1
|
Frost WN, Katz PS. The legacies of A. O. Dennis Willows and Peter A. Getting: neuroscience research using Tritonia. J Neurophysiol 2025; 133:34-45. [PMID: 39611858 PMCID: PMC11918286 DOI: 10.1152/jn.00318.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
This review was inspired by a January 2024 conference held at Friday Harbor Laboratories, WA, honoring the pioneering work of A.O. Dennis Willows, who initiated research on the sea slug Tritonia diomedea (now T. exsulans). A chance discovery while he was a student at a summer course there has, over the years, led to many insights into the roles of identified neurons in neural circuits and their influence on behavior. Among Dennis's trainees was Peter Getting, whose later groundbreaking work on central pattern generators profoundly influenced the field and included one of the earliest uses of realistic modeling for understanding neural circuits. Research on Tritonia has led to key conceptual advances in polymorphic or multifunctional neural networks, intrinsic neuromodulation, and the evolution of neural circuits. It also has enhanced our understanding of geomagnetic sensing, learning and memory mechanisms, prepulse inhibition, and even drug-induced hallucinations. Although the community of researchers studying Tritonia has never been large, its contributions to neuroscience have been substantial, underscoring the importance of examining a diverse array of animal species rather than focusing on a small number of standard model organisms.
Collapse
Affiliation(s)
- William N Frost
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
2
|
Calabrese RL, Marder E. Degenerate neuronal and circuit mechanisms important for generating rhythmic motor patterns. Physiol Rev 2025; 105:95-135. [PMID: 39453990 DOI: 10.1152/physrev.00003.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 10/27/2024] Open
Abstract
In 1996, we published a review article (Marder E, Calabrese RL. Physiol Rev 76: 687-717, 1996) describing the state of knowledge about the structure and function of the central pattern-generating circuits important for producing rhythmic behaviors. Although many of the core questions persist, much has changed since 1996. Here, we focus on newer studies that reveal ambiguities that complicate understanding circuit dynamics, despite the enormous technical advances of the recent past. In particular, we highlight recent studies of animal-to-animal variability and our understanding that circuit rhythmicity may be supported by multiple state-dependent mechanisms within the same animal and that robustness and resilience in the face of perturbation may depend critically on the presence of modulators and degenerate circuit mechanisms. Additionally, we highlight the use of computational models to ask whether there are generalizable principles about circuit motifs that can be found across rhythmic motor systems in different animal species.
Collapse
Affiliation(s)
| | - Eve Marder
- Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
3
|
Kennedy A, Weissbourd B. Dynamics of neural activity in early nervous system evolution. Curr Opin Behav Sci 2024; 59:101437. [PMID: 39758090 PMCID: PMC11694645 DOI: 10.1016/j.cobeha.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
New techniques for largescale neural recordings from diverse animals are reshaping comparative systems neuroscience. This growth necessitates fresh conceptual paradigms for comparing neural circuits and activity patterns. Here, we take a systems neuroscience approach to early neural evolution, emphasizing the importance of considering nervous systems as multiply modulated, continuous dynamical systems. We argue that endogenous neural activity likely arose early in evolution to organize behaviors and internal states at the organismal level. This connects to a rich literature on the physiology of endogenous activity in small neural circuits: a field that has built links between data and dynamical systems models. Such models offer mechanistic insight and have robust predictive power. Using these tools, we suggest that the emergence of intrinsically active neurons and periodic dynamics played a critical role in the ascendancy of nervous systems, and that dynamical systems presents an appealing framework for comparing across species.
Collapse
Affiliation(s)
- Ann Kennedy
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL
- Current address: Department of Neuroscience, The Scripps Research Institute, La Jolla, CA
| | - Brandon Weissbourd
- Department of Biology and The Picower Institute for Learning and Memory, MIT, Cambridge, MA
| |
Collapse
|
4
|
Ghazanfar AA, Gomez-Marin A. The central role of the individual in the history of brains. Neurosci Biobehav Rev 2024; 163:105744. [PMID: 38825259 PMCID: PMC11246226 DOI: 10.1016/j.neubiorev.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Every species' brain, body and behavior is shaped by the contingencies of their evolutionary history; these exert pressures that change their developmental trajectories. There is, however, another set of contingencies that shape us and other animals: those that occur during a lifetime. In this perspective piece, we show how these two histories are intertwined by focusing on the individual. We suggest that organisms--their brains and behaviors--are not solely the developmental products of genes and neural circuitry but individual centers of action unfolding in time. To unpack this idea, we first emphasize the importance of variation and the central role of the individual in biology. We then go over "errors in time" that we often make when comparing development across species. Next, we reveal how an individual's development is a process rather than a product by presenting a set of case studies. These show developmental trajectories as emerging in the contexts of the "the actual now" and "the presence of the past". Our consideration reveals that individuals are slippery-they are never static; they are a set of on-going, creative activities. In light of this, it seems that taking individual development seriously is essential if we aspire to make meaningful comparisons of neural circuits and behavior within and across species.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| | - Alex Gomez-Marin
- Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante 03550, Spain.
| |
Collapse
|
5
|
Scully J, Bourahmah J, Bloom D, Shilnikov AL. Pairing cellular and synaptic dynamics into building blocks of rhythmic neural circuits. A tutorial. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1397151. [PMID: 38983123 PMCID: PMC11231435 DOI: 10.3389/fnetp.2024.1397151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/16/2024] [Indexed: 07/11/2024]
Abstract
In this study we focus on two subnetworks common in the circuitry of swim central pattern generators (CPGs) in the sea slugs, Melibe leonina and Dendronotus iris and show that they are independently capable of stably producing emergent network bursting. This observation raises the question of whether the coordination of redundant bursting mechanisms plays a role in the generation of rhythm and its regulation in the given swim CPGs. To address this question, we investigate two pairwise rhythm-generating networks and examine the properties of their fundamental components: cellular and synaptic, which are crucial for proper network assembly and its stable function. We perform a slow-fast decomposition analysis of cellular dynamics and highlight its significant bifurcations occurring in isolated and coupled neurons. A novel model for slow synapses with high filtering efficiency and temporal delay is also introduced and examined. Our findings demonstrate the existence of two modes of oscillation in bicellular rhythm-generating networks with network hysteresis: i) a half-center oscillator and ii) an excitatory-inhibitory pair. These 2-cell networks offer potential as common building blocks combined in modular organization of larger neural circuits preserving robust network hysteresis.
Collapse
Affiliation(s)
- James Scully
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Jassem Bourahmah
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - David Bloom
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- TReNDS Center, Georgia State University, Atlanta, GA, United States
| | - Andrey L Shilnikov
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
6
|
Bourahmah J, Sakurai A, Shilnikov AL. Error Function Optimization to Compare Neural Activity and Train Blended Rhythmic Networks. Brain Sci 2024; 14:468. [PMID: 38790447 PMCID: PMC11117979 DOI: 10.3390/brainsci14050468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
We present a novel set of quantitative measures for "likeness" (error function) designed to alleviate the time-consuming and subjective nature of manually comparing biological recordings from electrophysiological experiments with the outcomes of their mathematical models. Our innovative "blended" system approach offers an objective, high-throughput, and computationally efficient method for comparing biological and mathematical models. This approach involves using voltage recordings of biological neurons to drive and train mathematical models, facilitating the derivation of the error function for further parameter optimization. Our calibration process incorporates measurements such as action potential (AP) frequency, voltage moving average, voltage envelopes, and the probability of post-synaptic channels. To assess the effectiveness of our method, we utilized the sea slug Melibe leonina swim central pattern generator (CPG) as our model circuit and conducted electrophysiological experiments with TTX to isolate CPG interneurons. During the comparison of biological recordings and mathematically simulated neurons, we performed a grid search of inhibitory and excitatory synapse conductance. Our findings indicate that a weighted sum of simple functions is essential for comprehensively capturing a neuron's rhythmic activity. Overall, our study suggests that our blended system approach holds promise for enabling objective and high-throughput comparisons between biological and mathematical models, offering significant potential for advancing research in neural circuitry and related fields.
Collapse
Affiliation(s)
- Jassem Bourahmah
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA;
| | - Akira Sakurai
- Department of Mathematics & Statistics, Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA;
| | - Andrey L. Shilnikov
- Department of Mathematics & Statistics, Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA;
| |
Collapse
|
7
|
Wang HY, Yu K, Yang Z, Zhang G, Guo SQ, Wang T, Liu DD, Jia RN, Zheng YT, Su YN, Lou Y, Weiss KR, Zhou HB, Liu F, Cropper EC, Yu Q, Jing J. A Single Central Pattern Generator for the Control of a Locomotor Rolling Wave in Mollusc Aplysia. RESEARCH (WASHINGTON, D.C.) 2023; 6:0060. [PMID: 36930762 PMCID: PMC10013812 DOI: 10.34133/research.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Locomotion in mollusc Aplysia is implemented by a pedal rolling wave, a type of axial locomotion. Well-studied examples of axial locomotion (pedal waves in Drosophila larvae and body waves in leech, lamprey, and fish) are generated in a segmented nervous system via activation of multiple coupled central pattern generators (CPGs). Pedal waves in molluscs, however, are generated by a single pedal ganglion, and it is unknown whether there are single or multiple CPGs that generate rhythmic activity and phase shifts between different body parts. During locomotion in intact Aplysia, bursting activity in the parapedal commissural nerve (PPCN) was found to occur during tail contraction. A cluster of 20 to 30 P1 root neurons (P1Ns) on the ventral surface of the pedal ganglion, active during the pedal wave, were identified. Computational cluster analysis revealed that there are 2 phases to the motor program: phase I (centered around 168°) and phase II (centered around 357°). PPCN activity occurs during phase II. The majority of P1Ns are motoneurons. Coactive P1Ns tend to be electrically coupled. Two classes of pedal interneurons (PIs) were characterized. Class 1 (PI1 and PI2) is active during phase I. Their axons make a loop within the pedal ganglion and contribute to locomotor pattern generation. They are electrically coupled to P1Ns that fire during phase I. Class 2 (PI3) is active during phase II and innervates the contralateral pedal ganglion. PI3 may contribute to bilateral coordination. Overall, our findings support the idea that Aplysia pedal waves are generated by a single CPG.
Collapse
Affiliation(s)
- Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zhe Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dan-Dan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruo-Nan Jia
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yu-Tong Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan-Nan Su
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yi Lou
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Klaudiusz R. Weiss
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- Peng Cheng Laboratory, Shenzhen 518000, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, Institute for Brain Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Elizabeth C. Cropper
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Quan Yu
- Peng Cheng Laboratory, Shenzhen 518000, China
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Peng Cheng Laboratory, Shenzhen 518000, China
| |
Collapse
|
8
|
Sakurai A, Katz PS. Bursting emerges from the complementary roles of neurons in a four-cell network. J Neurophysiol 2022; 127:1054-1066. [PMID: 35320029 PMCID: PMC8993528 DOI: 10.1152/jn.00017.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reciprocally inhibitory modules that form half-center oscillators require mechanisms for escaping or being released from inhibition. The central pattern generator underlying swimming by the nudibranch mollusc, Dendronotus iris, is composed of only four neurons that are organized into two competing modules of a half-center oscillator. In this system, bursting activity in left-right alternation is an emergent property of the network as a whole; none of the neurons produces bursts on its own. We found that the unique synaptic actions and membrane properties of the two neurons in each module (Si2 and the contralateral Si3) play complementary roles in generating stable bursting in this network oscillator. Although Si2 and Si3 each inhibit their contralateral counterpart, Si2 plays a dominant role in evoking fast and strong inhibition of the other module, the termination of which initiates post-inhibitory rebound in the Si3 of that module by activating a hyperpolarization-activated inward current. Within each module, the synaptic actions and membrane properties of the two neurons complement each other: Si3 excites Si2, which then feeds back slow inhibition to Si3, terminating the burst. Using dynamic clamp, we showed that the magnitude of the slow inhibition sets the period of the oscillator. Thus, the synaptic actions of Si2 provide the hyperpolarization needed for the other module to rebound stably, whereas the membrane properties of Si3 in each module cause it to rebound first and excite Si2 to maintain the burst until terminated by the slow inhibition from Si2, which releases the other module to become active.
Collapse
Affiliation(s)
- Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, Amherst MA, United States
| |
Collapse
|
9
|
Kuo DH, De-Miguel FF, Heath-Heckman EAC, Szczupak L, Todd K, Weisblat DA, Winchell CJ. A tale of two leeches: Toward the understanding of the evolution and development of behavioral neural circuits. Evol Dev 2020; 22:471-493. [PMID: 33226195 DOI: 10.1111/ede.12358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
In the animal kingdom, behavioral traits encompass a broad spectrum of biological phenotypes that have critical roles in adaptive evolution, but an EvoDevo approach has not been broadly used to study behavior evolution. Here, we propose that, by integrating two leech model systems, each of which has already attained some success in its respective field, it is possible to take on behavioral traits with an EvoDevo approach. We first identify the developmental changes that may theoretically lead to behavioral evolution and explain why an EvoDevo study of behavior is challenging. Next, we discuss the pros and cons of the two leech model species, Hirudo, a classic model for invertebrate neurobiology, and Helobdella, an emerging model for clitellate developmental biology, as models for behavioral EvoDevo research. Given the limitations of each leech system, neither is particularly strong for behavioral EvoDevo. However, the two leech systems are complementary in their technical accessibilities, and they do exhibit some behavioral similarities and differences. By studying them in parallel and together with additional leech species such as Haementeria, it is possible to explore the different levels of behavioral development and evolution.
Collapse
Affiliation(s)
- Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México City, México
| | | | - Lidia Szczupak
- Departamento de Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, and IFIBYNE UBA-CONICET, Buenos Aires, Argentina
| | - Krista Todd
- Department of Neuroscience, Westminster College, Salt Lake City, Utah, USA
| | - David A Weisblat
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Christopher J Winchell
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
10
|
Lodi M, Della Rossa F, Sorrentino F, Storace M. Analyzing synchronized clusters in neuron networks. Sci Rep 2020; 10:16336. [PMID: 33004897 PMCID: PMC7530773 DOI: 10.1038/s41598-020-73269-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 11/08/2022] Open
Abstract
The presence of synchronized clusters in neuron networks is a hallmark of information transmission and processing. Common approaches to study cluster synchronization in networks of coupled oscillators ground on simplifying assumptions, which often neglect key biological features of neuron networks. Here we propose a general framework to study presence and stability of synchronous clusters in more realistic models of neuron networks, characterized by the presence of delays, different kinds of neurons and synapses. Application of this framework to two examples with different size and features (the directed network of the macaque cerebral cortex and the swim central pattern generator of a mollusc) provides an interpretation key to explain known functional mechanisms emerging from the combination of anatomy and neuron dynamics. The cluster synchronization analysis is carried out also by changing parameters and studying bifurcations. Despite some modeling simplifications in one of the examples, the obtained results are in good agreement with previously reported biological data.
Collapse
Affiliation(s)
- Matteo Lodi
- DITEN, University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy
| | - Fabio Della Rossa
- Mechanical Engineering Department, University of New Mexico, Albuquerque, NM, 87131, USA
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133, Milan, Italy
| | - Francesco Sorrentino
- Mechanical Engineering Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marco Storace
- DITEN, University of Genoa, Via Opera Pia 11a, 16145, Genova, Italy.
| |
Collapse
|
11
|
Phylogenomic analysis and morphological data suggest left-right swimming behavior evolved prior to the origin of the pelagic Phylliroidae (Gastropoda: Nudibranchia). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00458-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Coates KE, Calle-Schuler SA, Helmick LM, Knotts VL, Martik BN, Salman F, Warner LT, Valla SV, Bock DD, Dacks AM. The Wiring Logic of an Identified Serotonergic Neuron That Spans Sensory Networks. J Neurosci 2020; 40:6309-6327. [PMID: 32641403 PMCID: PMC7424878 DOI: 10.1523/jneurosci.0552-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonergic neurons project widely throughout the brain to modulate diverse physiological and behavioral processes. However, a single-cell resolution understanding of the connectivity of serotonergic neurons is currently lacking. Using a whole-brain EM dataset of a female Drosophila, we comprehensively determine the wiring logic of a broadly projecting serotonergic neuron (the CSDn) that spans several olfactory regions. Within the antennal lobe, the CSDn differentially innervates each glomerulus, yet surprisingly, this variability reflects a diverse set of presynaptic partners, rather than glomerulus-specific differences in synaptic output, which is predominately to local interneurons. Moreover, the CSDn has distinct connectivity relationships with specific local interneuron subtypes, suggesting that the CSDn influences distinct aspects of local network processing. Across olfactory regions, the CSDn has different patterns of connectivity, even having different connectivity with individual projection neurons that also span these regions. Whereas the CSDn targets inhibitory local neurons in the antennal lobe, the CSDn has more distributed connectivity in the LH, preferentially synapsing with principal neuron types based on transmitter content. Last, we identify individual novel synaptic partners associated with other sensory domains that provide strong, top-down input to the CSDn. Together, our study reveals the complex connectivity of serotonergic neurons, which combine the integration of local and extrinsic synaptic input in a nuanced, region-specific manner.SIGNIFICANCE STATEMENT All sensory systems receive serotonergic modulatory input. However, a comprehensive understanding of the synaptic connectivity of individual serotonergic neurons is lacking. In this study, we use a whole-brain EM microscopy dataset to comprehensively determine the wiring logic of a broadly projecting serotonergic neuron in the olfactory system of Drosophila Collectively, our study demonstrates, at a single-cell level, the complex connectivity of serotonergic neurons within their target networks, identifies specific cell classes heavily targeted for serotonergic modulation in the olfactory system, and reveals novel extrinsic neurons that provide strong input to this serotonergic system outside of the context of olfaction. Elucidating the connectivity logic of individual modulatory neurons provides a ground plan for the seemingly heterogeneous effects of modulatory systems.
Collapse
Affiliation(s)
- Kaylynn E Coates
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | | | - Levi M Helmick
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Victoria L Knotts
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Brennah N Martik
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Farzaan Salman
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Lauren T Warner
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Sophia V Valla
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
13
|
Collens J, Pusuluri K, Kelley A, Knapper D, Xing T, Basodi S, Alacam D, Shilnikov AL. Dynamics and bifurcations in multistable 3-cell neural networks. CHAOS (WOODBURY, N.Y.) 2020; 30:072101. [PMID: 32752614 DOI: 10.1063/5.0011374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
We disclose the generality of the intrinsic mechanisms underlying multistability in reciprocally inhibitory 3-cell circuits composed of simplified, low-dimensional models of oscillatory neurons, as opposed to those of a detailed Hodgkin-Huxley type [Wojcik et al., PLoS One 9, e92918 (2014)]. The computational reduction to return maps for the phase-lags between neurons reveals a rich multiplicity of rhythmic patterns in such circuits. We perform a detailed bifurcation analysis to show how such rhythms can emerge, disappear, and gain or lose stability, as the parameters of the individual cells and the synapses are varied.
Collapse
Affiliation(s)
- J Collens
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - K Pusuluri
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - A Kelley
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - D Knapper
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - T Xing
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| | - S Basodi
- Department of Computer Science, Georgia State University, Atlanta, Georgia 30303, USA
| | - D Alacam
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| | - A L Shilnikov
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
14
|
Command or Obey? Homologous Neurons Differ in Hierarchical Position for the Generation of Homologous Behaviors. J Neurosci 2019; 39:6460-6471. [PMID: 31209170 DOI: 10.1523/jneurosci.3229-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022] Open
Abstract
In motor systems, higher-order neurons provide commands to lower-level central pattern generators (CPGs) that autonomously produce rhythmic motor patterns. Such hierarchical organization is often thought to be inherent in the anatomical position of the neurons. Here, however, we report that a neuron that is member of a CPG in one species acts as a higher-order neuron in another species. In the nudibranch mollusc, Melibe leonina, swim interneuron 1 (Si1) is in the CPG underlying swimming, firing rhythmic bursts of action potentials as part of the swim motor pattern. We found that its homolog in another nudibranch, Dendronotus iris, serves as a neuromodulatory command neuron for the CPG of a homologous swimming behavior. In Dendronotus, Si1 fired irregularly throughout the swim motor pattern. The burst and spike frequencies of Dendronotus swim CPG neurons correlated with Si1 firing frequency. Si1 activity was both necessary and sufficient for the initiation and maintenance of the swim motor pattern. Each Si1 was electrically coupled to all of the CPG neurons and made monosynaptic excitatory synapses with both Si3s. Si1 also bilaterally potentiated the excitatory synapse from Si3 to Si2. "Virtual neuromodulation" of both Si3-to-Si2 synapses using dynamic clamp combined with depolarization of both Si3s mimicked the effects of Si1 stimulation on the swim motor pattern. Thus, in Dendronotus, Si1 is a command neuron that turns on, maintains, and accelerates the motor pattern through synaptic and neuromodulatory actions, thereby differing from its homolog in Melibe in its functional position in the motor hierarchy.SIGNIFICANCE STATEMENT Cross-species comparisons of motor system organization can provide fundamental insights into their function and origin. Central pattern generators (CPGs) are lower in the functional hierarchy than the neurons that initiate and modulate their activity. This functional hierarchy is often reflected in neuroanatomical organization. This paper definitively shows that an identified cerebral ganglion neuron that is a member of a CPG underlying swimming in one nudibranch species serves as a command neuron for the same behavior in another species. We describe and test the synaptic and neuromodulatory mechanisms by which the command neuron initiates and accelerates rhythmic motor patterns. Thus, the functional position of neurons in a motor hierarchy can shift from one level to another over evolutionary time.
Collapse
|
15
|
Takagi S, Nose A. Circuit architecture for somatotopic action selection in invertebrates. Neurosci Res 2018; 140:37-42. [PMID: 30130542 DOI: 10.1016/j.neures.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022]
Abstract
Invertebrate species have significantly contributed to neuroscience owing to the accessibility they provide to cellular- and molecular-level understanding of brain functions. Somatotopic action selection is one of the key features of animal behavior, and studying this process in invertebrates is potentially a sweet spot in understanding the general relationship between neuronal morphology, circuit structure, and animal behavior. In this review, we introduce circuit architectures that realize somatotopic action selection, from simple reflexes to patterned motor outputs, in different invertebrate species. We then discuss future directions towards understanding the general principles underlying the development and evolution of the circuit architecture that enables sensorimotor transformation and action selection in the animal kingdom.
Collapse
Affiliation(s)
- Suguru Takagi
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Akinao Nose
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| |
Collapse
|
16
|
Abstract
In this Guest Editorial, Jeremy Niven and Lars Chittka introduce our special issue on the evolution of nervous systems.
Collapse
|
17
|
Sakurai A, Katz PS. Artificial Synaptic Rewiring Demonstrates that Distinct Neural Circuit Configurations Underlie Homologous Behaviors. Curr Biol 2017; 27:1721-1734.e3. [DOI: 10.1016/j.cub.2017.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/06/2017] [Accepted: 05/05/2017] [Indexed: 11/27/2022]
|
18
|
Gunaratne CA, Sakurai A, Katz PS. Variations on a theme: species differences in synaptic connectivity do not predict central pattern generator activity. J Neurophysiol 2017; 118:1123-1132. [PMID: 28539397 DOI: 10.1152/jn.00203.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022] Open
Abstract
A fundamental question in comparative neuroethology is the extent to which synaptic wiring determines behavior vs. the extent to which it is constrained by phylogeny. We investigated this by examining the connectivity and activity of homologous neurons in different species. Melibe leonina and Dendronotus iris (Mollusca, Gastropoda, Nudibranchia) have homologous neurons and exhibit homologous swimming behaviors consisting of alternating left-right (LR) whole body flexions. Yet, a homologous interneuron (Si1) differs between the two species in its participation in the swim motor pattern (SMP) and synaptic connectivity. In this study we examined Si1 homologs in two additional nudibranchs: Flabellina iodinea, which evolved LR swimming independently of Melibe and Dendronotus, and Tritonia diomedea, which swims with dorsal-ventral (DV) body flexions. In Flabellina, the contralateral Si1s exhibit alternating rhythmic bursting activity during the SMP and are members of the swim central pattern generator (CPG), as in Melibe The Si1 homologs in Tritonia do not burst rhythmically during the DV SMP but are inhibited and receive bilaterally synchronous synaptic input. In both Flabellina and Tritonia, the Si1 homologs exhibit reciprocal inhibition, as in Melibe However, in Flabellina the inhibition is polysynaptic, whereas in Tritonia it is monosynaptic, as in Melibe In all species, the contralateral Si1s are electrically coupled. These results suggest that Flabellina and Melibe convergently evolved a swim CPG that contains Si1; however, they differ in monosynaptic connections. Connectivity is more similar between Tritonia and Melibe, which exhibit different swimming behaviors. Thus connectivity between homologous neurons varies independently of both behavior and phylogeny.NEW & NOTEWORTHY This research shows that the synaptic connectivity between homologous neurons exhibits species-specific variations on a basic theme. The neurons vary in the extent of electrical coupling and reciprocal inhibition. They also exhibit different patterns of activity during rhythmic motor behaviors that are not predicted by their circuitry. The circuitry does not map onto the phylogeny in a predictable fashion either. Thus neither neuronal homology nor species behavior is predictive of neural circuit connectivity.
Collapse
Affiliation(s)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
19
|
Ashwin P, Coombes S, Nicks R. Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2016; 6:2. [PMID: 26739133 PMCID: PMC4703605 DOI: 10.1186/s13408-015-0033-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/30/2015] [Indexed: 05/20/2023]
Abstract
The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear-for example, heteroclinic network attractors. In this review we present a set of mathematical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical framework for further successful applications of mathematics to understanding network dynamics in neuroscience.
Collapse
Affiliation(s)
- Peter Ashwin
- Centre for Systems Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, Exeter, EX4 4QF, UK.
| | - Stephen Coombes
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Rachel Nicks
- School of Mathematics, University of Birmingham, Watson Building, Birmingham, B15 2TT, UK.
| |
Collapse
|
20
|
Szczupak L. Functional contributions of electrical synapses in sensory and motor networks. Curr Opin Neurobiol 2016; 41:99-105. [PMID: 27649466 DOI: 10.1016/j.conb.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
Abstract
Intercellular interactions in the nervous system are mediated by two types of dedicated structural arrangements: electrical and chemical synapses. Several characteristics distinguish these two mechanisms of communication, such as speed, reliability and the fact that electrical synapses are, potentially, bidirectional. Given these properties, electrical synapses can subserve, in addition to synchrony, three main interrelated network functions: signal amplification, noise reduction and/or coincidence detection. Specific network motifs in sensory and motor systems of invertebrates and vertebrates illustrate how signal transmission through electrical junctions contributes to a complex processing of information.
Collapse
Affiliation(s)
- Lidia Szczupak
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBYNE UBA-CONICET, Pabellón II, piso 2. Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
21
|
Katz PS. Evolution of central pattern generators and rhythmic behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150057. [PMID: 26598733 DOI: 10.1098/rstb.2015.0057] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
22
|
Katz PS. Phylogenetic plasticity in the evolution of molluscan neural circuits. Curr Opin Neurobiol 2016; 41:8-16. [PMID: 27455462 DOI: 10.1016/j.conb.2016.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 01/06/2023]
Abstract
Recent research on molluscan nervous systems provides a unique perspective on the evolution of neural circuits. Molluscs evolved large, encephalized nervous systems independently from other phyla. Homologous body-patterning genes were re-specified in molluscs to create a plethora of body plans and nervous system organizations. Octopuses, having the largest brains of any invertebrate, independently evolved a learning circuit similar in organization and function to the mushroom body of insects and the hippocampus of mammals. In gastropods, homologous neurons have been re-specified for different functions. Even species exhibiting similar, possibly homologous behavior have fundamental differences in the connectivity of the neurons underlying that behavior. Thus, molluscan nervous systems provide clear examples of re-purposing of homologous genes and neurons for neural circuits.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA 30302-5030, USA.
| |
Collapse
|
23
|
Sakurai A, Katz PS. The central pattern generator underlying swimming in Dendronotus iris: a simple half-center network oscillator with a twist. J Neurophysiol 2016; 116:1728-1742. [PMID: 27440239 DOI: 10.1152/jn.00150.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022] Open
Abstract
The nudibranch mollusc, Dendronotus iris, swims by rhythmically flexing its body from left to right. We identified a bilaterally represented interneuron, Si3, that provides strong excitatory drive to the previously identified Si2, forming a half-center oscillator, which functions as the central pattern generator (CPG) underlying swimming. As with Si2, Si3 inhibited its contralateral counterpart and exhibited rhythmic bursts in left-right alternation during the swim motor pattern. Si3 burst almost synchronously with the contralateral Si2 and was coactive with the efferent impulse activity in the contralateral body wall nerve. Perturbation of bursting in either Si3 or Si2 by current injection halted or phase-shifted the swim motor pattern, suggesting that they are both critical CPG members. Neither Si2 nor Si3 exhibited endogenous bursting properties when activated alone; activation of all four neurons was necessary to initiate and maintain the swim motor pattern. Si3 made a strong excitatory synapse onto the contralateral Si2 to which it is also electrically coupled. When Si3 was firing tonically but not exhibiting bursting, artificial enhancement of the Si3-to-Si2 synapse using dynamic clamp caused all four neurons to burst. In contrast, negation of the Si3-to-Si2 synapse by dynamic clamp blocked ongoing swim motor patterns. Together, these results suggest that the Dendronotus swim CPG is organized as a "twisted" half-center oscillator in which each "half" is composed of two excitatory-coupled neurons from both sides of the brain, each of which inhibits its contralateral counterpart. Consisting of only four neurons, this is perhaps the simplest known network oscillator for locomotion.
Collapse
Affiliation(s)
- Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
24
|
Phylogenetic and individual variation in gastropod central pattern generators. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:829-39. [PMID: 25837447 DOI: 10.1007/s00359-015-1007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/28/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Gastropod molluscs provide a unique opportunity to explore the neural basis of rhythmic behaviors because of the accessibility of their nervous systems and the number of species that have been examined. Detailed comparisons of the central pattern generators (CPGs) underlying rhythmic feeding and swimming behaviors highlight the presence and effects of variation in neural circuits both across and within species. The feeding motor pattern of the snail, Lymnaea, is stereotyped, whereas the feeding motor pattern in the sea hare, Aplysia, is variable. However, the Aplysia motor pattern is regularized with operant conditioning or by mimicking learning using the dynamic clamp to change properties of CPG neurons. Swimming evolved repeatedly in marine gastropods. Distinct neural mechanisms underlie dissimilar forms of swimming, with homologous neurons playing different roles. However, even similar swimming behaviors in different species can be produced by distinct neural mechanisms, resulting from different synaptic connectivity of homologous neurons. Within a species, there can be variation in the strength and even valence of synapses, which does not have functional relevance under normal conditions, but can cause some individuals to be more susceptible to lesion of the circuit. This inter- and intra-species variation provides novel insights into CPG function and plasticity.
Collapse
|
25
|
Gunaratne CA, Sakurai A, Katz PS. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs. J Comp Neurol 2014; 522:794-810. [PMID: 24638845 DOI: 10.1002/cne.23446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/07/2022]
Abstract
The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs.
Collapse
Affiliation(s)
- Charuni A Gunaratne
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30302-5030
| | | | | |
Collapse
|
26
|
Sakurai A, Gunaratne CA, Katz PS. Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina. J Neurophysiol 2014; 112:1317-28. [PMID: 24920032 DOI: 10.1152/jn.00261.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central pattern generator (CPG) underlying the rhythmic swimming behavior of the nudibranch Melibe leonina (Mollusca, Gastropoda, Heterobranchia) has been described as a simple half-center oscillator consisting of two reciprocally inhibitory pairs of interneurons called swim interneuron 1 (Si1) and swim interneuron 2 (Si2). In this study, we identified two additional pairs of interneurons that are part of the swim CPG: swim interneuron 3 (Si3) and swim interneuron 4 (Si4). The somata of Si3 and Si4 were both located in the pedal ganglion, near that of Si2, and both had axons that projected through the pedal commissure to the contralateral pedal ganglion. These neurons fulfilled the criteria for inclusion as members of the swim CPG: 1) they fired at a fixed phase in relation to Si1 and Si2, 2) brief changes in their activity reset the motor pattern, 3) prolonged changes in their activity altered the periodicity of the motor pattern, 4) they had monosynaptic connections with each other and with Si1 and Si2, and 5) their synaptic actions helped explain the phasing of the motor pattern. The results of this study show that the motor pattern has more complex internal dynamics than a simple left/right alternation of firing; the CPG circuit appears to be composed of two kernels of reciprocally inhibitory neurons, one consisting of Si1, Si2, and the contralateral Si4 and the other consisting of Si3. These two kernels interact with each other to produce a stable rhythmic motor pattern.
Collapse
Affiliation(s)
- Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | | | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
27
|
Gibbons KR, Baltzley MJ. Differing synaptic strengths between homologous mechanosensory neurons. INVERTEBRATE NEUROSCIENCE 2014; 14:103-11. [PMID: 24526450 DOI: 10.1007/s10158-014-0168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/05/2014] [Indexed: 11/29/2022]
Abstract
Leeches have four mechanosensory pressure neurons (P cells) in each midbody ganglion. Within a ganglion, P cells show complex electrical and chemical connections that vary between species. In Hirudo verbana, stimulating one P cell causes a weak depolarization followed by a strong hyperpolarization in the other P cells; however, stimulating a P cell in Erpobdella obscura produces strong depolarizations in the other P cells. In this study, we examined interactions between P cells in the American medicinal leech Macrobdella decora. Not only is Macrobdella more closely related to Hirudo than to Erpobdella, but Hirudo and Macrobdella also have very similar behavioral responses to mechanical stimulation. Despite the phylogenetic relationship and behavioral similarities between the two species, we found that intracellular stimulation of one P cell in Macrobdella causes a depolarization in the other P cells, rather than the hyperpolarization seen in Hirudo. Experiments performed in a high Mg(2+), 0 Ca(2+) saline solution and a high Mg(2+), high Ca(2+) saline solution suggest that the P cells in Macrobdella have a monosynaptic excitatory connection, a polysynaptic inhibitory connection, and a weak electrical coupling, similar to the connections between P cells in Hirudo. The difference in net response of P cells between these two species seems to be based on differences in the strengths of the chemical connections. These results demonstrate that even when behavioral patterns are conserved in closely related species, the underlying neural circuitry is not necessarily tightly constrained.
Collapse
Affiliation(s)
- Kaitlin R Gibbons
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, 20686-3001, USA
| | | |
Collapse
|
28
|
Jalil S, Allen D, Youker J, Shilnikov A. Toward robust phase-locking in Melibe swim central pattern generator models. CHAOS (WOODBURY, N.Y.) 2013; 23:046105. [PMID: 24387584 DOI: 10.1063/1.4825389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and swimming. These movements in lower level animals mimic motions of organs in higher animals due to evolutionarily conserved mechanisms. Hence, various neurological diseases can be linked to abnormal movement of body parts that are regulated by a malfunctioning CPG. In this paper, we, being inspired by recent experimental studies of neuronal activity patterns recorded from a swimming motion CPG of the sea slug Melibe leonina, examine a mathematical model of a 4-cell network that can plausibly and stably underlie the observed bursting rhythm. We develop a dynamical systems framework for explaining the existence and robustness of phase-locked states in activity patterns produced by the modeled CPGs. The proposed tools can be used for identifying core components for other CPG networks with reliable bursting outcomes and specific phase relationships between the interneurons. Our findings can be employed for identifying or implementing the conditions for normal and pathological functioning of basic CPGs of animals and artificially intelligent prosthetics that can regulate various movements.
Collapse
Affiliation(s)
- Sajiya Jalil
- Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Dane Allen
- Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Joseph Youker
- Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| | - Andrey Shilnikov
- Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
29
|
Bumbarger DJ, Riebesell M, Rödelsperger C, Sommer RJ. System-wide rewiring underlies behavioral differences in predatory and bacterial-feeding nematodes. Cell 2013; 152:109-19. [PMID: 23332749 DOI: 10.1016/j.cell.2012.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/26/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
The relationship between neural circuit function and patterns of synaptic connectivity is poorly understood, in part due to a lack of comparative data for larger complete systems. We compare system-wide maps of synaptic connectivity generated from serial transmission electron microscopy for the pharyngeal nervous systems of two nematodes with divergent feeding behavior: the microbivore Caenorhabditis elegans and the predatory nematode Pristionchus pacificus. We uncover a massive rewiring in a complex system of identified neurons, all of which are homologous based on neurite anatomy and cell body position. Comparative graph theoretical analysis reveals a striking pattern of neuronal wiring with increased connectional complexity in the anterior pharynx correlating with tooth-like denticles, a morphological feature in the mouth of P. pacificus. We apply focused centrality methods to identify neurons I1 and I2 as candidates for regulating predatory feeding and predict substantial divergence in the function of pharyngeal glands.
Collapse
Affiliation(s)
- Daniel J Bumbarger
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
30
|
Leininger EC, Kelley DB. Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls. Proc Biol Sci 2013; 280:20122639. [PMID: 23407829 DOI: 10.1098/rspb.2012.2639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors.
Collapse
Affiliation(s)
- Elizabeth C Leininger
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, NY, USA.
| | | |
Collapse
|
31
|
Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction. Proc Natl Acad Sci U S A 2012; 110:696-701. [PMID: 23213224 DOI: 10.1073/pnas.1210489109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intercepting a moving object requires prediction of its future location. This complex task has been solved by dragonflies, who intercept their prey in midair with a 95% success rate. In this study, we show that a group of 16 neurons, called target-selective descending neurons (TSDNs), code a population vector that reflects the direction of the target with high accuracy and reliability across 360°. The TSDN spatial (receptive field) and temporal (latency) properties matched the area of the retina where the prey is focused and the reaction time, respectively, during predatory flights. The directional tuning curves and morphological traits (3D tracings) for each TSDN type were consistent among animals, but spike rates were not. Our results emphasize that a successful neural circuit for target tracking and interception can be achieved with few neurons and that in dragonflies this information is relayed from the brain to the wing motor centers in population vector form.
Collapse
|
32
|
|
33
|
Newcomb JM, Sakurai A, Lillvis JL, Gunaratne CA, Katz PS. Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia). Proc Natl Acad Sci U S A 2012; 109 Suppl 1:10669-76. [PMID: 22723353 PMCID: PMC3386871 DOI: 10.1073/pnas.1201877109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited number of categories, the most prevalent of which are rhythmic left-right body flexions (LR) and rhythmic dorsal-ventral body flexions (DV). The phylogenetic distribution of these behaviors suggests a high degree of homoplasy. The central pattern generator (CPG) underlying DV swimming has been well characterized in Tritonia diomedea and in Pleurobranchaea californica. The CPG for LR swimming has been elucidated in Melibe leonina and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of nonoverlapping sets of homologous identified neurons, whereas the categorically similar behaviors share some homologous identified neurons, although the exact composition of neurons and synapses in the neural circuits differ. The roles played by homologous identified neurons in categorically distinct behaviors differ. However, homologous identified neurons also play different roles even in the swim CPGs of the two LR swimming species. Individual neurons can be multifunctional within a species. Some of those functions are shared across species, whereas others are not. The pattern of use and reuse of homologous neurons in various forms of swimming and other behaviors further demonstrates that the composition of neural circuits influences the evolution of behaviors.
Collapse
Affiliation(s)
- James M. Newcomb
- Department of Biology, New England College, Henniker, NH 03242; and
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
| | | | | | - Paul S. Katz
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302
| |
Collapse
|
34
|
Siegert ME, Römer H, Hashim R, Hartbauer M. Neuronal correlates of a preference for leading signals in the synchronizing bushcricket Mecopoda elongata (Orthoptera, Tettigoniidae). ACTA ACUST UNITED AC 2012; 214:3924-34. [PMID: 22071183 PMCID: PMC3236105 DOI: 10.1242/jeb.057901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acoustically interacting males of the tropical katydid Mecopoda elongata synchronize their chirps imperfectly, so that one male calls consistently earlier in time than the other. In choice situations, females prefer the leader signal, and it has been suggested that a neuronal mechanism based on directional hearing may be responsible for the asymmetric, stronger representation of the leader signal in receivers. Here, we investigated the potential mechanism in a pair of interneurons (TN1 neuron) of the afferent auditory pathway, known for its contralateral inhibitory input in directional hearing. In this interneuron, conspecific signals are reliably encoded under natural conditions, despite high background noise levels. Unilateral presentations of a conspecific chirp elicited a TN1 response where each suprathreshold syllable in the chirp was reliably copied in a phase-locked fashion. Two identical chirps broadcast with a 180 deg spatial separation resulted in a strong suppression of the response to the follower signal, when the time delay was 20 ms or more. Muting the ear on the leader side fully restored the response to the follower signal compared with unilateral controls. Time-intensity trading experiments, in which the disadvantage of the follower signal was traded against higher sound pressure levels, demonstrated the dominating influence of signal timing on the TN1 response, and this was especially pronounced at higher sound levels of the leader. These results support the hypothesis that the female preference for leader signals in M. elongata is the outcome of a sensory mechanism that originally evolved for directional hearing.
Collapse
Affiliation(s)
- M E Siegert
- Department of Zoology, Karl-Franzens University Graz, Graz, Austria
| | | | | | | |
Collapse
|
35
|
Lillvis JL, Gunaratne CA, Katz PS. Neurochemical and neuroanatomical identification of central pattern generator neuron homologues in Nudipleura molluscs. PLoS One 2012; 7:e31737. [PMID: 22363716 PMCID: PMC3282766 DOI: 10.1371/journal.pone.0031737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
Certain invertebrate neurons can be identified by their behavioral functions. However, evolutionary divergence can cause some species to not display particular behaviors, thereby making it impossible to use physiological characteristics related to those behaviors for identifying homologous neurons across species. Therefore, to understand the neural basis of species-specific behavior, it is necessary to identify homologues using characteristics that are independent of physiology. In the Nudipleura mollusc Tritonia diomedea, Cerebral Neuron 2 (C2) was first described as being a member of the swim central pattern generator (CPG). Here we demonstrate that neurochemical markers, in conjunction with previously known neuroanatomical characteristics, allow C2 to be uniquely identified without the aid of electrophysiological measures. Specifically, C2 had three characteristics that, taken together, identified the neuron: 1) a white cell on the dorsal surface of the cerebral ganglion, 2) an axon that projected to the contralateral pedal ganglion and through the pedal commissure, and 3) immunoreactivity for the peptides FMRFamide and Small Cardioactive Peptide B. These same anatomical and neurochemical characteristics also uniquely identified the C2 homologue in Pleurobranchaea californica (called A1), which was previously identified by its analogous role in the Pleurobranchaea swim CPG. Furthermore, these characteristics were used to identify C2 homologues in Melibe leonina, Hermissenda crassicornis, and Flabellina iodinea, species that are phylogenetically closer to Tritonia than Pleurobranchaea, but do not display the same swimming behavior as Tritonia or Pleurobranchaea. These identifications will allow future studies comparing and contrasting the physiological properties of C2 across species that can and cannot produce the type of swimming behavior exhibited by Tritonia.
Collapse
Affiliation(s)
- Joshua L Lillvis
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America.
| | | | | |
Collapse
|
36
|
Zwart M. SEA SLUG SWIMMING SURPRISE. J Exp Biol 2011. [DOI: 10.1242/jeb.050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|