1
|
Zimmer RK, Ferrier GA, Zimmer CA. Finding food: how generalist predators use contact-chemosensory information to guide prey preferences. J Exp Biol 2024; 227:jeb247523. [PMID: 39246153 PMCID: PMC11491814 DOI: 10.1242/jeb.247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Understanding the processes that guide carnivores in finding and selecting prey is a fundamental, unresolved challenge in sensory biology. To our knowledge, no published work has yet revealed the complete structural identities of compounds that cue preferences by generalist predators for different prey species. With this research imperative in mind, we determined the chemistry driving consumer preferences for live intact prey using two generalist predatory species (sea stars, Pisaster ochraceus; whelks, Acanthinucella spirata), along with two foundation prey species (mussels, Mytilus californianus; barnacles, Balanus glandula), inhabiting rocky, wave-swept shores. Each prey species is known to secrete either a 29.6 kDa (named 'KEYSTONEin') or a 199.6 kDa (named 'MULTIFUNCin') glycoprotein as a contact-chemical cue. Here, experimental manipulations utilized faux prey consisting of cleaned barnacle or mussel shells infused with KEYSTONEin, MULTIFUNCin or seawater (control) gels. Whelks exhibited a strong penchant for MULTIFUNCin over KEYSTONEin, irrespective of shell type. In contrast, sea stars generally preferred KEYSTONEin over MULTIFUNCin, but this preference shifted depending on the experimental context in which they encountered physical (shell) and chemical (glycoprotein) stimuli. This study ultimately demonstrates clear and contrasting chemical preferences between sea stars and whelks. It highlights the importance of experimental setting in determining chemical preferences. Finally, it shows that prey preferences by these predators hinge only on one or two contact-protein cues, without the need for quality coding via fluid-borne compounds, low-molecular-weight substances or mixture blends.
Collapse
Affiliation(s)
- Richard K. Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Neuroscience Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Moreton Bay Research Station, Centre for Marine Science, and School of the Environment, University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
| | - Graham A. Ferrier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cheryl A. Zimmer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Moreton Bay Research Station, Centre for Marine Science, and School of the Environment, University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
| |
Collapse
|
2
|
Hernández‐Urcera J, González ÁF, Escolano F, Cabanellas‐Reboredo M. Observational evidence of egg guarding in wild European squid. Ecol Evol 2024; 14:e70111. [PMID: 39114170 PMCID: PMC11304076 DOI: 10.1002/ece3.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
It is accepted that loliginids, like other squid, deposit their eggs in crevices on the seabed and then abandon them. In this work, we present observational evidence of egg guarding behavior in wild European squid, Loligo vulgaris. While monitoring a squid spawning crevice at night in Spain, a large mass of squid eggs was located and filmed 17 times during 42 days, until hatching. A male and a female of L. vulgaris were filmed in front of the crevice. The same male was filmed guarding the eggs on consecutive days. In the presence of the divers, male and female alternated their approaches to the crevice repeatedly touching and flushing the egg clusters. This guarding behavior differs from the reproductive habits assumed for the European squid and could represent the first evidence of egg guarding by a male in cephalopods.
Collapse
Affiliation(s)
| | - Ángel F. González
- ECOBIOMAR Research GroupInstitute of Marine Research (IIM‐CSIC)VigoSpain
| | - Felipe Escolano
- National Center Spanish Institute of Oceanography, CSICBalearic Islands COSpain
| | | |
Collapse
|
3
|
Derby CD, Caprio J. What are olfaction and gustation, and do all animals have them? Chem Senses 2024; 49:bjae009. [PMID: 38422390 DOI: 10.1093/chemse/bjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/02/2024] Open
Abstract
Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
4
|
Chancellor S, Grasse B, Sakmar T, Scheel D, Brown JS, Santymire RM. Exploring the Effect of Age on the Reproductive and Stress Physiology of Octopus bimaculoides Using Dermal Hormones. Animals (Basel) 2023; 13:3115. [PMID: 37835721 PMCID: PMC10571824 DOI: 10.3390/ani13193115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Our goal was to validate the use of dermal swabs to evaluate both reproductive and stress physiology in the California two-spot octopus, Octopus bimaculoides. Our objectives were to (1) use dermal swabs to evaluate glucocorticoids and reproductive hormones of O. bimaculoides; (2) determine the influence of life stage on hormone production (glucocorticoids in all individuals; testosterone, estrogen, and progesterone in females; and testosterone in males) of reproductive (n = 4) and senescent (n = 8) individuals to determine the effect of age on hormonal patterns; and (3) determine whether these hormones change significantly in response to an acute stressor. For the stress test, individuals were first swabbed for a baseline and then chased around the aquarium with a net for 5 min. Afterward, individuals were swabbed for 2 h at 15 min intervals to compare to the pre-stress test swab. Reproductive individuals responded to the stressor with a 2-fold increase in dermal cortisol concentrations at 15 and 90 min. Six of the eight senescent individuals did not produce a 2-fold increase in dermal cortisol concentrations. Reproductive individuals had significantly higher sex hormone concentrations compared to senescent individuals (progesterone and estradiol measured in females, and testosterone for both sexes). After the stressor, only reproductive males produced a 2-fold increase in dermal testosterone concentrations, while sex hormones in females showed no change. The stress hormone cortisol was significantly higher in senescent than in reproductive individuals, independent of sex. Dermal corticosterone concentrations were highest in senescent females followed by senescent males, and lowest in reproductive individuals regardless of sex. Dermal swabs provide an effective and noninvasive means for evaluating octopus hormones. Application of these indicators may be imperative as cephalopods are more commonly cultured in captivity for experimentation, display, and consumption.
Collapse
Affiliation(s)
| | - Bret Grasse
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; (B.G.); (T.S.)
| | - Taylor Sakmar
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; (B.G.); (T.S.)
| | - David Scheel
- Institute of Culture and the Environment, Alaska Pacific University, Anchorage, AK 99508, USA;
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | | |
Collapse
|
5
|
Ruhland F, Gabant G, Toussaint T, Nemcic M, Cadène M, Lucas C. Reproductives signature revealed by protein profiling and behavioral bioassays in termite. Sci Rep 2023; 13:7070. [PMID: 37127756 PMCID: PMC10151321 DOI: 10.1038/s41598-023-33252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Proteins are known to be social interaction signals in many species in the animal kingdom. Common mediators in mammals and aquatic species, they have seldom been identified as such in insects' behaviors. Yet, they could represent an important component to support social signals in social insects, as the numerous physical contacts between individuals would tend to favor the use of contact compounds in their interactions. However, their role in social interactions is largely unexplored: are they rare or simply underestimated? In this preliminary study, we show that, in the termite Reticulitermes flavipes, polar extracts from reproductives trigger body-shaking of workers (a vibratory behavior involved in reproductives recognition) while extracts from workers do not. Molecular profiling of these cuticular extracts using MALDI-TOF mass spectrometry reveals higher protein diversity in reproductives than in workers and a sex-specific composition exclusive to reproductives. While the effects observed with extracts are not as strong as with live termites, these results open up the intriguing possibility that social signaling may not be limited to cuticular hydrocarbons or other non-polar, volatile chemicals as classically accepted. Our results suggest that polar compounds, in particular some of the Cuticular Protein Compounds (CPCs) shown here by MALDI to be specific to reproductives, could play a significant role in insect societies. While this study is preliminary and further comprehensive molecular characterization is needed to correlate the body-shaking triggering effects with a given set of polar compounds, this exploratory study opens new perspectives for understanding the role of polar compounds such as proteins in caste discrimination, fertility signaling, or interspecific insect communication.
Collapse
Affiliation(s)
- Fanny Ruhland
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Timothée Toussaint
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Matej Nemcic
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Martine Cadène
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France.
| |
Collapse
|
6
|
Morishita F, Horiguchi T, Akuta H, Ueki T, Imamura T. Concomitant downregulation of neuropeptide genes in a marine snail with consecutive sexual maturation after a nuclear disaster in Japan. Front Endocrinol (Lausanne) 2023; 14:1129666. [PMID: 36967776 PMCID: PMC10036341 DOI: 10.3389/fendo.2023.1129666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 03/12/2023] Open
Abstract
Consecutive sexual maturation (CSM), an abnormal reproductive phenomenon of a marine snail, Reishia clavigera, has occurred since 2017 in the vicinity of the Fukushima Daiichi Nuclear Power Plant after the nuclear disaster there. We hypothesized that alterations in animal physiology mediated through genetic/epigenetic changes could sensitively reflect environmental pollution. Understanding the mechanism of this rapid biological response should enable us to quantitatively evaluate long-lasting effects of the nuclear disaster. To determine the molecular basis for CSM, we conducted transcriptome profiling in the ganglia of normal and CSM snails. We assembled the short-read cDNA sequences obtained by Illumina sequencing, and succeeded in characterizing more than 60,000 gene models that include 88 kinds of neuropeptide precursors by BLAST search and experimental curation. GO-enrichment analysis of the differentially expressed genes demonstrated that severe downregulation of neuropeptide-related genes occurred concomitantly with CSM. In particular, significant decreases of the transcripts of 37 genes among 88 neuropeptide precursor genes, including those for myomodulin, PentaFVamide, maturation-associated peptide-5A and conopressin, were commonly observed in female and male CSM snails. By contrast, microseminoprotein precursor was the only exceptional case where the expression was increased in CSM snails. These results indicate that down-regulation of neuropeptide precursors is a remarkable feature of CSM. We also found that factors involved in epigenetic modification rather than transcription factors showed altered patterns of expression upon CSM. Comprehensive expression panels of snail neuropeptide precursors made in this study will be useful tools for environmental assessment as well as for studying marine reproductive biology.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- *Correspondence: Fumihiro Morishita, ; Takuya Imamura,
| | - Toshihiro Horiguchi
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hiroto Akuta
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tatsuya Ueki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuya Imamura
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- *Correspondence: Fumihiro Morishita, ; Takuya Imamura,
| |
Collapse
|
7
|
Jönsson M, Morin M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Sex-specific expression of pheromones and other signals in gravid starfish. BMC Biol 2022; 20:288. [PMID: 36528687 PMCID: PMC9759900 DOI: 10.1186/s12915-022-01491-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef. RESULTS: Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles-chemosensory organs at the distal tips of the starfish arms-uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. CONCLUSIONS Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.
Collapse
Affiliation(s)
- Mathias Jönsson
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Marie Morin
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
8
|
Xiang X, Yu Z, Liu Y, Huang Y, Wang J, Chen L, Ma M. Differential proteomics between unhatched male and female egg yolks reveal the molecular mechanisms of sex-allocation and sex-determination in chicken. Poult Sci 2022; 101:101906. [PMID: 35696754 PMCID: PMC9198474 DOI: 10.1016/j.psj.2022.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/09/2022] Open
Abstract
There is a huge demand to identify the sex of unhatched fertilized eggs for laying industry and to understand the differences between male and female eggs as early as possible. Then the molecular mechanisms of sex determination and sex allocation in chicken were revealed. Therefore, TMT proteomic was applied to characterize the variation of molecular matrix between unhatched male and female egg yolks. A total of 411 proteins were identified and 35 differentially expressed proteins (DEPs), including 375332005, 015809562, 763550308 (upregulated, UPs) and 1337178851, 89000557, 89000581 (downregulated, DPs), etc. were confirmed between them. Gene ontology analyses showed that DEPs were mainly involved in response to stimulus, distributed in the extracellular region and participated in binding; KEGG analyses showed that few DPs were participated in cell growth and death, transport and catabolism, signaling molecules, interaction and were enriched in ubiquitin mediated proteolysis, endocytosis, ferroptosis, etc. metabolic pathways. Moreover, most of the DEPs and related metabolic pathways were associated with sex hormones. More importantly, this study supports maternal sex-allocation theory and extends our understanding of the molecular mechanism of sex determination and differentiation in avian. Which also provides a powerful evidence for ovo sexing of unhatched fertilized domestic chicken eggs by nondestructive approach and will be of great significance to eggs processing and production.
Collapse
Affiliation(s)
- Xiaole Xiang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China; National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhuosi Yu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Jingjing Wang
- Department of Food Science, Foshan University, Foshan, 528000, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Gaudin-Zatylny C, Corre E, Zanuttini B, Endress M, Bernay B, Pontin J, Leduc A, Henry J. Identification of a New Set of Polypeptidic Sex Pheromones from Cuttlefish (Sepia officinalis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:574-587. [PMID: 35397049 DOI: 10.1007/s10126-022-10126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The common English Channel cuttlefish (Sepia officinalis) reproduces every year on very localized coastal spawning areas after a west-east horizontal migration of several tens of kilometers (80-200 km). The massive arrival of spawners on the coasts of west Cotentin and the Bay of Seine is suspected to be driven by the action of sex pheromones expressed and secreted by the genitals of sexually mature females. The present study aims to verify the existence of polypeptide pheromones, of a higher molecular weight than those described above. Their size could confer them a wider range of action than that of the previously identified peptide pheromones. The implementation of an experimental strategy combining transcriptomics and proteomics with functional tests and an in silico study led to the identification of a cocktail of pheromones with molecular weights ranging between 22 and 26 kDa. Proteomic analyses combined to functional tests revealed partial pheromone release in the environment, and their accumulation in the outer capsule of the egg, suggesting the eggs as pheromone diffusers, also able to induce stimulation by contact when the eggs are handled by females.
Collapse
Affiliation(s)
- Céline Gaudin-Zatylny
- Laboratoire de Biologie Des Organismes Et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France
- Normandie Univ, UNICAEN, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France
| | - Erwan Corre
- Normandie Univ, UNICAEN, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France
| | - Bruno Zanuttini
- CNRS, Sorbonne Université, R242429680, ABiMS, Station Biologique, 29680, Roscoff, France
| | - Maxime Endress
- Laboratoire de Biologie Des Organismes Et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France
- Normandie Univ, UNICAEN, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France
| | - Benoît Bernay
- Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14 000, Caen, France
| | - Julien Pontin
- Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14 000, Caen, France
| | - Alexandre Leduc
- Laboratoire de Biologie Des Organismes Et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France
- Normandie Univ, UNICAEN, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France
| | - Joël Henry
- Laboratoire de Biologie Des Organismes Et Ecosystèmes Aquatiques (BOREA), Université de Caen-Normandie, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
- Normandie Univ, UNICAEN, UMR 8067 BOREA, MNHN, SU, UA, CNRS, IRD-207, 14 000, Caen, France.
- Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14 000, Caen, France.
- Normandie Univ, UNICAEN, SF ICORE 4206, US EMerode, Proteogen plateform, 14000, Caen, France.
| |
Collapse
|
10
|
Zimmer RK, Ferrier GA, Zimmer CA. Chemosensory Exploitation and Predator-Prey Arms Races. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.752327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thousands of armed predatory species, distributed widely across the metazoan tree-of-life, consume only hard-shell or exoskeleton-bearing organisms (called “durophagy”). Prey armor clearly has evolved in response to selection by predators, but there is little evidence of the contrary, counter-adaptation by predators. Evolved consumer responses to prey, in general, might be more readily expressed in ways other than morphological traits, including via sensory cues. Here, we explored the chemosensory basis for durophagy in a model predator-prey system, and identified intimate associations between durophagous predators and their shelled prey. Barnacles (Balanus glandula and Semibalanus cariosus) bear hard shells and secrete, respectively, a 199 or 201 kDa glycoprotein ortholog (named “MULTIFUNCin”), with expression limited to the body armor (epidermis, cuticle, and live shell). To test for effects of MULTIFUNCin on predators, we constructed faux prey to mimic meaningful physical and chemical characteristics of live barnacles. In separate experiments, each consumer species was presented MULTIFUNCin, purified from either B. glandula or S. cariosus, at a typical armor concentration. All six predatory species (sea star, Pisaster ochraceus; whelks, Acanthinucella spirata, Nucella emarginata, N. ostrina, N. canaliculata, and N. lamellosa) attacked and ate MULTIFUNCin-infused faux prey significantly more than controls. Akin to barnacles, secretion of glycoprotein-rich extracellular matrices is common among armored prey species—from marine sponges to terrestrial vertebrates. Our results, therefore, suggest that chemosensory exploitation of glycoproteins could be widespread, with notable consequences for life on land and in the sea.
Collapse
|
11
|
Sun X, Li L, Wu B, Ge J, Zheng Y, Yu T, Zhou L, Zhang T, Yang A, Liu Z. Cell type diversity in scallop adductor muscles revealed by single-cell RNA-Seq. Genomics 2021; 113:3582-3598. [PMID: 34425225 DOI: 10.1016/j.ygeno.2021.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Studies on cell atlas in marine invertebrates provide a better understanding of cell types, stem cell maintenance, and lineages of cell differentiation. To investigate the molecular features of various cell types in molluscan muscles, we performed single-cell RNA sequencing (scRNA-seq) to map cell types in scallop adductor muscles. We uncovered the cell type-specific features of 20 cell clusters defined by the expression of multiple specific molecular markers. These cell clusters are mainly classified into four broad classes, including mesenchymal stem cells, muscle cells, neurons, and haemolymph cells. In particular, we identified a diverse repertoire of neurons in the striated adductor muscle, but not in the smooth muscle. We further reconstructed the cell differentiation events using all the cell clusters by single-cell pseudotemporal trajectories. By integrating dual BrdU-PCNA immunodetection, neuron-specific staining and electron microscopy observation, we showed the spatial distribution of mesenchymal stem cells and neurons in striated adductor muscle of scallops. The present findings will not only be useful to address the cell type-specific gene expression profiles in scallop muscles, but also provide valuable resources for cross-species comparison of marine organisms.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Li Li
- Marine Biology Institute of Shandong Province, Qingdao 266104, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jianlong Ge
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yanxin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai 265800, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai 265800, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Tianshi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Aiguo Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
12
|
Schnell AK, Amodio P, Boeckle M, Clayton NS. How intelligent is a cephalopod? Lessons from comparative cognition. Biol Rev Camb Philos Soc 2020; 96:162-178. [DOI: 10.1111/brv.12651] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022]
Affiliation(s)
| | - Piero Amodio
- Department of Psychology University of Cambridge Cambridge UK
- Department of Biology and Evolution of Marine Organisms Stazione Zoologica Anton Dohrn Naples Italy
| | - Markus Boeckle
- Department of Psychology University of Cambridge Cambridge UK
- Department of Cognitive Biology University of Vienna Vienna Austria
- Karl Landsteiner University of Health Science Krems an der Donau Austria
| | | |
Collapse
|
13
|
Sykes AV, Almansa E, Ponte G, Cooke GM, Andrews PLR. Can Cephalopods Vomit? Hypothesis Based on a Review of Circumstantial Evidence and Preliminary Experimental Observations. Front Physiol 2020; 11:765. [PMID: 32848811 PMCID: PMC7396502 DOI: 10.3389/fphys.2020.00765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
In representative species of all vertebrate classes, the oral ejection of upper digestive tract contents by vomiting or regurgitation is used to void food contaminated with toxins or containing indigestible material not voidable in the feces. Vomiting or regurgitation has been reported in a number of invertebrate marine species (Exaiptasia diaphana, Cancer productus, and Pleurobranchaea californica), prompting consideration of whether cephalopods have this capability. This "hypothesis and theory" paper reviews four lines of supporting evidence: (1) the mollusk P. californica sharing some digestive tract morphological and innervation similarities with Octopus vulgaris is able to vomit or regurgitate with the mechanisms well characterized, providing an example of motor program switching; (2) a rationale for vomiting or regurgitation in cephalopods based upon the potential requirement to void indigestible material, which may cause damage and ejection of toxin contaminated food; (3) anecdotal reports (including from the literature) of vomiting- or regurgitation-like behavior in several species of cephalopod (Sepia officinalis, Sepioteuthis sepioidea, O. vulgaris, and Enteroctopus dofleini); and (4) anatomical and physiological studies indicating that ejection of gastric/crop contents via the buccal cavity is a theoretical possibility by retroperistalsis in the upper digestive tract (esophagus, crop, and stomach). We have not identified any publications refuting our hypothesis, so a balanced review is not possible. Overall, the evidence presented is circumstantial, so experiments adapting current methodology (e.g., research community survey, in vitro studies of motility, and analysis of indigestible gut contents and feces) are described to obtain additional evidence to either support or refute our hypothesis. We recognize the possibility that further research may not support the hypothesis; therefore, we consider how cephalopods may protect themselves against ingestion of toxic food by external chemodetection prior to ingestion and digestive gland detoxification post-ingestion. Reviewing the evidence for the hypothesis has identified a number of gaps in knowledge of the anatomy (e.g., the presence of sphincters) and physiology (e.g., the fate of indigestible food residues, pH of digestive secretions, sensory innervation, and digestive gland detoxification mechanisms) of the digestive tract as well as a paucity of recent studies on the role of epithelial chemoreceptors in prey identification and food intake.
Collapse
Affiliation(s)
- António V Sykes
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Eduardo Almansa
- Department of Aquaculture, Instituto Español de Oceanografía, Centro Oceanográfico de Canarias, Santa Cruz de Tenerife, Spain
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Paul L R Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
14
|
Fouke KE, Rhodes HJ. Electrophysiological and Motor Responses to Chemosensory Stimuli in Isolated Cephalopod Arms. THE BIOLOGICAL BULLETIN 2020; 238:1-11. [PMID: 32163724 DOI: 10.1086/707837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While there is behavioral and anatomical evidence that coleoid cephalopods use their arms to "taste" substances in the environment, the neurophysiology of chemosensation has been largely unexamined. The range and sensitivity of detectable chemosensory stimuli, and the processing of chemosensory information, are unknown. To begin to address these issues, we developed a technique for recording neurophysiological responses from isolated arms, allowing us to test responses to biologically relevant stimuli. We tested arms from both a pelagic species (Doryteuthis pealeii) and a benthic species (Octopus bimaculoides) by attaching a suction electrode to the axial nerve cord to record neural activity in response to chemical stimuli. Doryteuthis pealeii arms showed anecdotal responses to some stimuli but generally did not tolerate the preparation; tissue was nonviable within minutes ex vivo. Octopus bimaculoides arms were used successfully, with tissue remaining healthy and responsive for several hours. Arms responded strongly to fish skin extract, glycine, methionine, and conspecific skin extract but not to cephalopod ink or seawater controls. Motor responses were also observed in response to detected stimuli. These results suggest that chemosensory receptor cells on O. bimaculoides arms were able to detect environmentally relevant chemicals and drive local motor responses within the arm. Further exploration of potential chemical stimuli for O. bimaculoides arms, as well as investigations into the neural processing within the arm, could enhance our understanding of how this species uses its arms to explore its environment. While not successful in D. pealeii, this technique could be attempted with other cephalopod species, as comparative questions remain of interest.
Collapse
|
15
|
Abstract
Mammals evolved from oviparous reptiles that laid eggs in a dry, terrestrial environment, thus requiring large amounts of yolk to support development and tough, outer coats to protect them. Eutherian mammals such as humans and mice exhibit an "extreme" form of viviparity in which yolk and conceptus coats have become largely redundant. However, the "other" mammals-monotremes and marsupials-have retained and modified some features of reptilian development that provide valuable insights into the evolution of viviparity in mammals. Most striking of these are the conceptus coats, which include the zona pellucida, the mucoid coat, and the shell coat. We discuss current knowledge of these coats in monotremes and marsupials, their possible roles, and recently identified components such as the zona pellucida protein ZPAX, conceptus coat mucin (CCM), and nephronectin (NPNT).
Collapse
Affiliation(s)
| | - Marilyn B Renfree
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
16
|
Ylitalo H, Oliver TA, Fernandez-Silva I, Wood JB, Toonen RJ. A behavioral and genetic study of multiple paternity in a polygamous marine invertebrate, Octopus oliveri. PeerJ 2019; 7:e6927. [PMID: 31211008 PMCID: PMC6557246 DOI: 10.7717/peerj.6927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/07/2019] [Indexed: 11/26/2022] Open
Abstract
Octopus oliveri is a widespread and common rocky intertidal cephalopod that mates readily in the laboratory, but for which mating behavior has not been reported previously. Four sets of behavioral experiments were recorded wherein three males, small, medium & large in varying order, were introduced to each of six females, for a total of 24 individual females and 12 individual males utilized in the experiments. Video analysis shows that successful mating occurred in each of the mount, reach and beak-to-beak positions. Mating was observed for all males, regardless of size relative to the female, or order of introduction. Females showed preference for the first male to which they were introduced in experimental pairings rather than any specific male trait, and mating time increased significantly with increasing female size. Five novel microsatellite markers were developed and used to test paternity in the eleven broods resulting from these experimental pairings. We found skewed paternity in each brood, with early male precedence and male size being the best predictors of parentage. Multiple paternity was observed in every experimental cross but was estimated to be comparatively low in the field, suggesting that sperm limitation might be common in this species. We saw no evidence of direct sperm competition in Octopus oliveri, but larger males produced significantly more offspring. This study contributes to the growing research on cephalopod mating systems and indicates that octopus mating dynamics might be more variable and complex than thought previously.
Collapse
Affiliation(s)
- Heather Ylitalo
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America
| | - Thomas A Oliver
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States of America
| | - Iria Fernandez-Silva
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America.,Department of Genetics, Biochemistry and Immunology, University of Vigo, Vigo, Spain
| | - James B Wood
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, United States of America
| |
Collapse
|
17
|
Taylor A, Mills D, Wang T, Ntalamagka N, Cummins SF, Elizur A. A Sperm Spawn-Inducing Pheromone in the Silver Lip Pearl Oyster (Pinctada maxima). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:531-541. [PMID: 29705863 DOI: 10.1007/s10126-018-9824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Pheromones are considered to play an important role in broadcast spawning in aquatic animals, facilitating synchronous release of gametes. In oysters, the sperm has been implicated as a carrier for the spawn-inducing pheromone (SIP). In hatchery conditions, male pearl oysters (Pinctata maxima) can be stimulated to spawn through a variety of approaches (e.g. rapid temperature change), while females can only be induced to spawn through exposure to conspecific sperm, thus limiting development of targeted pairing, required for genetic research and management. The capacity for commercial production and improvement of genetic lines of pearl oysters could be greatly improved with access to a SIP. In this study, we prepared and sequenced crude and semi-purified P. maxima sperm extracts that were used in bioassays to localise the female SIP. We report that the P. maxima SIP is proteinaceous and extrinsically associated with the sperm membrane. Bioactivity from pooled RP-HPLC fractions, but not individual fractions, suggests that the SIP is multi-component. We conclude that crude sperm preparations, as described in this study, can be used as a sperm-free inducer of female P. maxima spawning, which enables for a more efficient approach to genetic breeding.
Collapse
Affiliation(s)
- A Taylor
- Darwin Aquaculture Centre, Channel Island, Darwin, Northern Territory, 0800, Australia
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - D Mills
- Darwin Aquaculture Centre, Channel Island, Darwin, Northern Territory, 0800, Australia
| | - T Wang
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - N Ntalamagka
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - S F Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - A Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|
18
|
Di Cosmo A, Maselli V, Polese G. Octopus vulgaris: An Alternative in Evolution. Results Probl Cell Differ 2018; 65:585-598. [DOI: 10.1007/978-3-319-92486-1_26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
19
|
Lin CY, Chiao CC. Female Choice Leads to a Switch in Oval Squid Male Mating Tactics. THE BIOLOGICAL BULLETIN 2017; 233:219-226. [PMID: 29553819 DOI: 10.1086/695718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oval squids are polyandrous, with one female mating with multiple males during the spawning season. There are two alternative male mating tactics used by Sepioteuthis lessoniana. Larger males place spermatophores at the opening of the oviduct using a male-parallel mating posture, whereas smaller males attach spermatophores around the female buccal membrane using a male-upturned mating posture. If the route of egg transportation is taken into consideration, male-parallel mating would be expected to result in higher fertilization success than male-upturned mating. Although these male mating tactics are largely dependent on the body size of the male relative to that of the female, it is unclear how female choice affects the male's mating tactics and his mating success. Squids are highly visual animals, and they communicate through dynamic body patterning. In the present study, we observed that smaller male squids in captivity would attempt to mate with a larger female using the male-parallel tactic repeatedly, but they failed to be successful most of the time because of a rejection signal by the female. In contrast, when the males switched to the male-upturned tactic, the mating success rate was increased significantly, with much less female rejection signal. This finding suggests that female squids signal their mating receptivity visually and that male squids alter their mating tactics accordingly. This is the evidence to support the hypothesis that the switch in male mating tactics depends on female choice in oval squids and that this is transmitted via visual communication.
Collapse
|
20
|
The protein pheromone temptin is an attractant of the gastropod Biomphalaria glabrata. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:855-866. [DOI: 10.1007/s00359-017-1198-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
|
21
|
Ferrier GA, Kim SJ, Kaddis CS, Loo JA, Ann Zimmer C, Zimmer RK. MULTIFUNCin: A Multifunctional Protein Cue Induces Habitat Selection by, and Predation on, Barnacles. Integr Comp Biol 2016; 56:901-913. [PMID: 27371385 DOI: 10.1093/icb/icw076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Foundation species provide critical resources to ecological community members and are major determinants of biodiversity. The barnacle Balanus glandula is one such species and dominates space among the higher reaches on wave-swept shores. Here, we show that B. glandula produces a 199.6-kDa glycoprotein (named "MULTIFUNCin"), and following secretion, a 390-kDa homodimer in its native state. MULTIFUNCin expression is localized in the epidermis, cuticle, and new shell material. Consequently, this molecule can specify upon contact the immediate presence of a live barnacle. Shared, conserved domains place MULTIFUNCin in the α2-macroglobulin (A2M) subgroup of the thioester-containing protein family. Although previously undescribed, MULTIFUNCin shares 78% nucleotide sequence homology with a settlement-inducing pheromone (SIP) of the barnacle, Amphibalanus amphitrite Based on this and further evidence, we propose that the two proteins are orthologues and evolved ancestrally in structural and immunological roles. More recently, they became exploited as chemical cues for con- and heterospecific organisms, alike. MULTIFUNCin and SIP both induce habitat selection (settlement) by conspecific barnacle larvae. In addition, MULTIFUNCin acts as a potent feeding stimulant to major barnacle predators (sea stars and several whelk species). Promoting immigration via settlement on the one hand, and death via predation on the other, MULTIFUNCin simultaneously mediates opposing demographic processes toward structuring both predator and prey populations. As a multifunctional protein cue, MULTIFUNCin provides valuable sensory information, conveys different messages to different species, and drives complex biotic interactions.
Collapse
Affiliation(s)
- Graham A Ferrier
- *Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Steven J Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Catherine S Kaddis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.,UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Cheryl Ann Zimmer
- *Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,Moreton Bay Research Station, Centre for Marine Science, and School of Biological Sciences, University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
| | - Richard K Zimmer
- *Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA .,Moreton Bay Research Station, Centre for Marine Science, and School of Biological Sciences, University of Queensland, St Lucia, Brisbane 4072, Queensland, Australia
| |
Collapse
|
22
|
Wang T, Nuurai P, McDougall C, York PS, Bose U, Degnan BM, Cummins SF. Identification of a female spawn-associated Kazal-type inhibitor from the tropical abalone Haliotis asinina. J Pept Sci 2016; 22:461-70. [PMID: 27352998 DOI: 10.1002/psc.2887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/26/2016] [Accepted: 03/26/2016] [Indexed: 11/05/2022]
Abstract
Abalone (Haliotis) undergoes a period of reproductive maturation, followed by the synchronous release of gametes, called broadcast spawning. Field and laboratory studies have shown that the tropical species Haliotis asinina undergoes a two-week spawning cycle, thus providing an excellent opportunity to investigate the presence of endogenous spawning-associated peptides. In female H. asinina, we have isolated a peptide (5145 Da) whose relative abundance in hemolymph increases substantially just prior to spawning and is still detected using reverse-phase high-performance liquid chromatography chromatograms up to 1-day post-spawn. We have isolated this peptide from female hemolymph as well as samples prepared from the gravid female gonad, and demonstrated through comparative sequence analysis that it contains features characteristic of Kazal-type proteinase inhibitors (KPIs). Has-KPI is expressed specifically within the gonad of adult females. A recombinant Has-KPI was generated using a yeast expression system. The recombinant Has-KPI does not induce premature spawning of female H. asinina when administered intramuscularly. However it displays homomeric aggregations and interaction with at least one mollusc-type neuropeptide (LRDFVamide), suggesting a role for it in regulating neuropeptide endocrine communication. This research provides new understanding of a peptide that can regulate reproductive processes in female abalone, which has the potential to lead to the development of greater control over abalone spawning. The findings also highlight the need to further explore abalone reproduction to clearly define a role for novel spawning-associated peptide in sexual maturation and spawning. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tianfang Wang
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Parinyaporn Nuurai
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Carmel McDougall
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Patrick S York
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Utpal Bose
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Scott F Cummins
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| |
Collapse
|
23
|
Fiorito G, Affuso A, Basil J, Cole A, de Girolamo P, D'Angelo L, Dickel L, Gestal C, Grasso F, Kuba M, Mark F, Melillo D, Osorio D, Perkins K, Ponte G, Shashar N, Smith D, Smith J, Andrews PLR. Guidelines for the Care and Welfare of Cephalopods in Research -A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab Anim 2016; 49:1-90. [PMID: 26354955 DOI: 10.1177/0023677215580006] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This paper is the result of an international initiative and is a first attempt to develop guidelines for the care and welfare of cephalopods (i.e. nautilus, cuttlefish, squid and octopus) following the inclusion of this Class of ∼700 known living invertebrate species in Directive 2010/63/EU. It aims to provide information for investigators, animal care committees, facility managers and animal care staff which will assist in improving both the care given to cephalopods, and the manner in which experimental procedures are carried out. Topics covered include: implications of the Directive for cephalopod research; project application requirements and the authorisation process; the application of the 3Rs principles; the need for harm-benefit assessment and severity classification. Guidelines and species-specific requirements are provided on: i. supply, capture and transport; ii. environmental characteristics and design of facilities (e.g. water quality control, lighting requirements, vibration/noise sensitivity); iii. accommodation and care (including tank design), animal handling, feeding and environmental enrichment; iv. assessment of health and welfare (e.g. monitoring biomarkers, physical and behavioural signs); v. approaches to severity assessment; vi. disease (causes, prevention and treatment); vii. scientific procedures, general anaesthesia and analgesia, methods of humane killing and confirmation of death. Sections covering risk assessment for operators and education and training requirements for carers, researchers and veterinarians are also included. Detailed aspects of care and welfare requirements for the main laboratory species currently used are summarised in Appendices. Knowledge gaps are highlighted to prompt research to enhance the evidence base for future revision of these guidelines.
Collapse
Affiliation(s)
- Graziano Fiorito
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Association for Cephalopod Research 'CephRes', Italy
| | - Andrea Affuso
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Animal Model Facility - BIOGEM S.C.A.R.L., Ariano Irpino (AV), Italy
| | - Jennifer Basil
- Biology Department, Brooklyn College - CUNY Graduate Center, Brooklyn, NY, USA
| | - Alison Cole
- Association for Cephalopod Research 'CephRes', Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Napoli, Italy AISAL - Associazione Italiana per le Scienze degli Animali da Laboratorio, Milano, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Napoli, Italy AISAL - Associazione Italiana per le Scienze degli Animali da Laboratorio, Milano, Italy
| | - Ludovic Dickel
- Groupe mémoire et Plasticité comportementale, University of Caen Basse-Normandy, Caen, France
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Frank Grasso
- BioMimetic and Cognitive Robotics, Department of Psychology, Brooklyn College - CUNY, Brooklyn, NY, USA
| | - Michael Kuba
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Felix Mark
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Daniela Melillo
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Sussex, UK
| | - Kerry Perkins
- School of Life Sciences, University of Sussex, Sussex, UK
| | | | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben-Gurion University of the Negev, Beer, Sheva, Israel
| | - David Smith
- FELASA, Federation for Laboratory Animal Science Associations
| | | | - Paul L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK Association for Cephalopod Research 'CephRes', Italy
| |
Collapse
|
24
|
Williams MN, Jacobson A. Effect of Copulins on Rating of Female Attractiveness, Mate-Guarding, and Self-Perceived Sexual Desirability. EVOLUTIONARY PSYCHOLOGY 2016. [DOI: 10.1177/1474704916643328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Olfaction and chemical signaling play an important role in the mating behaviors of many taxa, yet there is minimal empirical research on human putative pheromones. A mixture of five volatile fatty acids secreted vaginally, identified and named “copulins,” significantly increase in concentration during the follicular phase and decrease in concentration during the luteal phase in nonpill using women. Men exposed to copulins exhibit an increase in testosterone, are inhibited in discriminating the attractiveness of women’s faces, and behave less cooperatively. According to Anisogamy, Sexual Selection and Parental Investment Theory, mammalian males, having low cost and high benefit from any copulatory interaction, may adaptively utilize any useful cues to identifying ovulating females and adjust their behavior accordingly in order to maximize their potential reproductive success. In the current study, we attempted a replication of Jütte and Grammer’s finding indicating copulins inhibit the ability of men to discriminate attractiveness of women’s faces, and we examined the role of copulins in self-reported mate-guarding behaviors and self-perceived sexual desirability. We utilized a randomized placebo-controlled design and as predicted, results indicated men exposed to copulins were more likely to rate themselves as sexually desirable to women and, on average, the copulin group rated women’s faces as more attractive than controls. There were no significant findings with mate guarding.
Collapse
Affiliation(s)
- Megan N. Williams
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
- Psychology Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Jacobson
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
25
|
Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguillé G, Bernay B, Garderes J, Kraut A, Couté Y, Henry J. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying. J Proteome Res 2015; 15:48-67. [PMID: 26632866 DOI: 10.1021/acs.jproteome.5b00463] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Valérie Cornet
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Bruno Zanuttini
- Normandy University , GREYC, UMR CNRS 6072, F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | | - Benoît Bernay
- Normandy University , F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| | - Johan Garderes
- Center for Marine Research, "Ruder Boskovic" Institute , HR-52210 Rovinj, Croatia
| | - Alexandra Kraut
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Yohan Couté
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Joël Henry
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| |
Collapse
|
26
|
The implicit rules of combat. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2015; 25:496-516. [PMID: 25281193 DOI: 10.1007/s12110-014-9214-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Conspecific violence has been pervasive throughout evolutionary history. The current research tested the hypotheses that individuals implicitly categorize combative contexts (i.e., play fighting, status contests, warfare, and anti-exploitative violence) and use the associated contextual information to guide expectations of combative tactics. Using U.S. and non-U.S. samples, Study 1 demonstrated consistent classification of combative contexts from scenarios for which little information was given and predictable shifts in the acceptability of combative tactics across contexts. Whereas severe tactics (e.g., eye-gouging) were acceptable in warfare and anti-exploitative violence, they were unacceptable in status contests and play fights. These results suggest the existence of implicit rules governing the contexts of combat. In Study 2, we explored the reputational consequences of violating these implicit rules. Results suggest that rule violators (e.g., those who use severe tactics in a status contest) are given less respect. These are the first studies to implicate specialized mechanisms for aggression that use contextual cues of violence to guide expectations and behavior.
Collapse
|
27
|
Abstract
Sepia officinalis egg protection is ensured by a complex capsule produced by the female accessory genital glands and the ink bag. Our study is focused on the proteins constituting the main egg case. De novo transcriptomes from female genital glands provided essential databases for protein identification. A proteomic approach in SDS-PAGE coupled with MS unveiled a new egg case protein family: SepECPs, for Sepia officinalisEgg Case Proteins. N-glycosylation was demonstrated by PAS staining SDS-PAGE gels. These glycoproteins are mainly produced in the main nidamental glands. SepECPs share high sequence homology, especially in the signal peptide and the three cysteine-rich domains. SepECPs have a high number of cysteines, with conserved motifs involved in 3D-structure. SDS-PAGE showed that SepECPs could form dimers; this result was confirmed by TEM observations, which also revealed a protein network. This network is similar to the capsule network, and it associates these structural proteins with polysaccharides, melanin and bacteria to form a tight mesh. Its hardness and elasticity provide physical protection to the embryo. In addition, SepECPs also have bacteriostatic antimicrobial activity on GRAM- bacteria. By observing the SepECP / Vibrio aestuarianus complex in SEM, we demonstrated the ability of these proteins to agglomerate bacteria and thus inhibit their growth. These original proteins identified from the outer egg case ensure the survival of the species by providing physical and chemical protection to the embryos released in the environment without any maternal protection.
Collapse
|
28
|
Polese G, Bertapelle C, Di Cosmo A. Role of olfaction in Octopus vulgaris reproduction. Gen Comp Endocrinol 2015; 210:55-62. [PMID: 25449183 DOI: 10.1016/j.ygcen.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/25/2022]
Abstract
The olfactory system in any animal is the primary sensory system that responds to chemical stimuli emanating from a distant source. In aquatic animals "Odours" are molecules in solution that guide them to locate food, partners, nesting sites, and dangers to avoid. Fish, crustaceans and aquatic molluscs possess sensory systems that have anatomical similarities to the olfactory systems of land-based animals. Molluscs are a large group of aquatic and terrestrial animals that rely heavily on chemical communication with a generally dispersed sense of touch and chemical sensitivity. Cephalopods, the smallest class among extant marine molluscs, are predators with high visual capability and well developed vestibular, auditory, and tactile systems. Nevertheless they possess a well developed olfactory organ, but to date almost nothing is known about the mechanisms, functions and modulation of this chemosensory structure in octopods. Cephalopod brains are the largest of all invertebrate brains and across molluscs show the highest degree of centralization. The reproductive behaviour of Octopus vulgaris is under the control of a complex set of signal molecules such as neuropeptides, neurotransmitters and sex steroids that guide the behaviour from the level of individuals in evaluating mates, to stimulating or deterring copulation, to sperm-egg chemical signalling that promotes fertilization. These signals are intercepted by the olfactory organs and integrated in the olfactory lobes in the central nervous system. In this context we propose a model in which the olfactory organ and the olfactory lobe of O. vulgaris could represent the on-off switch between food intake and reproduction.
Collapse
Affiliation(s)
- Gianluca Polese
- University of Napoli "Federico II", Department of Biology, via Cinthia, Campus MSA, ed. 7, 80126 Napoli, Italy.
| | - Carla Bertapelle
- University of Napoli "Federico II", Department of Biology, via Cinthia, Campus MSA, ed. 7, 80126 Napoli, Italy.
| | - Anna Di Cosmo
- University of Napoli "Federico II", Department of Biology, via Cinthia, Campus MSA, ed. 7, 80126 Napoli, Italy.
| |
Collapse
|
29
|
Wollesen T, McDougall C, Degnan BM, Wanninger A. POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system. EvoDevo 2014; 5:41. [PMID: 25908957 PMCID: PMC4407788 DOI: 10.1186/2041-9139-5-41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Background Among the Lophotrochozoa, cephalopods possess the highest degree of central nervous system (CNS) centralization and complexity. Although the anatomy of the developing cephalopod CNS has been investigated, the developmental mechanisms underlying brain development and evolution are unknown. POU genes encode key transcription factors controlling nervous system development in a range of bilaterian species, including lophotrochozoans. In this study, we investigate the expression of POU genes during early development of the pygmy squid Idiosepius notoides and make comparisons with other bilaterians to reveal whether these genes have conserved or divergent roles during CNS development in this species. Results POU2, POU3, POU4 and POU6 orthologs were identified in transcriptomes derived from developmental stages and adult brain tissue of I. notoides. All four POU gene orthologs are expressed in different spatiotemporal combinations in the early embryo. Ino-POU2 is expressed in the gills and the palliovisceral, pedal, and optic ganglia of stage 19 to 20 embryos, whereas the cerebral and palliovisceral ganglia express Ino-POU3. Ino-POU4 is expressed in the optic and palliovisceral ganglia and the arms/intrabrachial ganglia of stage 19 to 20 individuals. Ino-POU6 is expressed in the palliovisceral ganglia during early development. In stage 25 embryos expression domains include the intrabrachial ganglia (Ino-POU3) and the pedal ganglia (Ino-POU6). All four POU genes are strongly expressed in large areas of the brain of stage 24 to 26 individuals. Expression could not be detected in late prehatching embryos (approximately stage 27 to 30). Conclusions The expression of four POU genes in unique spatiotemporal combinations during early neurogenesis and sensory organ development of I. notoides suggests that they fulfill distinct tasks during early brain development. Comparisons with other bilaterian species reveal that POU gene expression is associated with anteriormost neural structures, even between animals for which these structures are unlikely to be homologous. Within lophotrochozoans, POU3 and POU4 are the only two genes that have been comparatively investigated. Their expression patterns are broadly similar, indicating that the increased complexity of the cephalopod brain is likely due to other unknown factors.
Collapse
Affiliation(s)
- Tim Wollesen
- Department of Integrative Zoology, Faculty of Sciences, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Carmel McDougall
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Andreas Wanninger
- Department of Integrative Zoology, Faculty of Sciences, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
30
|
|
31
|
Lim RS, Eyjólfsdóttir E, Shin E, Perona P, Anderson DJ. How food controls aggression in Drosophila. PLoS One 2014; 9:e105626. [PMID: 25162609 PMCID: PMC4146546 DOI: 10.1371/journal.pone.0105626] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022] Open
Abstract
How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. For instance, it is unclear whether food increases aggression directly, or as a secondary consequence of increased social interactions caused by attraction to food. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner by which food influences aggression. We show that food promotes aggression in flies, and that it does so independently of any effect on frequency of contact between males, increase in locomotor activity or general enhancement of social interactions. Importantly, the level of aggression depends on the absolute amount of food, rather than on its surface area or concentration. When food resources exceed a certain level, aggression is diminished, suggestive of reduced competition. Finally, we show that detection of sugar via Gr5a+ gustatory receptor neurons (GRNs) is necessary for food-promoted aggression. These data demonstrate that food exerts a specific effect to promote aggression in male flies, and that this effect is mediated, at least in part, by sweet-sensing GRNs.
Collapse
Affiliation(s)
- Rod S. Lim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Eyrún Eyjólfsdóttir
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Euncheol Shin
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Pietro Perona
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - David J. Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
32
|
Robin JP, Roberts M, Zeidberg L, Bloor I, Rodriguez A, Briceño F, Downey N, Mascaró M, Navarro M, Guerra A, Hofmeister J, Barcellos DD, Lourenço SAP, Roper CFE, Moltschaniwskyj NA, Green CP, Mather J. Transitions during cephalopod life history: the role of habitat, environment, functional morphology and behaviour. ADVANCES IN MARINE BIOLOGY 2014; 67:361-437. [PMID: 24880797 DOI: 10.1016/b978-0-12-800287-2.00004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cephalopod life cycles generally share a set of stages that take place in different habitats and are adapted to specific, though variable, environmental conditions. Throughout the lifespan, individuals undertake a series of brief transitions from one stage to the next. Four transitions were identified: fertilisation of eggs to their release from the female (1), from eggs to paralarvae (2), from paralarvae to subadults (3) and from subadults to adults (4). An analysis of each transition identified that the changes can be radical (i.e. involving a range of morphological, physiological and behavioural phenomena and shifts in habitats) and critical (i.e. depending on environmental conditions essential for cohort survival). This analysis underlines that transitions from eggs to paralarvae (2) and from paralarvae to subadults (3) present major risk of mortality, while changes in the other transitions can have evolutionary significance. This synthesis suggests that more accurate evaluation of the sensitivity of cephalopod populations to environmental variation could be achieved by taking into account the ontogeny of the organisms. The comparison of most described species advocates for studies linking development and ecology in this particular group.
Collapse
Affiliation(s)
- Jean-Paul Robin
- Université de Caen Basse-Normandie, UMR BOREA: Biologie des ORganismes et des Ecosystèmes Aquatiques, Esplanade de la paix, CS 14032, 14032 Caen, France; UMR BOREA, UMR CNRS7208, IRD207, UPMC, MNHN, UCBN, 14032 Caen, France.
| | - Michael Roberts
- Rhodes University, Grahamstown, South Africa; Oceans & Coasts Research, Victoria & Alfred Waterfront, Cape Town, South Africa
| | - Lou Zeidberg
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Isobel Bloor
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom
| | - Almendra Rodriguez
- El Colegio de la Frontera Sur, Colonia Casasano, Cuautla, Morelos, Mexico
| | - Felipe Briceño
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Downey
- Department of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South Africa; Bayworld Centre for Research & Education, Constantia, Cape Town, South Africa
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, México
| | - Mike Navarro
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA; Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Angel Guerra
- Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - Jennifer Hofmeister
- Caldwell Laboratory, Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Diogo D Barcellos
- Laboratório de Ecossistemas Pesqueiros (LabPesq), Universidade de São Paulo, Instituto Oceanográfico Praça do Oceanográfico, Butantã, São Paulo, SP, Brazil
| | | | - Clyde F E Roper
- Smithsonian Institution, National Museum of Natural History, Washington, District of Columbia, USA
| | - Natalie A Moltschaniwskyj
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Corey P Green
- Department of Environment and Primary Industries, Fisheries Victoria, Queenscliff, Victoria, Australia
| | - Jennifer Mather
- Psychology Department, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
33
|
Squid have nociceptors that display widespread long-term sensitization and spontaneous activity after bodily injury. J Neurosci 2013; 33:10021-6. [PMID: 23761897 DOI: 10.1523/jneurosci.0646-13.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bodily injury in mammals often produces persistent pain that is driven at least in part by long-lasting sensitization and spontaneous activity (SA) in peripheral branches of primary nociceptors near sites of injury. While nociceptors have been described in lower vertebrates and invertebrates, outside of mammals there is limited evidence for peripheral sensitization of primary afferent neurons, and there are no reports of persistent SA being induced in primary afferents by noxious stimulation. Cephalopod molluscs are the most neurally and behaviorally complex invertebrates, with brains rivaling those of some vertebrates in size and complexity. This has fostered the opinion that cephalopods may experience pain, leading some governments to include cephalopods under animal welfare laws. It is not known, however, if cephalopods possess nociceptors, or whether their somatic sensory neurons exhibit nociceptive sensitization. We demonstrate that squid possess nociceptors that selectively encode noxious mechanical but not heat stimuli, and that show long-lasting peripheral sensitization to mechanical stimuli after minor injury to the body. As in mammals, injury in squid can cause persistent SA in peripheral afferents. Unlike mammals, the afferent sensitization and SA are almost as prominent on the contralateral side of the body as they are near an injury. Thus, while squid exhibit peripheral alterations in afferent neurons similar to those that drive persistent pain in mammals, robust changes far from sites of injury in squid suggest that persistently enhanced afferent activity provides much less information about the location of an injury in cephalopods than it does in mammals.
Collapse
|
34
|
De Lisa E, Salzano AM, Moccia F, Scaloni A, Di Cosmo A. Sperm-attractant peptide influences the spermatozoa swimming behavior in internal fertilization in Octopus vulgaris. J Exp Biol 2013; 216:2229-37. [DOI: 10.1242/jeb.081885] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Marine invertebrates exhibit both chemokinesis and chemotaxis phenomena, induced in most cases by the release of water-borne peptides or pheromones. In mollusks, several peptides released during egg-laying improve both male attraction and mating. Unlike other cephalopods, Octopus vulgaris adopts an indirect internal fertilization strategy. We here report on the identification and characterization of a chemoattractant peptide isolated from mature eggs of octopus females. Using two-chamber and time-lapse microscopy assays, we demonstrate that this bioactive peptide is able to increase sperm motility and induce chemotaxis by changing the octopus spermatozoa swimming behavior in a dose-dependent manner. We also provide evidence that chemotaxis in the octopus requires the presence of extracellular calcium and membrane protein phophorylation at tyrosine. This study is the first report on a sperm-activating factor in a non-free-spawning marine animal.
Collapse
Affiliation(s)
- Emilia De Lisa
- Department of Structural and Functional Biology, University of Napoli ‘Federico II’, 80126 Napoli, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, Laboratory of Physiology, University of Pavia, 27100 Pavia, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anna Di Cosmo
- Department of Structural and Functional Biology, University of Napoli ‘Federico II’, 80126 Napoli, Italy
| |
Collapse
|
35
|
Hirohashi N, Alvarez L, Shiba K, Fujiwara E, Iwata Y, Mohri T, Inaba K, Chiba K, Ochi H, Supuran CT, Kotzur N, Kakiuchi Y, Kaupp UB, Baba SA. Sperm from sneaker male squids exhibit chemotactic swarming to CO₂. Curr Biol 2013; 23:775-81. [PMID: 23583548 DOI: 10.1016/j.cub.2013.03.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 01/28/2013] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Behavioral traits of sperm are adapted to the reproductive strategy that each species employs. In polyandrous species, spermatozoa often form motile clusters, which might be advantageous for competing with sperm from other males. Despite this presumed advantage for reproductive success, little is known about how sperm form such functional assemblies. Previously, we reported that males of the coastal squid Loligo bleekeri produce two morphologically different euspermatozoa that are linked to distinctly different mating behaviors. Consort and sneaker males use two distinct insemination sites, one inside and one outside the female's body, respectively. Here, we show that sperm release a self-attracting molecule that causes only sneaker sperm to swarm. We identified CO2 as the sperm chemoattractant and membrane-bound flagellar carbonic anhydrase as its sensor. Downstream signaling results from the generation of extracellular H(+), intracellular acidosis, and recovery from acidosis. These signaling events elicit Ca(2+)-dependent turning behavior, resulting in chemotactic swarming. These results illuminate the bifurcating evolution of sperm underlying the distinct fertilization strategies of this species.
Collapse
Affiliation(s)
- Noritaka Hirohashi
- Oki Marine Biological Station, Education and Research Center for Biological Resources, Shimane University, 194 Kamo, Okinoshima-cho, Oki, Shimane 685-0024, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Huffard CL. Cephalopod neurobiology: an introduction for biologists working in other model systems. INVERTEBRATE NEUROSCIENCE 2013; 13:11-8. [PMID: 23456288 DOI: 10.1007/s10158-013-0147-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 02/18/2013] [Indexed: 02/04/2023]
Abstract
This paper concisely summarizes major aspects of cephalopod biology, behavior, and ecology providing a backdrop against which neurobiology of these animals can be interpreted. Reproduction, camouflage, motor control, memory, learning, and behavioral ecology are introduced, and thorough literature reviews of these subjects are cited for further reading. The aim of this paper is to provide a general introduction to cephalopods for use by workers currently focused on other model systems.
Collapse
Affiliation(s)
- Christine L Huffard
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA 94118, USA.
| |
Collapse
|
37
|
Stowers L, Cameron P, Keller JA. Ominous odors: olfactory control of instinctive fear and aggression in mice. Curr Opin Neurobiol 2013; 23:339-45. [PMID: 23415829 DOI: 10.1016/j.conb.2013.01.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/05/2013] [Accepted: 01/13/2013] [Indexed: 01/12/2023]
Abstract
Aggression and fear are often thought to be distinct behavioral states, yet they share several common output responses. In the mouse, both can be initiated by specialized odor cues. How these cues signal through the olfactory system to promote behavior is largely unknown. Recent experiments have started to uncover the relevant signaling ligands, chemosensory receptors, and responsive sensory neurons that together enable the precise manipulation of behaviorally relevant neural circuits. Moreover, the use of molecular genetics and new experimental strategies has begun to reveal how the central nervous system processes olfactory information to initiate aggression and fear. A sensory-initiated comparative study of these two fundamental threat reactions promises to offer new mechanistic insight.
Collapse
Affiliation(s)
- Lisa Stowers
- The Scripps Research Institute, Department of Molecular and Cellular Neuroscience, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
38
|
Cummins SF, Bowie JH. Pheromones, attractants and other chemical cues of aquatic organisms and amphibians. Nat Prod Rep 2012; 29:642-58. [DOI: 10.1039/c2np00102k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Frankenberg S, Fenelon J, Dopheide B, Shaw G, Renfree MB. A novel MSMB-related microprotein in the postovulatory egg coats of marsupials. BMC Evol Biol 2011; 11:373. [PMID: 22208949 PMCID: PMC3268785 DOI: 10.1186/1471-2148-11-373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early marsupial conceptuses differ markedly from those of eutherian mammals, especially during cleavage and early blastocyst stages of development. Additionally, in marsupials the zona pellucida is surrounded by two acellular layers, the mucoid coat and shell, which are formed from secretions from the reproductive tract. RESULTS We report the identification of a novel postovulatory coat component in marsupials, which we call uterinesecreted microprotein (USM). USM belongs to a family of disulfide-rich microproteins of unconfirmed function that is found throughout deuterostomes and in some protostomes, and includes β-microseminoprotein (MSMB) and prostate-associated microseminoprotein (MSMP). We describe the evolution of this family in detail, including USM-related sequences in other vertebrates. The orthologue of USM in the tammar wallaby, USM1, is expressed by the endometrium with a dynamic temporal profile, possibly under the control of progesterone. CONCLUSIONS USM appears to have evolved in a mammalian ancestor specifically as a component of the postovulatory coats. By analogy with the known properties of MSMB, it may have roles in regulating sperm motility/survival or in the immune system. However, its C-terminal domain is greatly truncated compared with MSMB, suggesting a divergent function.
Collapse
Affiliation(s)
- Stephen Frankenberg
- ARC Centre of Excellence for Kangaroo Genomics and Department of Zoology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
40
|
Rozen DE. SQUIDS IN HEAT. J Exp Biol 2011. [DOI: 10.1242/jeb.049817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
|