1
|
Deng Y, Banerjee T, Pal DS, Banerjee P, Zhan H, Borleis J, Igleias PA, Devreotes PN. PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613115. [PMID: 39314378 PMCID: PMC11419139 DOI: 10.1101/2024.09.15.613115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin's involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
Collapse
Affiliation(s)
- Yu Deng
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Parijat Banerjee
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A. Igleias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Li D, Sun F, Yang Y, Tu H, Cai H. Gradients of PI(4,5)P2 and PI(3,5)P2 Jointly Participate in Shaping the Back State of Dictyostelium Cells. Front Cell Dev Biol 2022; 10:835185. [PMID: 35186938 PMCID: PMC8855053 DOI: 10.3389/fcell.2022.835185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Polarity, which refers to the molecular or structural asymmetry in cells, is essential for diverse cellular functions. Dictyostelium has proven to be a valuable system for dissecting the molecular mechanisms of cell polarity. Previous studies in Dictyostelium have revealed a range of signaling and cytoskeletal proteins that function at the leading edge to promote pseudopod extension and migration. In contrast, how proteins are localized to the trailing edge is not well understood. By screening for asymmetrically localized proteins, we identified a novel trailing-edge protein we named Teep1. We show that a charged surface formed by two pleckstrin homology (PH) domains in Teep1 is necessary and sufficient for targeting it to the rear of cells. Combining biochemical and imaging analyses, we demonstrate that Teep1 interacts preferentially with PI(4,5)P2 and PI(3,5)P2in vitro and simultaneous elimination of these lipid species in cells blocks the membrane association of Teep1. Furthermore, a leading-edge localized myotubularin phosphatase likely mediates the removal of PI(3,5)P2 from the front, as well as the formation of a back-to-front gradient of PI(3,5)P2. Together our data indicate that PI(4,5)P2 and PI(3,5)P2 on the plasma membrane jointly participate in shaping the back state of Dictyostelium cells.
Collapse
Affiliation(s)
- Dong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Feifei Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hui Tu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Huaqing Cai,
| |
Collapse
|
3
|
Kay RR, Lutton J, Coker H, Paschke P, King JS, Bretschneider T. The Amoebal Model for Macropinocytosis. Subcell Biochem 2022; 98:41-59. [PMID: 35378702 DOI: 10.1007/978-3-030-94004-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macropinocytosis is a relatively unexplored form of large-scale endocytosis driven by the actin cytoskeleton. Dictyostelium amoebae form macropinosomes from cups extended from the plasma membrane, then digest their contents and absorb the nutrients in the endo-lysosomal system. They use macropinocytosis for feeding, maintaining a high rate of fluid uptake that makes assay and experimentation easy. Mutants collected over the years identify cytoskeletal and signalling proteins required for macropinocytosis. Cups are organized around plasma membrane domains of intense PIP3, Ras and Rac signalling, proper formation of which also depends on the RasGAPs NF1 and RGBARG, PTEN, the PIP3-regulated protein kinases Akt and SGK and their activators PDK1 and TORC2, Rho proteins, plus other components yet to be identified. This PIP3 domain directs dendritic actin polymerization to the extending lip of macropinocytic cups by recruiting a ring of the SCAR/WAVE complex around itself and thus activating the Arp2/3 complex. The dynamics of PIP3 domains are proposed to shape macropinocytic cups from start to finish. The role of the Ras-PI3-kinase module in organizing feeding structures in unicellular organisms most likely predates its adoption into growth factor signalling, suggesting an evolutionary origin for growth factor signalling.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Josiah Lutton
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Helena Coker
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Jason S King
- School of Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
4
|
Three-dimensional stochastic simulation of chemoattractant-mediated excitability in cells. PLoS Comput Biol 2021; 17:e1008803. [PMID: 34260581 PMCID: PMC8330952 DOI: 10.1371/journal.pcbi.1008803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/03/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
During the last decade, a consensus has emerged that the stochastic triggering of an excitable system drives pseudopod formation and subsequent migration of amoeboid cells. The presence of chemoattractant stimuli alters the threshold for triggering this activity and can bias the direction of migration. Though noise plays an important role in these behaviors, mathematical models have typically ignored its origin and merely introduced it as an external signal into a series of reaction-diffusion equations. Here we consider a more realistic description based on a reaction-diffusion master equation formalism to implement these networks. In this scheme, noise arises naturally from a stochastic description of the various reaction and diffusion terms. Working on a three-dimensional geometry in which separate compartments are divided into a tetrahedral mesh, we implement a modular description of the system, consisting of G-protein coupled receptor signaling (GPCR), a local excitation-global inhibition mechanism (LEGI), and signal transduction excitable network (STEN). Our models implement detailed biochemical descriptions whenever this information is available, such as in the GPCR and G-protein interactions. In contrast, where the biochemical entities are less certain, such as the LEGI mechanism, we consider various possible schemes and highlight the differences between them. Our simulations show that even when the LEGI mechanism displays perfect adaptation in terms of the mean level of proteins, the variance shows a dose-dependence. This differs between the various models considered, suggesting a possible means for determining experimentally among the various potential networks. Overall, our simulations recreate temporal and spatial patterns observed experimentally in both wild-type and perturbed cells, providing further evidence for the excitable system paradigm. Moreover, because of the overall importance and ubiquity of the modules we consider, including GPCR signaling and adaptation, our results will be of interest beyond the field of directed migration. Though the term noise usually carries negative connotations, it can also contribute positively to the characteristic dynamics of a system. In biological systems, where noise arises from the stochastic interactions between molecules, its study is usually confined to genetic regulatory systems in which copy numbers are small and fluctuations large. However, noise can have important roles when the number of signaling molecules is large. The extension of pseudopods and the subsequent motion of amoeboid cells arises from the noise-induced trigger of an excitable system. Chemoattractant signals bias this triggering thereby directing cell motion. To date, this paradigm has not been tested by mathematical models that account accurately for the noise that arises in the corresponding reactions. In this study, we employ a reaction-diffusion master equation approach to investigate the effects of noise. Using a modular approach and a three-dimensional cell model with specific subdomains attributed to the cell membrane and cortex, we explore the spatiotemporal dynamics of the system. Our simulations recreate many experimentally-observed cell behaviors thereby supporting the biased-excitable network hypothesis.
Collapse
|
5
|
Stock J, Pauli A. Self-organized cell migration across scales - from single cell movement to tissue formation. Development 2021; 148:148/7/dev191767. [PMID: 33824176 DOI: 10.1242/dev.191767] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-organization is a key feature of many biological and developmental processes, including cell migration. Although cell migration has traditionally been viewed as a biological response to extrinsic signals, advances within the past two decades have highlighted the importance of intrinsic self-organizing properties to direct cell migration on multiple scales. In this Review, we will explore self-organizing mechanisms that lay the foundation for both single and collective cell migration. Based on in vitro and in vivo examples, we will discuss theoretical concepts that underlie the persistent migration of single cells in the absence of directional guidance cues, and the formation of an autonomous cell collective that drives coordinated migration. Finally, we highlight the general implications of self-organizing principles guiding cell migration for biological and medical research.
Collapse
Affiliation(s)
- Jessica Stock
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
6
|
Song S, Zhang Y, Ding T, Ji N, Zhao H. The Dual Role of Macropinocytosis in Cancers: Promoting Growth and Inducing Methuosis to Participate in Anticancer Therapies as Targets. Front Oncol 2021; 10:570108. [PMID: 33542897 PMCID: PMC7851083 DOI: 10.3389/fonc.2020.570108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Macropinocytosis is an important mechanism of internalizing extracellular materials and dissolved molecules in eukaryotic cells. Macropinocytosis has a dual effect on cancer cells. On the one hand, cells expressing RAS genes (such as K-RAS, H-RAS) under the stress of nutrient deficiency can spontaneously produce constitutive macropinocytosis to promote the growth of cancer cells by internalization of extracellular nutrients (like proteins), receptors, and extracellular vesicles(EVs). On the other hand, abnormal expression of RAS genes and drug treatment (such as MOMIPP) can induce a novel cell death associated with hyperactivated macropinocytosis: methuosis. Based on the dual effect, there is immense potential for designing anticancer therapies that target macropinocytosis in cancer cells. In view of the fact that there has been little review of the dual effect of macropinocytosis in cancer cells, herein, we systematically review the general process of macropinocytosis, its specific manifestation in cancer cells, and its application in cancer treatment, including anticancer drug delivery and destruction of macropinocytosis. This review aims to serve as a reference for studying macropinocytosis in cancers and designing macropinocytosis-targeting anticancer drugs in the future.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Zhao LJ, Zhao HY, Wei XL, Guo FF, Wei JY, Wang HJ, Yang J, Yang ZG, Si N, Bian BL. The lipid homeostasis regulation study of arenobufagin in zebrafish HepG2 xenograft model and HepG2 cells using integrated lipidomics-proteomics approach. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112943. [PMID: 32422359 DOI: 10.1016/j.jep.2020.112943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arenobufagin (ArBu) is an important anti-tumor ingredient of Chan'su which has long been used as traditional Chinese medicine in clinic for tumor therapy in China. AIM OF THE STUDY The purpose of our study is to investigate the lipid homeostasis regulation effects of ArBu on zebrafish model of liver cancer and hepatoma cells, and to provide a reference for further clarifying its active mechanisms. MATERIALS AND METHODS The zebrafish xenograft model was established by injecting HepG2 cells stained with CM-Dil red fluorescent dye. Both the xenograft model and HepG2 cells were used to evaluate the anti-hepatoma activity of ArBu. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was the main method to study lipidomics, proteomics and the semiquantification of endogenous metabolites. Bioinformatics was used as an assistant tool to further explore the antitumor mechanism of ArBu. RESULTS The lipidomics analysis revealed that ArBu caused differential lipids changes in a dose-dependent manner, including PCs, PEs, TGs, SMs, DGs, Cer and PA. PCs, PEs, SMs and TGs were markedly altered in both two models. The influence of glycerophospholipid metabolism was the major and commonly affected pathway. Notably, DGs and Cer were significantly changed only in HepG2 cells. Furthermore, the proteomics research in HepG2 cells fished the target proteins related to lipid homeostasis abnormalities and tumor suppression. ArBu reduced the expression of 65 differential proteins associated with the lipid metabolism, apoptosis and autophagy, such as LCLAT1, STAT3, TSPO and RPS27. Meanwhile, 7 amino acids of 29 determined metabolites were significantly changed, including tyrosine, glutamate, glutamine, leucine, threonine, arginine and isoleucine. CONCLUSION ArBu has a significant anti-hepatoma effect in vitro and a therapeutic effect on zebrafish xenograft model. It regulated the lipid homeostasis. Activated SM synthase and arginine deiminase, inhibited sphingomyelinase, amino acid supply and JAK-STAT3 signaling pathway, and the affected glycerophospholipid metabolism might explain these results.
Collapse
Affiliation(s)
- Li-Juan Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hai-Yu Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Lu Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei-Fei Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jun-Ying Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hong-Jie Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jian Yang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhi-Gang Yang
- School of Pharmacy Lanzhou University, Lanzhou, 730020, China.
| | - Nan Si
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bao-Lin Bian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Cheng Y, Felix B, Othmer HG. The Roles of Signaling in Cytoskeletal Changes, Random Movement, Direction-Sensing and Polarization of Eukaryotic Cells. Cells 2020; 9:E1437. [PMID: 32531876 PMCID: PMC7348768 DOI: 10.3390/cells9061437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Movement of cells and tissues is essential at various stages during the lifetime of an organism, including morphogenesis in early development, in the immune response to pathogens, and during wound-healing and tissue regeneration. Individual cells are able to move in a variety of microenvironments (MEs) (A glossary of the acronyms used herein is given at the end) by suitably adapting both their shape and how they transmit force to the ME, but how cells translate environmental signals into the forces that shape them and enable them to move is poorly understood. While many of the networks involved in signal detection, transduction and movement have been characterized, how intracellular signals control re-building of the cyctoskeleton to enable movement is not understood. In this review we discuss recent advances in our understanding of signal transduction networks related to direction-sensing and movement, and some of the problems that remain to be solved.
Collapse
Affiliation(s)
- Yougan Cheng
- Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, USA;
| | - Bryan Felix
- School of Mathematics, University of Minnesota, Minneapolis, MN 55445, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55445, USA;
| |
Collapse
|
9
|
Li X, Miao Y, Pal DS, Devreotes PN. Excitable networks controlling cell migration during development and disease. Semin Cell Dev Biol 2019; 100:133-142. [PMID: 31836289 DOI: 10.1016/j.semcdb.2019.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
The directed movements of individual, groups, or sheets of cells at specific times in particular locations bring about form and complexity to developing organisms. Cells move by extending protrusions, such as macropinosomes, pseudopods, lamellipods, filopods, or blebs. Although many of the cytoskeletal components within these structures are known, less is known about the mechanisms that determine their location, number, and characteristics. Recent evidence suggests that control may be exerted by a signal transduction excitable network whose components and activities, including Ras, PI3K, TorC2, and phosphoinositides, self-organize on the plasma membrane and propagate in waves. The waves drive the various types of protrusions, which in turn, determine the modes of cell migration. Acute perturbations at specific points in the network produce abrupt shifts in protrusion type, including transitions from pseudopods to filopods or lamellipods. These observations have also contributed to a delineation of the signal transduction network, including candidate fast positive and delayed negative feedback loops. The network contains many oncogenes and tumor suppressors, and other molecules which have recently been implicated in developmental and metabolic abnormalities. Thus, the concept of signal transduction network excitability in cell migration can be used to understand disease states and morphological changes occurring in development.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Miao Y, Bhattacharya S, Banerjee T, Abubaker-Sharif B, Long Y, Inoue T, Iglesias PA, Devreotes PN. Wave patterns organize cellular protrusions and control cortical dynamics. Mol Syst Biol 2019; 15:e8585. [PMID: 30858181 PMCID: PMC6413885 DOI: 10.15252/msb.20188585] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cellular protrusions are typically considered as distinct structures associated with specific regulators. However, we found that these regulators coordinately localize as propagating cortical waves, suggesting a common underlying mechanism. These molecular events fell into two excitable networks, the signal transduction network STEN and the cytoskeletal network CEN with different wave substructures. Computational studies using a coupled-network model reproduced these features and showed that the morphology and kinetics of the waves depended on strengths of feedback loops. Chemically induced dimerization at multiple nodes produced distinct, coordinated alterations in patterns of other network components. Taken together, these studies indicate: STEN positive feedback is mediated by mutual inhibition between Ras/Rap and PIP2, while negative feedback depends on delayed PKB activation; PKBs link STEN to CEN; CEN includes positive feedback between Rac and F-actin, and exerts fast positive and slow negative feedbacks to STEN The alterations produced protrusions resembling filopodia, ruffles, pseudopodia, or lamellipodia, suggesting that these structures arise from a common regulatory mechanism and that the overall state of the STEN-CEN system determines cellular morphology.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bedri Abubaker-Sharif
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yu Long
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Fukushima S, Matsuoka S, Ueda M. Excitable dynamics of Ras triggers spontaneous symmetry breaking of PIP3 signaling in motile cells. J Cell Sci 2019; 132:jcs224121. [PMID: 30745337 PMCID: PMC6432713 DOI: 10.1242/jcs.224121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Spontaneous cell movement is underpinned by an asymmetric distribution of signaling molecules including small G proteins and phosphoinositides on the cell membrane. However, the molecular network necessary for spontaneous symmetry breaking has not been fully elucidated. Here, we report that, in Dictyostelium discoideum, the spatiotemporal dynamics of GTP bound Ras (Ras-GTP) breaks the symmetry due its intrinsic excitability even in the absence of extracellular spatial cues and downstream signaling activities. A stochastic excitation of local and transient Ras activation induced phosphatidylinositol (3,4,5)-trisphosphate (PIP3) accumulation via direct interaction with Phosphoinositide 3-kinase (PI3K), causing tightly coupled traveling waves that propagated along the membrane. Comprehensive phase analysis of the waves of Ras-GTP and PIP3 metabolism-related molecules revealed the network structure of the excitable system including positive-feedback regulation of Ras-GTP by the downstream PIP3. A mathematical model reconstituted a series of the observed symmetry-breaking phenomena, illustrating the essential involvement of Ras excitability in the cellular decision-making process.
Collapse
Affiliation(s)
- Seiya Fukushima
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan
| | - Satomi Matsuoka
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Ueda
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Nichols JME, Paschke P, Peak-Chew S, Williams TD, Tweedy L, Skehel M, Stephens E, Chubb JR, Kay RR. The Atypical MAP Kinase ErkB Transmits Distinct Chemotactic Signals through a Core Signaling Module. Dev Cell 2019; 48:491-505.e9. [PMID: 30612939 PMCID: PMC6397043 DOI: 10.1016/j.devcel.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/15/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
Abstract
Signaling from chemoattractant receptors activates the cytoskeleton of crawling cells for chemotaxis. We show using phosphoproteomics that different chemoattractants cause phosphorylation of the same core set of around 80 proteins in Dictyostelium cells. Strikingly, the majority of these are phosphorylated at an [S/T]PR motif by the atypical MAP kinase ErkB. Unlike most chemotactic responses, ErkB phosphorylations are persistent and do not adapt to sustained stimulation with chemoattractant. ErkB integrates dynamic autophosphorylation with chemotactic signaling through G-protein-coupled receptors. Downstream, our phosphoproteomics data define a broad panel of regulators of chemotaxis. Surprisingly, targets are almost exclusively other signaling proteins, rather than cytoskeletal components, revealing ErkB as a regulator of regulators rather than acting directly on the motility machinery. ErkB null cells migrate slowly and orientate poorly over broad dynamic ranges of chemoattractant. Our data indicate a central role for ErkB and its substrates in directing chemotaxis.
Collapse
Affiliation(s)
- John M E Nichols
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK.
| | - Peggy Paschke
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Cancer Research UK (CRUK) Beatson Institute, University of Glasgow, Bearsden, Glasgow G61 1BD, UK.
| | - Sew Peak-Chew
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Thomas D Williams
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Luke Tweedy
- Cancer Research UK (CRUK) Beatson Institute, University of Glasgow, Bearsden, Glasgow G61 1BD, UK
| | - Mark Skehel
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Elaine Stephens
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Pfizer Inc, 1 Burtt Road, Andover, MA 01810, USA
| | - Jonathan R Chubb
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Robert R Kay
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
13
|
Abstract
In macropinocytosis, cells take up micrometre-sized droplets of medium into internal vesicles. These vesicles are acidified and fused to lysosomes, their contents digested and useful compounds extracted. Indigestible contents can be exocytosed. Macropinocytosis has been known for approaching 100 years and is described in both metazoa and amoebae, but not in plants or fungi. Its evolutionary origin goes back to at least the common ancestor of the amoebozoa and opisthokonts, with apparent secondary loss from fungi. The primary function of macropinocytosis in amoebae and some cancer cells is feeding, but the conserved processing pathway for macropinosomes, which involves shrinkage and the retrieval of membrane to the cell surface, has been adapted in immune cells for antigen presentation. Macropinocytic cups are large actin-driven processes, closely related to phagocytic cups and pseudopods and appear to be organized around a conserved signalling patch of PIP3, active Ras and active Rac that directs actin polymerization to its periphery. Patches can form spontaneously and must be sustained by excitable kinetics with strong cooperation from the actin cytoskeleton. Growth-factor signalling shares core components with macropinocytosis, based around phosphatidylinositol 3-kinase (PI3-kinase), and we suggest that it evolved to take control of ancient feeding structures through a coupled growth factor receptor. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Jason S. King
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
14
|
Othmer HG. Eukaryotic Cell Dynamics from Crawlers to Swimmers. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 30854030 DOI: 10.1002/wcms.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.
Collapse
Affiliation(s)
- H G Othmer
- School of Mathematics, University of Minnesota
| |
Collapse
|
15
|
Paschke P, Knecht DA, Silale A, Traynor D, Williams TD, Thomason PA, Insall RH, Chubb JR, Kay RR, Veltman DM. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One 2018; 13:e0196809. [PMID: 29847546 PMCID: PMC5976153 DOI: 10.1371/journal.pone.0196809] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/15/2018] [Indexed: 02/03/2023] Open
Abstract
Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a 'safe haven' for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media.
Collapse
Affiliation(s)
- Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | | - David Traynor
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Peter A. Thomason
- Cancer Research UK Beatson Institute Glasgow, Glasgow, United Kingdom
| | - Robert H. Insall
- Cancer Research UK Beatson Institute Glasgow, Glasgow, United Kingdom
| | - Jonathan R. Chubb
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
16
|
Choi S, Houdek X, Anderson RA. Phosphoinositide 3-kinase pathways and autophagy require phosphatidylinositol phosphate kinases. Adv Biol Regul 2018; 68:31-38. [PMID: 29472147 PMCID: PMC5955796 DOI: 10.1016/j.jbior.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) generate a lipid messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2) that controls essentially all aspects of cellular functions. PI4,5P2 rapidly diffuses in the membrane of the lipid bilayer and does not greatly change in membrane or cellular content, and thus PI4,5P2 generation by PIPKs is tightly linked to its usage in subcellular compartments. Based on this verity, recent study of PI4,5P2 signal transduction has been focused on investigations of individual PIPKs and their underlying molecular regulation of cellular processes. Here, we will discuss recent advances in the study of how PIPKs control specific cellular events through assembly and regulation of PI4,5P2 effectors that mediate specific cellular processes. A focus will be on the roles of PIPKs in control of the phosphoinositide 3-kinase pathway and autophagy.
Collapse
Affiliation(s)
- Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xander Houdek
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
17
|
Collier S, Paschke P, Kay RR, Bretschneider T. Image based modeling of bleb site selection. Sci Rep 2017; 7:6692. [PMID: 28751725 PMCID: PMC5532237 DOI: 10.1038/s41598-017-06875-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/20/2017] [Indexed: 12/02/2022] Open
Abstract
Cells often employ fast, pressure-driven blebs to move through tissues or against mechanical resistance, but how bleb sites are selected and directed to the cell front remains an open question. Previously, we found that chemotaxing Dictyostelium cells preferentially bleb from concave regions, where membrane tension facilitates membrane-cortex detachment. Now, through a novel modeling approach based on actual cell contours, we use cell geometry to predict where blebs will form in migrating cells. We find that cell geometry alone, and by implication, physical forces in the membrane, is sufficient to predict the location of blebs in rounded cells moving in a highly resistive environment. The model is less successful with more polarized cells moving against less resistance, but can be greatly improved by positing a front-to-back gradient in membrane-cortex adhesion. In accord with this prediction, we find that Talin, which links membrane and cortex, forms such a front-to-back gradient. Thus our model provides a means of dissecting out the role of physical forces in controlling where blebs form, and shows that in certain circumstances they could be the major determining factor.
Collapse
Affiliation(s)
- Sharon Collier
- MOAC Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Peggy Paschke
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Robert R Kay
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
18
|
Miao Y, Bhattacharya S, Edwards M, Cai H, Inoue T, Iglesias PA, Devreotes PN. Altering the threshold of an excitable signal transduction network changes cell migratory modes. Nat Cell Biol 2017; 19:329-340. [PMID: 28346441 PMCID: PMC5394931 DOI: 10.1038/ncb3495] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
The diverse migratory modes displayed by different cell types are generally believed to be idiosyncratic. Here we show that the migratory behavior of Dictyostelium was switched from amoeboid to keratocyte-like and oscillatory modes by synthetically decreasing PIP2 levels or increasing Ras/Rap-related activities. The perturbations at these key nodes of an excitable signal transduction network initiated a causal chain of events: The threshold for network activation was lowered, the speed and range of propagating waves of signal transduction activity increased, actin driven cellular protrusions expanded and, consequently, the cell migratory mode transitions ensued. Conversely, innately keratocyte-like and oscillatory cells were promptly converted to amoeboid by inhibition of Ras effectors with restoration of directed migration. We use computational analysis to explain how thresholds control cell migration and discuss the architecture of the signal transduction network that gives rise to excitability.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Marc Edwards
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Huaqing Cai
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
19
|
Traynor D, Kay RR. A polycystin-type transient receptor potential (Trp) channel that is activated by ATP. Biol Open 2017; 6:200-209. [PMID: 28011630 PMCID: PMC5312093 DOI: 10.1242/bio.020685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP. Summary: We show that a Trp channel related to the mammalian polycystin channel, rather than a P2X receptor, is responsible for the purinergic stimulation of cytosolic calcium levels in Dictyostelium cells.
Collapse
Affiliation(s)
- David Traynor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| |
Collapse
|
20
|
Frej AD, Clark J, Le Roy CI, Lilla S, Thomason PA, Otto GP, Churchill G, Insall RH, Claus SP, Hawkins P, Stephens L, Williams RSB. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Mol Cell Biol 2016; 36:1464-79. [PMID: 26951199 PMCID: PMC4859692 DOI: 10.1128/mcb.00039-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022] Open
Abstract
Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.
Collapse
Affiliation(s)
- Anna D Frej
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Jonathan Clark
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Caroline I Le Roy
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Peter A Thomason
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Grant P Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Grant Churchill
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Robert H Insall
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, The University of Reading, Reading, Berkshire, United Kingdom
| | - Phillip Hawkins
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Len Stephens
- The Babraham Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
21
|
PIP2Clustering: From model membranes to cells. Chem Phys Lipids 2015; 192:33-40. [DOI: 10.1016/j.chemphyslip.2015.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022]
|
22
|
Choi S, Anderson RA. IQGAP1 is a phosphoinositide effector and kinase scaffold. Adv Biol Regul 2015; 60:29-35. [PMID: 26554303 DOI: 10.1016/j.jbior.2015.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/16/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is a lipid messenger that regulates a wide variety of cellular functions. The majority of cellular PI4,5P2 is generated by isoforms of the type I phosphatidylinositol phosphate kinases (PIPKI) that are generated from three genes, and each PIPKI isoform has a unique distribution and function in cells. It has been shown that the signaling specificity of PI4,5P2 can be determined by a physical association of PIPKs with PI4,5P2 effectors. IQGAP1 is newly identified as an interactor of multiple isoforms of PIPKs. Considering the versatile roles of IQGAP1 in cellular signaling pathways, IQGAP1 may confer isoform-specific roles of PIPKs in distinct cellular locations. In this mini review, the emerging roles of PIPKs that are regulated by an association with IQGAP1 will be summarized. Focuses will be on cell migration, vesicle trafficking, cell signaling, and nuclear events.
Collapse
Affiliation(s)
- Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Nichols JME, Veltman D, Kay RR. Chemotaxis of a model organism: progress with Dictyostelium. Curr Opin Cell Biol 2015; 36:7-12. [DOI: 10.1016/j.ceb.2015.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/22/2015] [Accepted: 06/27/2015] [Indexed: 11/25/2022]
|
24
|
Choi S, Thapa N, Tan X, Hedman AC, Anderson RA. PIP kinases define PI4,5P₂signaling specificity by association with effectors. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:711-23. [PMID: 25617736 PMCID: PMC4380618 DOI: 10.1016/j.bbalip.2015.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P₂) is an essential lipid messenger with roles in all eukaryotes and most aspects of human physiology. By controlling the targeting and activity of its effectors, PI4,5P₂modulates processes, such as cell migration, vesicular trafficking, cellular morphogenesis, signaling and gene expression. In cells, PI4,5P₂has a much higher concentration than other phosphoinositide species and its total content is largely unchanged in response to extracellular stimuli. The discovery of a vast array of PI4,5P₂ binding proteins is consistent with data showing that the majority of cellular PI4,5P₂is sequestered. This supports a mechanism where PI4,5P₂functions as a localized and highly specific messenger. Further support of this mechanism comes from the de novo synthesis of PI4,5P₂which is often linked with PIP kinase interaction with PI4,5P₂effectors and is a mechanism to define specificity of PI4,5P₂signaling. The association of PI4,5P₂-generating enzymes with PI4,5P₂effectors regulate effector function both temporally and spatially in cells. In this review, the PI4,5P₂effectors whose functions are tightly regulated by associations with PI4,5P₂-generating enzymes will be discussed. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Suyong Choi
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaojun Tan
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Andrew C Hedman
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
25
|
Clark J, Kay RR, Kielkowska A, Niewczas I, Fets L, Oxley D, Stephens LR, Hawkins PT. Dictyostelium uses ether-linked inositol phospholipids for intracellular signalling. EMBO J 2014; 33:2188-200. [PMID: 25180230 DOI: 10.15252/embj.201488677] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Inositol phospholipids are critical regulators of membrane biology throughout eukaryotes. The general principle by which they perform these roles is conserved across species and involves binding of differentially phosphorylated inositol head groups to specific protein domains. This interaction serves to both recruit and regulate the activity of several different classes of protein which act on membrane surfaces. In mammalian cells, these phosphorylated inositol head groups are predominantly borne by a C38:4 diacylglycerol backbone. We show here that the inositol phospholipids of Dictyostelium are different, being highly enriched in an unusual C34:1e lipid backbone, 1-hexadecyl-2-(11Z-octadecenoyl)-sn-glycero-3-phospho-(1'-myo-inositol), in which the sn-1 position contains an ether-linked C16:0 chain; they are thus plasmanylinositols. These plasmanylinositols respond acutely to stimulation of cells with chemoattractants, and their levels are regulated by PIPKs, PI3Ks and PTEN. In mammals and now in Dictyostelium, the hydrocarbon chains of inositol phospholipids are a highly selected subset of those available to other phospholipids, suggesting that different molecular selectors are at play in these organisms but serve a common, evolutionarily conserved purpose.
Collapse
Affiliation(s)
- Jonathan Clark
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Anna Kielkowska
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Izabella Niewczas
- Babraham Biosciences Technology Babraham Research Campus, Cambridge, UK
| | - Louise Fets
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - David Oxley
- Signalling Programme Babraham Research Campus, Cambridge, UK
| | - Len R Stephens
- Signalling Programme Babraham Research Campus, Cambridge, UK
| | | |
Collapse
|
26
|
Abstract
Two motors can drive extension of the leading edge of motile cells: actin polymerization and myosin-driven contraction of the cortex, producing fluid pressure and the formation of blebs. Dictyostelium cells can move with both blebs and actin-driven pseudopods at the same time, and blebs, like pseudopods, can be orientated by chemotactic gradients. Here we ask how bleb sites are selected and how the two forms of projection cooperate. We show that membrane curvature is an important, yet overlooked, factor. Dictyostelium cells were observed moving under agarose, which efficiently induces blebbing, and the dynamics of membrane deformations were analyzed. Blebs preferentially originate from negatively curved regions, generated on the flanks of either extending pseudopods or blebs themselves. This is true of cells at different developmental stages, chemotaxing to either folate or cyclic AMP and moving with both blebs and pseudopods or with blebs only. A physical model of blebbing suggests that detachment of the cell membrane is facilitated in concave areas of the cell, where membrane tension produces an outward directed force, as opposed to pulling inward in convex regions. Our findings assign a role to membrane tension in spatially coupling blebs and pseudopods, thus contributing to clustering protrusions to the cell front.
Collapse
|
27
|
Chattwood A, Bolourani P, Weeks G. RasG signaling is important for optimal folate chemotaxis in Dictyostelium. BMC Cell Biol 2014; 15:13. [PMID: 24742374 PMCID: PMC4021067 DOI: 10.1186/1471-2121-15-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Signaling pathways linking receptor activation to actin reorganization and pseudopod dynamics during chemotaxis are arranged in complex networks. Dictyostelium discoideum has proven to be an excellent model system for studying these networks and a body of evidence has indicated that RasG and RasC, members of the Ras GTPase subfamily function as key chemotaxis regulators. However, recent evidence has been presented indicating that Ras signaling is not important for Dictyostelium chemotaxis. In this study, we have reexamined the role of Ras proteins in folate chemotaxis and then, having re-established the importance of Ras for this process, identified the parts of the RasG protein molecule that are involved. RESULTS A direct comparison of folate chemotaxis methodologies revealed that rasG-C- cells grown in association with a bacterial food source were capable of positive chemotaxis, only when their initial position was comparatively close to the folate source. In contrast, cells grown in axenic medium orientate randomly regardless of their distance to the micropipette. Folate chemotaxis is restored in rasG-C- cells by exogenous expression of protein chimeras containing either N- or C- terminal halves of the RasG protein. CONCLUSIONS Conflicting data regarding the importance of Ras to Dictyostelium chemotaxis were the result of differing experimental methodologies. Both axenic and bacterially grown cells require RasG for optimal folate chemotaxis, particularly in weak gradients. In strong gradients, the requirement for RasG is relaxed, but only in bacterially grown cells. Both N- and C- terminal portions of the RasG protein are important for folate chemotaxis, suggesting that there are functionally important amino acids outside the well established switch I and switch II interaction surfaces.
Collapse
Affiliation(s)
- Alex Chattwood
- Department of Microbiology and Immunology, University of British Columbia, 1365, Life Sciences Centre 2350, Health Sciences Mall, V6T 1Z3 Vancouver, BC, Canada.
| | | | | |
Collapse
|
28
|
Zatulovskiy E, Tyson R, Bretschneider T, Kay RR. Bleb-driven chemotaxis of Dictyostelium cells. ACTA ACUST UNITED AC 2014; 204:1027-44. [PMID: 24616222 PMCID: PMC3998804 DOI: 10.1083/jcb.201306147] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blebs and F-actin-driven pseudopods are alternative ways of extending the leading edge of migrating cells. We show that Dictyostelium cells switch from using predominantly pseudopods to blebs when migrating under agarose overlays of increasing stiffness. Blebs expand faster than pseudopods leaving behind F-actin scars, but are less persistent. Blebbing cells are strongly chemotactic to cyclic-AMP, producing nearly all of their blebs up-gradient. When cells re-orientate to a needle releasing cyclic-AMP, they stereotypically produce first microspikes, then blebs and pseudopods only later. Genetically, blebbing requires myosin-II and increases when actin polymerization or cortical function is impaired. Cyclic-AMP induces transient blebbing independently of much of the known chemotactic signal transduction machinery, but involving PI3-kinase and downstream PH domain proteins, CRAC and PhdA. Impairment of this PI3-kinase pathway results in slow movement under agarose and cells that produce few blebs, though actin polymerization appears unaffected. We propose that mechanical resistance induces bleb-driven movement in Dictyostelium, which is chemotactic and controlled through PI3-kinase.
Collapse
|