongong, Wollongong, Australia
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myron F. Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | | | - Andrew Robinson
- School of Chemistry, University of Wollongong, Wollongong, Australia
- * E-mail:
| |
Collapse
|
13
|
Implementation of a loss-of-function system to determine growth and stress-associated mutagenesis in Bacillus subtilis. PLoS One 2017; 12:e0179625. [PMID: 28700593 PMCID: PMC5507404 DOI: 10.1371/journal.pone.0179625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/01/2017] [Indexed: 11/19/2022] Open
Abstract
A forward mutagenesis system based on the acquisition of mutations that inactivate the thymidylate synthase gene (TMS) and confer a trimethoprim resistant (Tmpr) phenotype was developed and utilized to study transcription-mediated mutagenesis (TMM). In addition to thyA, Bacillus subtilis possesses thyB, whose expression occurs under conditions of cell stress; therefore, we generated a thyB- thyA+ mutant strain. Tmpr colonies of this strain were produced with a spontaneous mutation frequency of ~1.4 × 10-9. Genetic disruption of the canonical mismatch (MMR) and guanine oxidized (GO) repair pathways increased the Tmpr frequency of mutation by ~2-3 orders of magnitude. A wide spectrum of base substitutions as well as insertion and deletions in the ORF of thyA were found to confer a Tmpr phenotype. Stationary-phase-associated mutagenesis (SPM) assays revealed that colonies with a Tmpr phenotype, accumulated over a period of ten days with a frequency of ~ 60 ×10-7. The Tmpr system was further modified to study TMM by constructing a ΔthyA ΔthyB strain carrying an IPTG-inducible Pspac-thyA cassette. In conditions of transcriptional induction of thyA, the generation of Tmpr colonies increased ~3-fold compared to conditions of transcriptional repression. Further, the Mfd and GreA factors were necessary for the generation of Tmpr colonies in the presence of IPTG in B. subtilis. Because GreA and Mfd facilitate transcription-coupled repair, our results suggest that TMM is a mechanim to produce genetic diversity in highly transcribed regions in growth-limited B. subtilis cells.
Collapse
|
14
|
Abstract
Transcription-coupled repair (TCR) serves an important role in preserving genome integrity and maintaining fidelity of replication. Coupling transcription to DNA repair requires a coordinated action of several factors, including transcribing RNA polymerase and various transcription modulators and repair proteins. To study TCR in molecular detail, it is important to employ defined protein complexes in vitro and defined genetic backgrounds in vivo. In this chapter, we present methods to interrogate various aspects of TCR at different stages of repair. We describe promoter-initiated and nucleic acid scaffold-initiated transcription as valid approaches to recapitulate various stages of TCR, and discuss their strengths and weaknesses. We also outline an approach to study TCR in its cellular context using Escherichia coli as a model system.
Collapse
|
15
|
Stationary-Phase Mutagenesis in Stressed Bacillus subtilis Cells Operates by Mfd-Dependent Mutagenic Pathways. Genes (Basel) 2016; 7:genes7070033. [PMID: 27399782 PMCID: PMC4962003 DOI: 10.3390/genes7070033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
In replication-limited cells of Bacillus subtilis, Mfd is mutagenic at highly transcribed regions, even in the absence of bulky DNA lesions. However, the mechanism leading to increased mutagenesis through Mfd remains currently unknown. Here, we report that Mfd may promote mutagenesis in nutritionally stressed B. subtilis cells by coordinating error-prone repair events mediated by UvrA, MutY and PolI. Using a point-mutated gene conferring leucine auxotrophy as a genetic marker, it was found that the absence of UvrA reduced the Leu+ revertants and that a second mutation in mfd reduced mutagenesis further. Moreover, the mfd and polA mutants presented low but similar reversion frequencies compared to the parental strain. These results suggest that Mfd promotes mutagenic events that required the participation of NER pathway and PolI. Remarkably, this Mfd-dependent mutagenic pathway was found to be epistatic onto MutY; however, whereas the MutY-dependent Leu+ reversions required Mfd, a direct interaction between these proteins was not apparent. In summary, our results support the concept that Mfd promotes mutagenesis in starved B. subtilis cells by coordinating both known and previously unknown Mfd-associated repair pathways. These mutagenic processes bias the production of genetic diversity towards highly transcribed regions in the genome.
Collapse
|
16
|
Abstract
The highly conserved Nus factors of bacteria were discovered as essential host proteins for the growth of temperate phage λ in Escherichia coli. Later, their essentiality and functions in transcription, translation, and, more recently, in DNA repair have been elucidated. Close involvement of these factors in various gene networks and circuits is also emerging from recent genomic studies. We have described a detailed overview of their biochemistry, structures, and various cellular functions, as well as their interactions with other macromolecules. Towards the end, we have envisaged different uncharted areas of studies with these factors, including their participation in pathogenicity.
Collapse
|
17
|
Abstract
Early research on the origins and mechanisms of mutation led to the establishment of the dogma that, in the absence of external forces, spontaneous mutation rates are constant. However, recent results from a variety of experimental systems suggest that mutation rates can increase in response to selective pressures. This chapter summarizes data demonstrating that,under stressful conditions, Escherichia coli and Salmonella can increase the likelihood of beneficial mutations by modulating their potential for genetic change.Several experimental systems used to study stress-induced mutagenesis are discussed, with special emphasison the Foster-Cairns system for "adaptive mutation" in E. coli and Salmonella. Examples from other model systems are given to illustrate that stress-induced mutagenesis is a natural and general phenomenon that is not confined to enteric bacteria. Finally, some of the controversy in the field of stress-induced mutagenesis is summarized and discussed, and a perspective on the current state of the field is provided.
Collapse
|
18
|
Abstract
All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell's replicase. In these situations, cells are forced to choose between recombination-mediated "damage avoidance" pathways or a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions but also bases being (mis)incorporated downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV, and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases.
Collapse
|
19
|
Zhu L, Li Y, Cai Z. Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:93. [PMID: 26136829 PMCID: PMC4487801 DOI: 10.1186/s13068-015-0276-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Microbial tolerance to different environmental stresses is of importance for efficient production of biofuels and biochemical. Such traits are often improved by evolutionary engineering approaches including mutagen-induced mutagenesis and successive passage. In contrast to these approaches which generate mutations in rapidly growing cells, recent research showed that mutations could be generated in non-dividing cells under stressful but non-lethal conditions, leading to the birth of the theory of stress-induced mutagenesis (SIM). A molecular mechanism of SIM has been elucidated to be mutagenic repair of DNA breaks. This inspired us to develop a synthetic SIM module to simulate the mutagenic cellular response so as to accelerate microbial adaptive evolution for an improved stress tolerance. RESULTS A controllable SIM evolution module was devised based on a genetic toggle switch in Escherichia coli. The synthetic module enables expression and repression of the genes related to up- and down-regulation responses during SIM in a bistable way. Upon addition of different inducers, the module can be turned on or off, triggering transition to a mutagenic or a high-fidelity state and thus allowing periodic adaptive evolution. Six genes (recA, dinB, umuD, ropS, ropE, and nusA) in the up-regulation responses were evaluated for their potentials to enhance the SIM rate. Expression of recA, dinB, or ropS alone increased the SIM rate by 4.5- to 13.7-fold, whereas their combined expression improved the rate by 31.9-fold. Besides, deletion of mutL increased the SIM rate by 82-fold. Assembly of these genes into the SIM module in the mutL-deletion E. coli strain elevated the SIM rate by nearly 3000-fold. Accelerated adaptive evolution of E. coli equipped with this synthetic SIM module was demonstrated under n-butanol stress, with the minimal inhibitory concentration of n-butanol increasing by 56 % within 2.5 months. CONCLUSIONS A synthetic SIM module was constructed to simulate cellular mutagenic responses during SIM. Based on this, a novel evolutionary engineering approach-SIM-based adaptive evolution-was developed to improve the n-butanol tolerance of E. coli.
Collapse
Affiliation(s)
- Linjiang Zhu
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
- />Key Laboratory of Industrial Biotechnology, Ministry of Education of China, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yin Li
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Zhen Cai
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
20
|
Abstract
Bacteria lack subcellular compartments and harbor a single RNA polymerase that synthesizes both structural and protein-coding RNAs, which are cotranscriptionally processed by distinct pathways. Nascent rRNAs fold into elaborate secondary structures and associate with ribosomal proteins, whereas nascent mRNAs are translated by ribosomes. During elongation, nucleic acid signals and regulatory proteins modulate concurrent RNA-processing events, instruct RNA polymerase where to pause and terminate transcription, or act as roadblocks to the moving enzyme. Communications among complexes that carry out transcription, translation, repair, and other cellular processes ensure timely execution of the gene expression program and survival under conditions of stress. This network is maintained by auxiliary proteins that act as bridges between RNA polymerase, ribosome, and repair enzymes, blurring boundaries between separate information-processing steps and making assignments of unique regulatory functions meaningless. Understanding the regulation of transcript elongation thus requires genome-wide approaches, which confirm known and reveal new regulatory connections.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
21
|
Abstract
UNLABELLED Mutations that cause the constitutive expression of the PHO regulon of Escherichia coli occur either in the pst operon or in the phoR gene, which encode, respectively, a high-affinity Pi transport system and a histidine kinase sensor protein. These mutations are normally selected on glycerol-2-phosphate (G2P) as the carbon source in the presence of excess Pi. The emergence of early PHO-constitutive mutants, which appear after growth for up to 48 h on selective medium, depends on the presence of phoA, which codes for a periplasmic alkaline phosphatase, while late mutants, which appear after 48 h, depend both on phoA and on the ugp operon, which encodes a glycerophosphodiester transport system. The emergence of the late mutants hints at an adaptive mutation process. PHO-constitutive phoR mutants appear only in a host that is mutated in pitA, which encodes an alternative Pi transport system that does not belong to the PHO regulon. The conserved Thr(217) residue in the PhoR protein is essential for PHO repression. IMPORTANCE One of the principal ways in which bacteria adapt to new nutrient sources is by acquiring mutations in key regulatory genes. The inability of E. coli to grow on G2P as a carbon source is used to select mutations that derepress the PHO regulon, a system of genes involved in the uptake of phosphorus-containing molecules. Mutations in the pst operon or in phoR result in the constitutive expression of the entire PHO regulon, including alkaline phosphatase, which hydrolyzes G2P. Here we demonstrate that the ugp operon, another member of the PHO regulon, is important for the selection of PHO-constitutive mutants under prolonged nutritional stress and that phoR mutations can be selected only in bacteria lacking pitA, which encodes a secondary Pi transport system.
Collapse
|
22
|
Kamarthapu V, Nudler E. Rethinking transcription coupled DNA repair. Curr Opin Microbiol 2015; 24:15-20. [PMID: 25596348 DOI: 10.1016/j.mib.2014.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 11/26/2022]
Abstract
Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity.
Collapse
Affiliation(s)
- Venu Kamarthapu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Epshtein V. UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward. Bioessays 2014; 37:12-9. [PMID: 25345862 DOI: 10.1002/bies.201400106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription-coupled repair (TCR) is a phenomenon that exists in a wide variety of organisms from bacteria to humans. This mechanism allows cells to repair the actively transcribed DNA strand much faster than the non-transcribed one. At the sites of bulky DNA damage RNA polymerase stalls, initiating recruitment of the repair machinery. It is a commonly accepted paradigm that bacterial cells utilize a sole coupling factor, called Mfd to initiate TCR. According to that model, Mfd removes transcription complexes stalled at the lesion site and simultaneously recruits repair machinery. However, this model was recently put in doubt by various discrepancies between the proposed universal role of Mfd in the TCR and its biochemical and phenotypical properties. Here, I present a second pathway of bacterial TCR recently discovered in my laboratory, which does not involve Mfd but implicates a common repair factor, UvrD, in a central position in the process.
Collapse
Affiliation(s)
- Vitaliy Epshtein
- Department of Biochemistry, New York University, Langhorn Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Baharoglu Z, Mazel D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014; 38:1126-45. [PMID: 24923554 DOI: 10.1111/1574-6976.12077] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022] Open
Abstract
The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- Institut Pasteur, Département Génomes et Génétique, Unité Plasticité du Génome Bactérien, Paris, France; CNRS, UMR3525, Paris, France
| | | |
Collapse
|
25
|
Li K, Jiang T, Yu B, Wang L, Gao C, Ma C, Xu P, Ma Y. Escherichia coli transcription termination factor NusA: heat-induced oligomerization and chaperone activity. Sci Rep 2014; 3:2347. [PMID: 23907089 PMCID: PMC3731644 DOI: 10.1038/srep02347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/17/2013] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli NusA, an essential component of the RNA polymerase elongation complex, is involved in transcriptional elongation, termination, anti-termination, cold shock and stress-induced mutagenesis. In this study, we demonstrated that NusA can self-assemble into oligomers under heat shock conditions and that this property is largely determined by the C-terminal domain. In parallel with the self-assembly process, NusA also acquires chaperone activity. Furthermore, NusA overexpression results in the enhanced heat shock resistance of host cells, which may be due to the chaperone activity of NusA. Our results suggest that E. coli NusA can act as a protector to prevent protein aggregation under heat stress conditions in vitro and in the NusA-overexpressing strain. We propose a new hypothesis that NusA could serve as a molecular chaperone in addition to its functions as a transcription factor. However, it remains to be further investigated whether NusA has the same function under normal physiological conditions.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhu L, Cai Z, Zhang Y, Li Y. Engineering stress tolerance ofEscherichia coliby stress-induced mutagenesis (SIM)-based adaptive evolution. Biotechnol J 2013; 9:120-7. [DOI: 10.1002/biot.201300277] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/02/2013] [Accepted: 09/15/2013] [Indexed: 01/02/2023]
|
27
|
McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 2013; 69:292-302. [DOI: 10.1093/jac/dkt364] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Rothe M, Blaut M. Evolution of the gut microbiota and the influence of diet. Benef Microbes 2013; 4:31-7. [PMID: 23257016 DOI: 10.3920/bm2012.0029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diet is a major force that shapes the composition and activity of the gut microbiota. This is evident from alterations in gut microbiota composition after weaning or drastic dietary changes. Owing to the complexity of the microbiota, interactions of intestinal bacteria with the host are difficult to study. Gnotobiotic animal models offer the opportunity to reduce the complexity and the interindividual variability of the intestinal microbiota. Germ-free animals were associated with a simplified microbial community consisting of eight bacterial species, that are found in the human gut. These microbes were selected because their genome sequences are available, and they mimic to some extent the metabolic activity of the human gut microbiota. The microbiota responded to dietary modifications by changes in the relative proportions of the community members. This model offers the chance to better define the role of intestinal bacteria in obesity development, but little is known on how diet affects intestinal bacteria at the cellular level. Mice monoassociated with Escherichia coli were used as a simplified model to investigate the influence of dietary factors on bacterial protein expression in the intestine. The mice were fed three different diets: a carbohydrate (lactose)-rich diet, a protein-rich diet and a diet rich in starch. The lactose-rich diet led to an induction of proteins involved in E. coli's oxidative stress response (Fur, AhpF, Dps). The corresponding genes are under control of the OxyR transcriptional regulator which is activated by oxidative stress. Further experiments demonstrated that osmotic stress exerted by various carbohydrates leads to an upregulation of proteins belonging to the oxyR regulon. The data suggest that the upregulated proteins enable intestinal E. coli to better cope with diet-induced osmotic stress. These examples demonstrate that gnotobiotic animal models are a valuable tool for studying diet-induced changes at the community and the cell level.
Collapse
Affiliation(s)
- M Rothe
- Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114.116, 14558 Nuthetal, Germany
| | | |
Collapse
|
29
|
Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance. Antibiotics (Basel) 2013; 2:288-315. [PMID: 27029305 PMCID: PMC4790341 DOI: 10.3390/antibiotics2020288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023] Open
Abstract
The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT), mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.
Collapse
|
30
|
Poirier I, Hammann P, Kuhn L, Bertrand M. Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: A proteome analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:215-32. [PMID: 23314334 DOI: 10.1016/j.aquatox.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/05/2012] [Accepted: 12/09/2012] [Indexed: 05/17/2023]
Abstract
A global proteomic evaluation of the response of the marine bacterium Pseudomonas fluorescens BA3SM1 to Cd, Zn and Cu was performed by two dimensional gel electrophoresis followed by mass spectrometry. When stressed with Cd, the most toxic metal for P. fluorescens BA3SM1, cell growth is rapidly affected and the number of proteins up-regulated (sixteen for 0.4 mM Cd) remains low in comparison with results obtained for Zn and Cu (twenty eight for 1.5mM Zn and forty four for 1.5 mM Cu). The changes in protein expression indicate that the cell adapts to metals by inducing essentially seven defense mechanisms: cell aggregation/biofilm formation (Zn=Cu>Cd); modification of envelope properties to increase the extracellular metal biosorption and/or control the uptake of metal (Cu>Zn); metal export (Cd=Zn and probably Cu); responses to oxidative stress (Cu>Zn>Cd); intracellular metal sequestration (Zn=Cu and probably Cd); hydrolysis of abnormally folded proteins (Cd=Cu), and the over-synthesis of proteins inhibited by metal (Cd>Cu>Zn). To the best of our knowledge, this is the first report showing that a marine P. fluorescens is able to acquire a metal-resistant phenotype, making the strain BA3SM1 a promising agent for bioremediation processes.
Collapse
Affiliation(s)
- Isabelle Poirier
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, Cherbourg-Octeville, France.
| | | | | | | |
Collapse
|
31
|
Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat Commun 2013; 4:2115. [PMID: 23828459 PMCID: PMC3715873 DOI: 10.1038/ncomms3115] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 06/05/2013] [Indexed: 12/30/2022] Open
Abstract
Double-stranded DNA ends, often from replication, drive genomic instability, yet their origin in non-replicating cells is unknown. Here we show that transcriptional RNA/DNA hybrids (R-loops) generate DNA ends that underlie stress-induced mutation and amplification. Depleting RNA/DNA hybrids with overproduced RNase HI reduces both genomic changes, indicating RNA/DNA hybrids as intermediates in both. An Mfd requirement and inhibition by translation implicate transcriptional R-loops. R-loops promote instability by generating DNA ends, shown by their dispensability when ends are provided by I-SceI endonuclease. Both R-loops and single-stranded endonuclease TraI are required for end formation, visualized as foci of a fluorescent end-binding protein. The data suggest that R-loops prime replication forks that collapse at single-stranded nicks, producing ends that instigate genomic instability. The results illuminate how DNA ends form in non-replicating cells, identify R-loops as the earliest known mutation/amplification intermediate, and suggest that genomic instability during stress could be targeted to transcribed regions, accelerating adaptation.
Collapse
Affiliation(s)
- Hallie Wimberly
- Department of Molecular and Human Genetics, 1 Baylor Plaza, Houston, Texas 77030, USA
- Present address: Department of Pathology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Chandan Shee
- Department of Molecular and Human Genetics, 1 Baylor Plaza, Houston, Texas 77030, USA
| | - P. C. Thornton
- Department of Molecular and Human Genetics, 1 Baylor Plaza, Houston, Texas 77030, USA
| | | | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, 1 Baylor Plaza, Houston, Texas 77030, USA
- Departments of Biochemistry and Molecular Biology, Molecular Virology and Microbiology and the Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, 1 Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Al Mamun AAM, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 2012; 338:1344-8. [PMID: 23224554 PMCID: PMC3782309 DOI: 10.1126/science.1226683] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mechanisms of DNA repair and mutagenesis are defined on the basis of relatively few proteins acting on DNA, yet the identities and functions of all proteins required are unknown. Here, we identify the network that underlies mutagenic repair of DNA breaks in stressed Escherichia coli and define functions for much of it. Using a comprehensive screen, we identified a network of ≥93 genes that function in mutation. Most operate upstream of activation of three required stress responses (RpoS, RpoE, and SOS, key network hubs), apparently sensing stress. The results reveal how a network integrates mutagenic repair into the biology of the cell, show specific pathways of environmental sensing, demonstrate the centrality of stress responses, and imply that these responses are attractive as potential drug targets for blocking the evolution of pathogens.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Andreas M. Lisewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Caleb Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Dongxu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Claude Saint-Ruf
- U1001 INSERM, Université Paris, Descartes, Sorbonne Paris cité, site Necker, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Janet L. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Ryan L. Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
33
|
Multiple strategies for translesion synthesis in bacteria. Cells 2012; 1:799-831. [PMID: 24710531 PMCID: PMC3901139 DOI: 10.3390/cells1040799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022] Open
Abstract
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
Collapse
|
34
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
35
|
Rosenberg SM, Shee C, Frisch RL, Hastings PJ. Stress-induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine. Bioessays 2012; 34:885-92. [PMID: 22911060 PMCID: PMC3533179 DOI: 10.1002/bies.201200050] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the "modern synthesis" of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen-host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer.
Collapse
Affiliation(s)
- Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | |
Collapse
|
36
|
Cohen SE, Walker GC. New discoveries linking transcription to DNA repair and damage tolerance pathways. Transcription 2012; 2:37-40. [PMID: 21326909 DOI: 10.4161/trns.2.1.14228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/27/2023] Open
Abstract
In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.
Collapse
Affiliation(s)
- Susan E Cohen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | | |
Collapse
|
37
|
Zhang YN, Ding SG, Huang LH, Zhang J, Shi YY, Zhong LJ. Comparative proteome analysis of Helicobacter pylori clinical strains by two-dimensional gel electrophoresis. J Zhejiang Univ Sci B 2012; 12:820-7. [PMID: 21960345 DOI: 10.1631/jzus.b1000445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To investigate the pathogenic properties of Helicobacter pylori by comparing the proteome map of H. pylori clinical strains. METHODS Two wild-type H. pylori strains, YN8 (isolated from biopsy tissue of a gastric cancer patient) and YN14 (isolated from biopsy tissue of a gastritis and duodenal ulcer patient), were used. Proteomic analysis, using a pH range of 3-10 and 5-8, was performed. The individual proteins were identified by quadrupole time-of-flight (Q-TOF) mass spectrometer and protein database search. RESULTS Variation in spot patterns directed towards differential protein expression levels was observed between the strains. The gel revealed prominent proteins with several protein "families". The comparison of protein expressions of the two strains reveals a high variability. Differentially present or absent spots were observed. Nine differentially expressed protein spots identified by Q-TOF included adenosine triphosphate (ATP)-binding protein, disulfide oxidoreductase B (DsbB)-like protein, N utilization substance A (NusA), ATP-dependent protease binding subunit/heat shock protein, hydantoin utilization protein A, seryl-tRNA synthetase, molybdenum ABC transporter ModD, and hypothetical proteins. CONCLUSIONS This study suggests that H. pylori strains express/repress protein variation, not only in terms of the virulence proteins, but also in terms of physiological proteins, when they infect a human host. The difference of protein expression levels between H. pylori strains isolated from gastric cancer and gastritis may be the initiator of inflammation, and result in the different clinical presentation. In this preliminary study, we report seven differential proteins between strains, with molecule weights from approximately 10 kDa to approximately 40 kDa. Further studies are needed to investigate those proteins and their function associated with H. pylori colonization and adaptation to host environment stress.
Collapse
Affiliation(s)
- Ya-nan Zhang
- Department of Laboratory, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
38
|
Martin HA, Pedraza-Reyes M, Yasbin RE, Robleto EA. Transcriptional de-repression and Mfd are mutagenic in stressed Bacillus subtilis cells. J Mol Microbiol Biotechnol 2012; 21:45-58. [PMID: 22248542 DOI: 10.1159/000332751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In recent years, it has been proposed that conflicts between transcription and active chromosomal replication engender genome instability events. Furthermore, transcription elongation factors have been reported to prevent conflicts between transcription and replication and avoid genome instability. Here, we examined transcriptional de-repression as a genetic diversity-producing agent and showed, through the use of physiological and genetic means, that transcriptional de-represssion of a leuC defective allele leads to accumulation of Leu(+) mutations. We also showed, by using riboswitches that activate transcription in conditions of tyrosine or methionine starvation, that the effect of transcriptional de-repression of the leuC construct on the accumulation of Leu(+) mutations was independent of selection. We examined the role of Mfd, a transcription elongation factor involved in DNA repair, in this process and showed that proficiency of this factor promotes mutagenic events. These results are in stark contrast to previous reports in Escherichia coli, which showed that Mfd prevents replication fork collapses. Because our assays place cells under non-growing conditions, by starving them for two amino acids, we surmised that the Mfd mutagenic process associated with transcriptional de-repression does not result from conflicts with chromosomal replication. These results raise the interesting concept that transcription elongation factors may serve two functions in cells. In growing conditions, these factors prevent the generation of mutations, while in stress or non-growing conditions they mediate the production of genetic diversity.
Collapse
|
39
|
Abstract
Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the 'fittest' mutation gets fixed ultimately while the others are lost. This has been called 'clonal interference' which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host-pathogen interactions.
Collapse
|
40
|
Danchin A, Binder PM, Noria S. Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk. Genes (Basel) 2011; 2:998-1016. [PMID: 24710302 PMCID: PMC3927596 DOI: 10.3390/genes2040998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/25/2011] [Accepted: 11/16/2011] [Indexed: 12/25/2022] Open
Abstract
The notion of antifragility, an attribute of systems that makes them thrive under variable conditions, has recently been proposed by Nassim Taleb in a business context. This idea requires the ability of such systems to 'tinker', i.e., to creatively respond to changes in their environment. A fairly obvious example of this is natural selection-driven evolution. In this ubiquitous process, an original entity, challenged by an ever-changing environment, creates variants that evolve into novel entities. Analyzing functions that are essential during stationary-state life yield examples of entities that may be antifragile. One such example is proteins with flexible regions that can undergo functional alteration of their side residues or backbone and thus implement the tinkering that leads to antifragility. This in-built property of the cell chassis must be taken into account when considering construction of cell factories driven by engineering principles.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SAS, CEA/Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, France.
| | - Philippe M Binder
- Natural Sciences Division, University of Hawaii, Hilo, HI 96720-4091, USA.
| | - Stanislas Noria
- Fondation Fourmentin-Guilbert, 2 avenue du Pavé Neuf, 93160 Noisy-le-Grand, France.
| |
Collapse
|
41
|
Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:13659-64. [PMID: 21808005 DOI: 10.1073/pnas.1104681108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.
Collapse
|
42
|
Abstract
Populations adapt physiologically using regulatory mechanisms and genetically by means of mutations that improve growth. During growth under selection, genetic adaptation can be rapid. In several genetic systems, the speed of adaptation has been attributed to cellular mechanisms that increase mutation rates in response to growth limitation. An alternative possibility is that growth limitation serves only as a selective agent but acts on small-effect mutations that are common under all growth conditions. The genetic systems that initially suggested stress-induced mutagenesis have been analyzed without regard for multistep adaptation and some include features that make such analysis difficult. To test the selection-only model, a simpler system is examined, whose behavior was originally attributed to stress-induced mutagenesis (Yang et al. 2001, 2006). A population with a silent chromosomal lac operon gives rise to Lac+ revertant colonies that accumulate over 6 days under selection. Each colony contains a mixture of singly and doubly mutant cells. Evidence is provided that the colonies are initiated by pre-existing single mutants with a weak Lac+ phenotype. Under selection, these cells initiate slow-growing clones, in which a second mutation arises and improves growth of the resulting double mutant. The system shows no evidence of general mutagenesis during selection. Selection alone may explain rapid adaptation in this and other systems that give the appearance of mutagenesis.
Collapse
|
43
|
Compromised factor-dependent transcription termination in a nusA mutant of Escherichia coli: spectrum of termination efficiencies generated by perturbations of Rho, NusG, NusA, and H-NS family proteins. J Bacteriol 2011; 193:3842-50. [PMID: 21602355 DOI: 10.1128/jb.00221-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proteins NusA and NusG, which are essential for the viability of wild-type Escherichia coli, participate in various postinitiation steps of transcription including elongation, antitermination, and termination. NusG is required, along with the essential Rho protein, for factor-dependent transcription termination (also referred to as polarity), but the role of NusA is less clear, with conflicting reports that it both promotes and inhibits the process. In this study, we found that a recessive missense nusA mutant [nusA(R258C)] exhibits a transcription termination-defective (that is, polarity-relieved) phenotype, much like missense mutants in rho or nusG, but is unaffected for either the rate of transcription elongation or antitermination in λ phage. Various combinations of the rho, nusG, and nusA mutations were synthetically lethal, and the lethality was suppressed by expression of the N-terminal half of nucleoid protein H-NS. Our results suggest that NusA function is indeed needed for factor-dependent transcription termination and that an entire spectrum of termination efficiencies can be generated by perturbations of the Rho, NusG, NusA, and H-NS family of proteins, with the corresponding phenotypes extending from polarity through polarity relief to lethality.
Collapse
|
44
|
Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrob Agents Chemother 2011; 55:2438-41. [PMID: 21300836 DOI: 10.1128/aac.01549-10] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance development has been linked to the bacterial SOS stress response. In Escherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS in Vibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation with E. coli, all these antibiotics induce SOS in V. cholerae.
Collapse
|
45
|
The SMC-like protein complex SbcCD enhances DNA polymerase IV-dependent spontaneous mutation in Escherichia coli. J Bacteriol 2010; 193:660-9. [PMID: 21131491 DOI: 10.1128/jb.01166-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, RpoS, the general stress response sigma factor, regulates the activity of the specialized DNA polymerase DNA polymerase IV (Pol IV) both in stationary-phase and in exponential-phase cells. Because during exponential phase dinB, the gene encoding Pol IV, is transcribed independently of RpoS, RpoS must regulate Pol IV activity in growing cells indirectly via one or more intermediate factors. The results presented here show that one of these intermediate factors is SbcCD, an SMC-like protein and an ATP-dependent nuclease. By initiating or participating in double-strand break repair, SbcCD may provide DNA substrates for Pol IV polymerase activity.
Collapse
|
46
|
Linking transcription with DNA repair, damage tolerance, and genome duplication. Proc Natl Acad Sci U S A 2010; 107:15314-5. [PMID: 20733069 DOI: 10.1073/pnas.1010659107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:15517-22. [PMID: 20696893 DOI: 10.1073/pnas.1005203107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report observations suggesting that the transcription elongation factor NusA promotes a previously unrecognized class of transcription-coupled repair (TCR) in addition to its previously proposed role in recruiting translesion synthesis (TLS) DNA polymerases to gaps encountered during transcription. Earlier, we reported that NusA physically and genetically interacts with the TLS DNA polymerase DinB (DNA pol IV). We find that Escherichia coli nusA11(ts) mutant strains, at the permissive temperature, are highly sensitive to nitrofurazone (NFZ) and 4-nitroquinolone-1-oxide but not to UV radiation. Gene expression profiling suggests that this sensitivity is unlikely to be due to an indirect effect on gene expression affecting a known DNA repair or damage tolerance pathway. We demonstrate that an N(2)-furfuryl-dG (N(2)-f-dG) lesion, a structural analog of the principal lesion generated by NFZ, blocks transcription by E. coli RNA polymerase (RNAP) when present in the transcribed strand, but not when present in the nontranscribed strand. Our genetic analysis suggests that NusA participates in a nucleotide excision repair (NER)-dependent process to promote NFZ resistance. We provide evidence that transcription plays a role in the repair of NFZ-induced lesions through the isolation of RNAP mutants that display altered ability to survive NFZ exposure. We propose that NusA participates in an alternative class of TCR involved in the identification and removal of a class of lesion, such as the N(2)-f-dG lesion, which are accurately and efficiently bypassed by DinB in addition to recruiting DinB for TLS at gaps encountered by RNAP.
Collapse
|
48
|
Separate DNA Pol II- and Pol IV-dependent pathways of stress-induced mutation during double-strand-break repair in Escherichia coli are controlled by RpoS. J Bacteriol 2010; 192:4694-700. [PMID: 20639336 DOI: 10.1128/jb.00570-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work showed that about 85% of stress-induced mutations associated with DNA double-strand break repair in carbon-starved Escherichia coli result from error-prone DNA polymerase IV (Pol IV) (DinB) and that the mutagenesis is controlled by the RpoS stress response, which upregulates dinB. We report that the remaining mutagenesis requires high-fidelity Pol II, and that this component also requires RpoS. The results identify a second DNA polymerase contributing to stress-induced mutagenesis and show that RpoS promotes mutagenesis by more than the simple upregulation of dinB.
Collapse
|
49
|
Andersson DI, Koskiniemi S, Hughes D. Biological roles of translesion synthesis DNA polymerases in eubacteria. Mol Microbiol 2010; 77:540-8. [DOI: 10.1111/j.1365-2958.2010.07260.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Ha KS, Toulokhonov I, Vassylyev DG, Landick R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J Mol Biol 2010; 401:708-25. [PMID: 20600118 DOI: 10.1016/j.jmb.2010.06.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
NusA is a core, multidomain regulator of transcript elongation in bacteria and archaea. Bacterial NusA interacts with elongating complexes and the nascent RNA transcript in ways that stimulate pausing and termination but that can be switched to antipausing and antitermination by other accessory proteins. This regulatory complexity of NusA likely depends on its multidomain structure, but it remains unclear which NusA domains possess which regulatory activity and how they interact with elongating RNA polymerase. We used a series of truncated NusA proteins to measure the effect of the NusA domains on transcriptional pausing and termination. We find that the N-terminal domain (NTD) of NusA is necessary and sufficient for enhancement of transcriptional pausing and that the other NusA domains contribute to NusA binding to elongating complexes. Stimulation of intrinsic termination requires higher concentrations of NusA and involves both the NTD and other NusA domains. Using a tethered chemical protease in addition to protein-RNA cross-linking, we show that the NusA NTD contacts the RNA exit channel of RNA polymerase. Finally, we report evidence that the NusA NTD recognizes duplex RNA in the RNA exit channel.
Collapse
Affiliation(s)
- Kook Sun Ha
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|