1
|
Kucherlapati MH. Co-expression patterns explain how a basic transcriptional role for MYC modulates Wnt and MAPK pathways in colon and lung adenocarcinomas. Cell Cycle 2022; 21:1619-1638. [PMID: 35438040 PMCID: PMC9291661 DOI: 10.1080/15384101.2022.2060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A subset of proliferation genes that are associated with origin licensing, firing, and DNA synthesis has been compared to known drivers of colon (COAD) and lung (LUAD) adenocarcinomas using Spearman's rank correlation coefficients. The frequency with which APC, CTNNB1, KRAS, MYC, Braf, TP53, Rb1, EGFR, and cell cycle components have direct or indirect co-expression with the proliferation factors permits identification of their expression relative to the G1-S phase of the cell cycle. Here, adenomatous polyposis coli (APC), a negative regulator of Wnt signaling known to function through MYC, indirectly co-expresses at the same frequency as proliferation genes in both COAD and LUAD, consistent with M phase expression. However, APC is indirectly co-expressed with MYC and is found mutated only in COAD. MYC is thought to function at the interface of transcription and replication, acting through the SWI/SNF chromatin remodeling complex, and increased or decreased expression of MYC can induce or repress tumorigenesis, respectively. These data suggest that transcription of APC during the M phase with low MYC co-expression contributes by an unknown mechanism to APC mutations and Wnt pathway deregulation in COAD and that upper and lower limits of MYC expression, enforced by the cell cycle, may influence cancer differentially. Other Wnt signaling components co-expressed in the low MYC context in COAD also have significantly higher mutation frequencies, supporting the hypothesis. Additionally, Braf is found here to have direct co-expression with multiple proliferation factors in non-EGFR activated LUAD, and EGFR-activated LUAD are completely deregulated with respect to E2F(s) 4/5/6 expression, potentially explaining the low proliferation rates seen in LUAD.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Suzuki G, Lucob-Agustin N, Kashihara K, Fujii Y, Inukai Y, Gomi K. Rice MEDIATOR25, OsMED25, is an essential subunit for jasmonate-mediated root development and OsMYC2-mediated leaf senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110853. [PMID: 33775361 DOI: 10.1016/j.plantsci.2021.110853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The Mediator multiprotein complex acts as a universal adaptor between transcription factors (TFs) and RNA polymerase II. MEDIATOR25 (MED25) has an important role in jasmonic acid (JA) signaling in Arabidopsis. However, no research has been conducted on the role of MED25 in JA signaling in rice, which is one of the most important food crops globally and is a model plant for molecular studies in other monocotyledonous species. In the present study, we isolated the loss-of function mutant of MED25, osmed25, through the map-based cloning and phenotypic complementation analysis by the introduction of OsMED25 and investigated the role of OsMED25 in JA signaling in rice. The osmed25 mutants had longer primary (seminal) roots than those of the wild-type (WT) and exhibited JA-insensitive phenotypes. S-type lateral root densities in osmed25 mutants were lower than those in the WT, whereas L-type lateral root densities in osmed25 mutants were higher than those in the WT. Furthermore, the osmed25 mutants retarded JA-regulated leaf senescence under dark-induced senescence. Mutated osmed25 protein could not interact with OsMYC2, which is a positive TF in JA signaling in rice. The expression of JA-responsive senescence-associated genes was not upregulated in response to JA in the osmed25 mutants. The results suggest that OsMED25 participates in JA-mediated root development and OsMYC2-mediated leaf senescence in rice.
Collapse
Affiliation(s)
- Go Suzuki
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Nonawin Lucob-Agustin
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Keita Kashihara
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yumi Fujii
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
3
|
Falak N, Imran QM, Hussain A, Yun BW. Transcription Factors as the "Blitzkrieg" of Plant Defense: A Pragmatic View of Nitric Oxide's Role in Gene Regulation. Int J Mol Sci 2021; 22:E522. [PMID: 33430258 PMCID: PMC7825681 DOI: 10.3390/ijms22020522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.
Collapse
Affiliation(s)
- Noreen Falak
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
- Department of Medical Biochemistry and Biophysics, Umea University, 90187 Umea, Sweden
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea; (N.F.); (Q.M.I.)
| |
Collapse
|
4
|
Corachán A, Trejo MG, Carbajo-García MC, Monleón J, Escrig J, Faus A, Pellicer A, Cervelló I, Ferrero H. Vitamin D as an effective treatment in human uterine leiomyomas independent of mediator complex subunit 12 mutation. Fertil Steril 2020; 115:512-521. [PMID: 33036796 DOI: 10.1016/j.fertnstert.2020.07.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study whether vitamin D (VitD) inhibits cell proliferation and Wnt/β-catenin and transforming growth factor-β (TGFβ) signaling pathways in uterine leiomyomas independent of mediator complex subunit 12 (MED12) mutation status. DESIGN Prospective study comparing leiomyoma vs. myometrial tissues and human uterine leiomyoma primary (HULP) cells treated with or without VitD and analyzed by MED12 mutation status. SETTING Hospital and university laboratories. PATIENT(S) Women with uterine leiomyoma without any treatment (n = 37). INTERVENTION(S) Uterine leiomyoma and myometrium samples were collected from women undergoing surgery because of symptomatic leiomyoma pathology. MAIN OUTCOME MEASURE(S) Analysis of Wnt/β-catenin and TGFβ pathways and proliferation by quantitative real-time polymerase chain reaction in leiomyoma and myometrial tissue as well as in VitD-treated HULP cells analyzed by Sanger sequencing. RESULTS Sequencing data showed that 46% of leiomyomas presented MED12 mutation, whereas no mutations were detected in adjacent myometrium. Expression of Wnt/β-catenin and TGFβ pathway genes was significantly increased in MED12-mutated leiomyomas compared to matched myometrium; no significant differences were found in wild-type (WT) leiomyomas. In HULP cells, VitD significantly decreased PCNA expression of both MED12-mutated and WT groups. VitD treatment decreased WNT4 and β-catenin expression in both groups compared to controls, with significance for WNT4 expression in MED12-mutated samples. Similarly, VitD significantly inhibited TGFβ3 expression in cells from both groups. MMP9 expression also decreased. CONCLUSION Despite molecular differences between MED12-mutated and WT leiomyomas, VitD inhibited Wnt/β-catenin and TGFβ pathways in HULP cells, suggesting VitD as an effective treatment to reduce proliferation and extracellular matrix formation in different molecular subtypes of uterine leiomyomas.
Collapse
Affiliation(s)
- Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Julia Escrig
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Rome, Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
5
|
Hussein NK, Sabr LJ, Lobo E, Booth J, Ariens E, Detchanamurthy S, Schenk PM. Suppression of Arabidopsis Mediator Subunit-Encoding MED18 Confers Broad Resistance Against DNA and RNA Viruses While MED25 Is Required for Virus Defense. FRONTIERS IN PLANT SCIENCE 2020; 11:162. [PMID: 32194589 PMCID: PMC7064720 DOI: 10.3389/fpls.2020.00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 05/06/2023]
Abstract
Mediator subunits play key roles in numerous physiological pathways and developmental processes in plants. Arabidopsis Mediator subunits, MED18 and MED25, have previously been shown to modulate disease resistance against fungal and bacterial pathogens through their role in jasmonic acid (JA) signaling. In this study, Arabidopsis mutant plants of the two Mediator subunits, med18 and med25, were tested against three ssRNA viruses and one dsDNA virus belonging to four different families: Turnip mosaic virus (TuMV), Cauliflower mosaic virus (CaMV), Alternanthera mosaic virus (AltMV), and Cucumber mosaic virus (CMV). Although both subunits are utilized in JA signaling, they occupy different positions (Head and Tail domain, respectively) in the Mediator complex and their absence affected virus infection differently. Arabidopsis med18 plants displayed increased resistance to RNA viral infection and a trend against the DNA virus, while med25 mutants displayed increased susceptibility to all viruses tested at 2 and 14 days post inoculations. Defense marker gene expression profiling of mock- and virus-inoculated plants showed that med18 and med25 mutants exhibited an upregulated SA pathway upon virus infection at 2 dpi for all viruses tested. JA signaling was also suppressed in med18 plants after virus infection, independent of which virus infected the plants. The upregulation of SA signaling and suppression of JA signaling in med18 may have led to more targeted oxidative burst and programmed cell death to control viruses. However, the susceptibility exhibited by med25 mutants suggests that other factors, such as a weakened RNAi pathway, might play a role in the observed susceptibility. We conclude that MED18 and MED25 have clear and opposite effects on accumulation of plant viruses. MED18 is required for normal virus infection, while MED25 is important for defense against virus infection. Results from this study provide a better understanding of the role of Mediator subunits during plant-virus interactions, viral disease progression and strategies to develop virus resistant plants.
Collapse
Affiliation(s)
- Nasser K. Hussein
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
- Plant Protection Department, College of Agriculture, University of Baghdad, Baghdad, Iraq
- *Correspondence: Nasser K. Hussein,
| | - Layla J. Sabr
- Plant Protection Department, College of Agriculture, University of Baghdad, Baghdad, Iraq
| | - Edina Lobo
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - James Booth
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Emily Ariens
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Swaminathan Detchanamurthy
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Garg J, Saettone A, Nabeel-Shah S, Cadorin M, Ponce M, Marquez S, Pu S, Greenblatt J, Lambert JP, Pearlman RE, Fillingham J. The Med31 Conserved Component of the Divergent Mediator Complex in Tetrahymena thermophila Participates in Developmental Regulation. Curr Biol 2019; 29:2371-2379.e6. [PMID: 31280994 DOI: 10.1016/j.cub.2019.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/18/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
Mediator is a large protein complex required for basal and regulated expression of most RNA polymerase II (RNAP II)-transcribed genes, in part due to its interaction with and phosphorylation of the conserved C-terminal domain (CTD) of Rpb1 [1, 2]. Mediator has been implicated in many aspects of gene expression including chromatin looping [3], higher-order chromatin folding [4], mRNA processing [5] and export [6], and transcriptional memory [7]. Mediator is thought to have played a major role during eukaryotic diversification [8, 9], although its function remains unknown in evolutionarily deep branching eukaryotes lacking canonical CTD heptad repeats. We used the ciliate protozoan Tetrahymena thermophila as a model organism whose genome encodes a highly divergent Rpb1 lacking canonical CTD heptad repeats. We endogenously tagged the Med31 subunit of the Mediator complex and performed affinity purification coupled with mass spectrometry (AP-MS) to identify Mediator subunits. We found that Med31 physically interacts with a large number of proteins (>20), several of which share similarities to canonical Mediator subunits in yeast and humans as well as Tetrahymena-specific proteins. Furthermore, Med31 ChIP-seq analysis suggested a global role for Mediator in transcription regulation. We demonstrated that MED31 knockdown in growing Tetrahymena results in the ectopic expression of developmental genes important for programmed DNA rearrangements. In addition, indirect immunofluorescence revealed Med31 localization in meiotic micronuclei, implicating Mediator in RNAPII-dependent ncRNA transcription. Our results reveal structural and functional insights and implicate Mediator as an ancient cellular machinery for transcription regulation with a possible involvement in global transcription of ncRNAs.
Collapse
Affiliation(s)
- Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matthew Cadorin
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Avenue, Suite 1140, Toronto, ON M5G 1M1, Canada
| | - Susanna Marquez
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, Canada; CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec, QC G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
7
|
Kazan K. The Multitalented MEDIATOR25. FRONTIERS IN PLANT SCIENCE 2017; 8:999. [PMID: 28659948 PMCID: PMC5467580 DOI: 10.3389/fpls.2017.00999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/26/2017] [Indexed: 05/19/2023]
Abstract
The multi-subunit Mediator complex, which links DNA-bound transcription factors to RNA Pol II during transcription, is an essential regulator of gene expression in all eukaryotes. Individual subunits of the Mediator complex integrate numerous endogenous and exogenous signals. In this paper, diverse regulatory functions performed by MEDIATOR25 (MED25), one of the subunits of the plant Mediator complex are reviewed. MED25 was first identified as a regulator of flowering time and named PHYTOCHROME AND FLOWERING TIME1 (PFT1). Since then, MED25 has been implicated in a range of other plant functions that vary from hormone signaling (JA, ABA, ethylene, and IAA) to biotic and abiotic stress tolerance and plant development. MED25 physically interacts with transcriptional activators (e.g., AP2/ERFs, MYCs, and ARFs), repressors (e.g., JAZs and Aux/IAAs), and other Mediator subunits (MED13 and MED16). In addition, various genetic and epigenetic interactions involving MED25 have been reported. These features make MED25 one of the most multifunctional Mediator subunits and provide new insights into the transcriptional control of gene expression in plants.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, BrisbaneQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, The University of Queensland, BrisbaneQLD, Australia
- *Correspondence: Kemal Kazan,
| |
Collapse
|
8
|
Vodopiutz J, Schmook MT, Konstantopoulou V, Plecko B, Greber-Platzer S, Creus M, Seidl R, Janecke AR. MED20 mutation associated with infantile basal ganglia degeneration and brain atrophy. Eur J Pediatr 2015; 174:113-8. [PMID: 25446406 DOI: 10.1007/s00431-014-2463-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 12/01/2022]
Abstract
UNLABELLED Infantile movement disorders are rare and genetically heterogeneous. We set out to identify the disease-causing mutation in siblings with a novel recessive neurodegenerative movement disorder. Genetic linkage analysis and whole-exome sequencing were performed in the original family. A cohort of six unrelated patients were sequenced for further mutations in the identified candidate gene. Pathogenicity of the mutation was evaluated by in silico analyses and by structural modeling. We identified the first and homozygous mutation (p.Gly114Ala) in the Mediator subunit 20 gene (MED20) in siblings presenting with infantile-onset spasticity and childhood-onset dystonia, progressive basal ganglia degeneration, and brain atrophy. Mediator refers to an evolutionarily conserved multi-subunit RNA polymerase II co-regulatory complex. Pathogenicity of the identified missense mutation is suggested by in silico analyses, by structural modeling, and by previous reporting of mutations in four distinct Mediator subunits causing neurodegenerative phenotypes. No further MED20 mutations were detected in this study. CONCLUSION We delineate a novel infantile-onset neurodegenerative movement disorder and emphasize the Mediator complex as critical for normal neuronal function. Definitive proof of pathogenicity of the identified MED20 mutation will require confirmation in unrelated patients.
Collapse
Affiliation(s)
- Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Austria,
| | | | | | | | | | | | | | | |
Collapse
|
9
|
A functional portrait of Med7 and the mediator complex in Candida albicans. PLoS Genet 2014; 10:e1004770. [PMID: 25375174 PMCID: PMC4222720 DOI: 10.1371/journal.pgen.1004770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control. In this study, we have investigated Mediator function in the human fungal pathogen C. albicans. An initial screening of conditionally regulated Mediator subunits showed that the Med7 of C. albicans was not essential, in contrast to the situation noted for S. cerevisiae. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used location profiling to determine Mediator binding under yeast and hyphal morphologies characterized by different transcription profiles. We observed a core set of specific and common genes bound by Med7 under both conditions; this specific core set is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also of inactive genes and within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7 regulons including genes related to glycolysis and the Filamentous Growth Regulator family.
Collapse
|
10
|
Gonzalez D, Hamidi N, Del Sol R, Benschop JJ, Nancy T, Li C, Francis L, Tzouros M, Krijgsveld J, Holstege FCP, Conlan RS. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. Proc Natl Acad Sci U S A 2014; 111:2500-5. [PMID: 24550274 PMCID: PMC3932902 DOI: 10.1073/pnas.1307525111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II-transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.
Collapse
Affiliation(s)
- Deyarina Gonzalez
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Nurul Hamidi
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Ricardo Del Sol
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Joris J. Benschop
- Molecular Cancer Research, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Thomas Nancy
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Chao Li
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
- Suzhou School of Nano-Science and Nano-Engineering, X’ian Jaotong University, Suzhou Industrial Park 215123, People’s Republic of China
| | - Lewis Francis
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | - Manuel Tzouros
- Translational Technologies and Bioinformatics, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; and
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Centre Utrecht, 3508 AB, Utrecht, The Netherlands
| | - R. Steven Conlan
- College of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| |
Collapse
|