1
|
Zorigt O, Yasuda H, Nakajima T, Tsushima Y. Concentration-dependent bidirectional modification of evoked synaptic transmission by gadolinium and adverse effects of gadolinium-based contrast agent. J Neurosci 2025; 45:e1622242025. [PMID: 40097182 PMCID: PMC12019106 DOI: 10.1523/jneurosci.1622-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
Gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI) are gadolinium chelates and can leave gadolinium in brain regions after administration, causing damage to brain tissues. However, the exact effects of gadolinium on synaptic function and the underlying mechanisms have not yet been elucidated. Here, we report that gadolinium differentially modulates evoked and spontaneous synaptic transmission and induces bidirectional changes in the efficacy of evoked synaptic transmission in the mouse hippocampus in a concentration-dependent manner. Low concentration gadolinium (100 μM) modestly potentiated evoked field excitatory postsynaptic potentials (fEPSPs), while high concentration gadolinium induced group 1 metabotropic glutamate receptor (mGluR)-, endocannabinoid (eCB)-, and purinergic P2Y1 receptor (P2Y1R)-dependent, presynaptically-expressed long-term depression (LTD). Higher concentration of gadolinium (1,000 μM) also induced NMDAR- and mGluR-independent, partially P2Y13R-dependent, postssynaptically-expressed LTD. Low concentration gadolinium greatly increased miniature excitatory postsynaptic current (mEPSC) frequency, while high concentration gadolinium much more robustly increased its frequency and amplitude. Finally, we found that evoked EPSCs were not affected by a macrocyclic GBCA, gadoterate meglumine (Gd-GOTA, Magnescope). However, evoked EPSCs were enhanced by a linear GBCA, gadopentetate dimeglumine (Gd-DTPA, Magnevist), at 100 μM, a clinically relevant concentration in the human brain after repeated clinical GBCA administration and in the cerebrospinal fluid in the rodent brain during experimental GBCA administration. Thus, evoked and spontaneous synaptic transmission are independently modulated by gadolinium. Furthermore, Gd-GOTA effectively chelated gadolinium; however, Gd-DTPA had side effects on the evoked synaptic transmission, presumably because it did not completely chelate gadolinium.Significance Statement Gadolinium is used in gadolinium-based contrast agents (GBCAs), gadolinium chelates, for magnetic resonance imaging examination. Herein, we report influences of gadolinium and GBCAs on synaptic transmission. High concentration gadolinium (500-1000 μM) induces metabotropic glutamate receptor-, endocannabinoid-, and purinergic receptor-dependent long-term depression, and simultaneously enhances spontaneous glutamate release. In contrast, gadolinium enhances evoked synaptic transmission at 100 μM, which is the concentration observed in the human patient brain after repeated GBCA administration. Gadoterate meglumine (Magnescope, 100 μM), a macrocyclic GBCA, did not affect synaptic transmission. However, gadopentetate dimeglumine (Magnevist, 100 μM), a liner GBCA, enhanced synaptic transmission, suggesting that gadopentetate dimeglumine does not fully chelate gadolinium, which can have a negative effect on brain function.
Collapse
Affiliation(s)
- Odgerel Zorigt
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiroki Yasuda
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
- Division of Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Takahito Nakajima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
- Department of Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
2
|
Bogacheva PO, Potapova DA, Gaydukov AE. Sortilin and L-type Calcium Channels May be Involved in the Unusual Mechanism of proBDNF Signaling in Regenerating Mouse Neuromuscular Junctions. Neurochem Res 2025; 50:104. [PMID: 39998597 DOI: 10.1007/s11064-025-04360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
proBDNF and its main proteolytic product BDNF play crucial roles in maturation of neuromuscular junctions during development or reinnervation. We investigated the mechanisms of acute proBDNF effects on synaptic transmission in mouse motor synapses regenerating after nerve crush. The cleavage-resistant proBDNF mimicked the previously shown effect of cleavable proBDNF- GIRK-mediated decrease in the miniature endplate potential (MEPP) frequency accompanied by slight hyperpolarization of postsynaptic membrane. Remarkably, this effect did not utilize canonical proBDNF signaling pathway since inhibition of either p75 receptors with LM11A-31 or sortilin with AF38469 was not able to prevent it. Without sortilin activity, proBDNF downregulated the quantal content of multiquantal endplate potentials (EPP). This non-canonical action of proneurotrophin via TrkB receptors highlights the important role of sortilin as a safeguard preventing the spread of the negative effect of proBDNF on the evoked neurotransmitter release in regenerating motor synapses. In the absence of sortilin activity L-type calcium channels emerged as the key players providing proBDNF-induced decrease of EPP quantal content, while they were not involved in proBDNF-induced decrease of MEPP frequency. Sortilin-independent but TrkB- and GIRK-mediated inhibition of spontaneous release by proBDNF was not associated with the activity of acetylcholine (M2) or purinergic (A1 and P2Y13) metabotropic receptors. We propose that depending on sortilin involvement, proBDNF selectively affects spontaneous or evoked quantal neurotransmitter release via different branches of signaling pathway that ensure the presynaptic activation of GIRK or L-type calcium channels, respectively.
Collapse
Affiliation(s)
- P O Bogacheva
- Faculty of Biology, Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - D A Potapova
- Faculty of Biology, Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - A E Gaydukov
- Faculty of Biology, Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
3
|
Cole RH, Joffe ME. Mu and Delta Opioid Receptors Modulate Inhibition within the Prefrontal Cortex Through Dissociable Cellular and Molecular Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618870. [PMID: 39484533 PMCID: PMC11526863 DOI: 10.1101/2024.10.17.618870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aberrant signaling within cortical inhibitory microcircuits has been identified as a common signature of neuropsychiatric disorders. Interneuron (IN) activity is precisely regulated by neuromodulatory systems that evoke widespread changes in synaptic transmission and principal cell output. Cortical interneurons express high levels of Mu and Delta opioid receptors (MOR and DOR), positioning opioid signaling as a critical regulator of inhibitory transmission. However, we lack a complete understanding of how MOR and DOR regulate prefrontal cortex (PFC) microcircuitry. Here, we combine whole-cell patch-clamp electrophysiology, optogenetics, and viral tools to provide an extensive characterization MOR and DOR regulation of inhibitory transmission. We show that DOR activation is more effective at suppressing spontaneous inhibitory transmission in the prelimbic PFC, while MOR causes a greater acute suppression of electrically-evoked GABA release. Cell type-specific optogenetics revealed that MOR and DOR differentially regulate inhibitory transmission from parvalbumin, somatostatin, cholecystokinin, and vasoactive intestinal peptide-expressing INs. Finally, we demonstrate that DOR regulates inhibitory transmission through pre- and postsynaptic modifications to IN physiology, whereas MOR function is predominantly observed in somato-dendritic or presynaptic compartments depending on cell type.
Collapse
Affiliation(s)
- Rebecca H. Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| | - Max E. Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
4
|
Duan J, Kahms M, Steinhoff A, Klingauf J. Spontaneous and evoked synaptic vesicle release arises from a single releasable pool. Cell Rep 2024; 43:114461. [PMID: 38990719 DOI: 10.1016/j.celrep.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
The quantal content of an evoked postsynaptic response is typically determined by dividing it by the average spontaneous miniature response. However, this approach is challenged by the notion that different synaptic vesicle pools might drive spontaneous and evoked release. Here, we "silence" synaptic vesicles through pharmacological alkalinization and subsequently rescue them by optogenetic acidification. We find that such silenced synaptic vesicles, retrieved during evoked or spontaneous activity, cross-deplete the complementary release mode in a fully reversible manner. A fluorescently tagged version of the endosomal SNARE protein Vti1a, which has been suggested to identify a separate pool of spontaneously recycling synaptic vesicles, is trafficked to synaptic vesicles significantly only upon overexpression but not when endogenously tagged by CRISPR-Cas9. Thus, both release modes draw synaptic vesicles from the same readily releasable pool.
Collapse
Affiliation(s)
- Junxiu Duan
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany; CiM Graduate School of the Cells in Motion Interfaculty Centre and the International Max Planck Research School, 48149 Münster, Germany
| | - Martin Kahms
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Ana Steinhoff
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany; CiM Graduate School of the Cells in Motion Interfaculty Centre and the International Max Planck Research School, 48149 Münster, Germany
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
5
|
Grasskamp AT, Jusyte M, McCarthy AW, Götz TWB, Ditlevsen S, Walter AM. Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials. Front Cell Neurosci 2023; 17:1129417. [PMID: 36970416 PMCID: PMC10030884 DOI: 10.3389/fncel.2023.1129417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Synaptic transmission relies on presynaptic neurotransmitter (NT) release from synaptic vesicles (SVs) and on NT detection by postsynaptic receptors. Transmission exists in two principal modes: action-potential (AP) evoked and AP-independent, "spontaneous" transmission. AP-evoked neurotransmission is considered the primary mode of inter-neuronal communication, whereas spontaneous transmission is required for neuronal development, homeostasis, and plasticity. While some synapses appear dedicated to spontaneous transmission only, all AP-responsive synapses also engage spontaneously, but whether this encodes functional information regarding their excitability is unknown. Here we report on functional interdependence of both transmission modes at individual synaptic contacts of Drosophila larval neuromuscular junctions (NMJs) which were identified by the presynaptic scaffolding protein Bruchpilot (BRP) and whose activities were quantified using the genetically encoded Ca2+ indicator GCaMP. Consistent with the role of BRP in organizing the AP-dependent release machinery (voltage-dependent Ca2+ channels and SV fusion machinery), most active BRP-positive synapses (>85%) responded to APs. At these synapses, the level of spontaneous activity was a predictor for their responsiveness to AP-stimulation. AP-stimulation resulted in cross-depletion of spontaneous activity and both transmission modes were affected by the non-specific Ca2+ channel blocker cadmium and engaged overlapping postsynaptic receptors. Thus, by using overlapping machinery, spontaneous transmission is a continuous, stimulus independent predictor for the AP-responsiveness of individual synapses.
Collapse
Affiliation(s)
| | - Meida Jusyte
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Einstein Center for Neurosciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | | | - Torsten W. B. Götz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander M. Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Einstein Center for Neurosciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Knodel MM, Dutta Roy R, Wittum G. Influence of T-Bar on Calcium Concentration Impacting Release Probability. Front Comput Neurosci 2022; 16:855746. [PMID: 35586479 PMCID: PMC9108211 DOI: 10.3389/fncom.2022.855746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
The relation of form and function, namely the impact of the synaptic anatomy on calcium dynamics in the presynaptic bouton, is a major challenge of present (computational) neuroscience at a cellular level. The Drosophila larval neuromuscular junction (NMJ) is a simple model system, which allows studying basic effects in a rather simple way. This synapse harbors several special structures. In particular, in opposite to standard vertebrate synapses, the presynaptic boutons are rather large, and they have several presynaptic zones. In these zones, different types of anatomical structures are present. Some of the zones bear a so-called T-bar, a particular anatomical structure. The geometric form of the T-bar resembles the shape of the letter “T” or a table with one leg. When an action potential arises, calcium influx is triggered. The probability of vesicle docking and neurotransmitter release is superlinearly proportional to the concentration of calcium close to the vesicular release site. It is tempting to assume that the T-bar causes some sort of calcium accumulation and hence triggers a higher release probability and thus enhances neurotransmitter exocytosis. In order to study this influence in a quantitative manner, we constructed a typical T-bar geometry and compared the calcium concentration close to the active zones (AZs). We compared the case of synapses with and without T-bars. Indeed, we found a substantial influence of the T-bar structure on the presynaptic calcium concentrations close to the AZs, indicating that this anatomical structure increases vesicle release probability. Therefore, our study reveals how the T-bar zone implies a strong relation between form and function. Our study answers the question of experimental studies (namely “Wichmann and Sigrist, Journal of neurogenetics 2010”) concerning the sense of the anatomical structure of the T-bar.
Collapse
Affiliation(s)
- Markus M. Knodel
- Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany
- *Correspondence: Markus M. Knodel ; orcid.org/0000-0001-8739-0803
| | | | - Gabriel Wittum
- Goethe Center for Scientific Computing (GCSC), Goethe Universität Frankfurt, Frankfurt, Germany
- Applied Mathematics and Computational Science, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Deutschmann AU, Kirkland JM, Briand LA. Adolescent social isolation induced alterations in nucleus accumbens glutamate signalling. Addict Biol 2022; 27:e13077. [PMID: 34278652 PMCID: PMC9206853 DOI: 10.1111/adb.13077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/20/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
Exposure to adversity during early childhood and adolescence increases an individual's vulnerability to developing substance use disorder. Despite the knowledge of this vulnerability, the mechanisms underlying it are still poorly understood. Excitatory afferents to the nucleus accumbens (NAc) mediate responses to both stressful and rewarding stimuli. Understanding how adolescent social isolation alters these afferents could inform the development of targeted interventions both before and after drug use. Here, we used social isolation rearing as a model of early life adversity which we have previously demonstrated increases vulnerability to cocaine addiction-like behaviour. The current study examined the effect of social isolation rearing on presynaptic glutamatergic transmission in NAc medium spiny neurons in both male and female mice. We show that social isolation rearing alters presynaptic plasticity in the NAc by decreasing the paired-pulse ratio and the size of the readily releasable pool of glutamate. Optogenetically activating the glutamatergic input from the ventral hippocampus to the NAc is sufficient to recapitulate the decreases in paired-pulse ratio and readily releasable pool size seen following electrical stimulation of all NAc afferents. Further, optogenetically inhibiting the ventral hippocampal afferent during electrical stimulation eliminates the effect of early life adversity on the paired-pulse ratio or readily releasable pool size. In summary, we demonstrate that social isolation rearing leads to alterations in glutamate transmission driven by projections from the ventral hippocampus. These data suggest that targeting the circuit from the ventral hippocampus to the nucleus accumbens could provide a means to reverse stress-induced plasticity.
Collapse
Affiliation(s)
| | | | - Lisa A. Briand
- Department of Psychology, Temple University,Neuroscience Program, Temple University
| |
Collapse
|
8
|
Horvath PM, Piazza MK, Monteggia LM, Kavalali ET. Spontaneous and evoked neurotransmission are partially segregated at inhibitory synapses. eLife 2020; 9:52852. [PMID: 32401197 PMCID: PMC7250572 DOI: 10.7554/elife.52852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Synaptic transmission is initiated via spontaneous or action-potential evoked fusion of synaptic vesicles. At excitatory synapses, glutamatergic receptors activated by spontaneous and evoked neurotransmission are segregated. Although inhibitory synapses also transmit signals spontaneously or in response to action potentials, they differ from excitatory synapses in both structure and function. Therefore, we hypothesized that inhibitory synapses may have different organizing principles. We report picrotoxin, a GABAAR antagonist, blocks neurotransmission in a use-dependent manner at rat hippocampal synapses and therefore can be used to interrogate synaptic properties. Using this tool, we uncovered partial segregation of inhibitory spontaneous and evoked neurotransmission. We found up to 40% of the evoked response is mediated through GABAARs which are only activated by evoked neurotransmission. These data indicate GABAergic spontaneous and evoked neurotransmission processes are partially non-overlapping, suggesting they may serve divergent roles in neuronal signaling.
Collapse
Affiliation(s)
- Patricia M Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, United States
| | - Michelle K Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States.,Neuroscience Program, Vanderbilt University, Nashville, United States
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, United States
| |
Collapse
|
9
|
Driller JH, Lützkendorf J, Depner H, Siebert M, Kuropka B, Weise C, Piao C, Petzoldt AG, Lehmann M, Stelzl U, Zahedi R, Sickmann A, Freund C, Sigrist SJ, Wahl MC. Phosphorylation of the Bruchpilot N-terminus in Drosophila unlocks axonal transport of active zone building blocks. J Cell Sci 2019; 132:jcs.225151. [PMID: 30745339 DOI: 10.1242/jcs.225151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/24/2019] [Indexed: 01/31/2023] Open
Abstract
Protein scaffolds at presynaptic active zone membranes control information transfer at synapses. For scaffold biogenesis and maintenance, scaffold components must be safely transported along axons. A spectrum of kinases has been suggested to control transport of scaffold components, but direct kinase-substrate relationships and operational principles steering phosphorylation-dependent active zone protein transport are presently unknown. Here, we show that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly elongated Bruchpilot (BRP) active zone protein is crucial for ordered active zone precursor transport in Drosophila Point mutations that block SRPK79D kinase-mediated phosphorylation of the BRP N-terminus interfered with axonal transport, leading to BRP-positive axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates formed only in the presence of non-phosphorylatable BRP isoforms containing the SRPK79D-targeted N-terminal stretch. We assume that specific active zone proteins are pre-assembled in transport packages and are thus co-transported as functional scaffold building blocks. Our results suggest that transient post-translational modification of a discrete unstructured domain of the master scaffold component BRP blocks oligomerization of these building blocks during their long-range transport.
Collapse
Affiliation(s)
- Jan H Driller
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Janine Lützkendorf
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Harald Depner
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Matthias Siebert
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Benno Kuropka
- Laboratory of Protein Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Christoph Weise
- Laboratory of Protein Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Chengji Piao
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Astrid G Petzoldt
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Lehmann
- Cellular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, D-13125 Berlin, Germany
| | - Ulrich Stelzl
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, A-8010 Graz, Austria
| | - René Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, D-44139 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, D-44139 Dortmund, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Stephan J Sigrist
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany .,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany .,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
10
|
Ghelani T, Sigrist SJ. Coupling the Structural and Functional Assembly of Synaptic Release Sites. Front Neuroanat 2018; 12:81. [PMID: 30386217 PMCID: PMC6198076 DOI: 10.3389/fnana.2018.00081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Information processing in our brains depends on the exact timing of calcium (Ca2+)-activated exocytosis of synaptic vesicles (SVs) from unique release sites embedded within the presynaptic active zones (AZs). While AZ scaffolding proteins obviously provide an efficient environment for release site function, the molecular design creating such release sites had remained unknown for a long time. Recent advances in visualizing the ultrastructure and topology of presynaptic protein architectures have started to elucidate how scaffold proteins establish “nanodomains” that connect voltage-gated Ca2+ channels (VGCCs) physically and functionally with release-ready SVs. Scaffold proteins here seem to operate as “molecular rulers or spacers,” regulating SV-VGCC physical distances within tens of nanometers and, thus, influence the probability and plasticity of SV release. A number of recent studies at Drosophila and mammalian synapses show that the stable positioning of discrete clusters of obligate release factor (M)Unc13 defines the position of SV release sites, and the differential expression of (M)Unc13 isoforms at synapses can regulate SV-VGCC coupling. We here review the organization of matured AZ scaffolds concerning their intrinsic organization and role for release site formation. Moreover, we also discuss insights into the developmental sequence of AZ assembly, which often entails a tightening between VGCCs and SV release sites. The findings discussed here are retrieved from vertebrate and invertebrate preparations and include a spectrum of methods ranging from cell biology, super-resolution light and electron microscopy to biophysical and electrophysiological analysis. Our understanding of how the structural and functional organization of presynaptic AZs are coupled has matured, as these processes are crucial for the understanding of synapse maturation and plasticity, and, thus, accurate information transfer and storage at chemical synapses.
Collapse
Affiliation(s)
- Tina Ghelani
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Ferrer C, Hsieh H, Wollmuth LP. Input-specific maturation of NMDAR-mediated transmission onto parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. J Neurophysiol 2018; 120:3063-3076. [PMID: 30303753 DOI: 10.1152/jn.00495.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit dynamics. In terms of the excitation driving PV interneuron activity, the N-methyl-d-aspartate receptor (NMDAR)-mediated component onto PV interneurons tends to be smaller than that onto pyramidal neurons but makes a significant contribution to their physiology and development. In the visual cortex, PV interneurons mature during the critical period. We hypothesize that during the critical period, the NMDAR-mediated signaling and functional properties of glutamatergic synapses onto PV interneurons are developmentally regulated. We therefore compared the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and NMDAR-mediated synaptic responses before (postnatal days 15-20, P15-P20), during (P25-P40), and after (P50-P60) the visual critical period. AMPAR miniature excitatory postsynaptic currents (mEPSCs) showed a developmental decrease in frequency, whereas NMDAR mEPSCs were absent or showed extremely low frequencies throughout development. For evoked responses, we consistently saw a NMDAR-mediated component, suggesting pre- or postsynaptic differences between evoked and spontaneous neurotransmission. Evoked responses showed input-specific developmental changes. For intralaminar inputs, the NMDAR-mediated component significantly decreased with development. This resulted in adult intralaminar inputs almost exclusively mediated by AMPARs, suited for the computation of synaptic inputs with precise timing, and likely having NMDAR-independent forms of plasticity. In contrast, interlaminar inputs maintained a stable NMDAR-mediated component throughout development but had a shift in the AMPAR paired-pulse ratio from depression to facilitation. Adult interlaminar inputs with facilitating AMPAR responses and a substantial NMDAR component would favor temporal integration of synaptic responses and could be modulated by NMDAR-dependent forms of plasticity. NEW & NOTEWORTHY We show for the first time input-specific developmental changes in the N-methyl-d-aspartate receptor component and short-term plasticity of the excitatory drive onto layers 2/3 parvalbumin-expressing (PV) interneurons in the visual cortex during the critical period. These developmental changes would lead to functionally distinct adult intralaminar and interlaminar glutamatergic inputs that would engage PV interneuron-mediated inhibition differently.
Collapse
Affiliation(s)
- Camilo Ferrer
- Graduate Program in Neuroscience, Stony Brook University , Stony Brook, New York.,Department of Neurobiology & Behavior, Stony Brook University , Stony Brook, New York
| | - Helen Hsieh
- Department of Surgery, Stony Brook University , Stony Brook, New York
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University , Stony Brook, New York.,Department of Biochemistry & Cell Biology, Stony Brook University , Stony Brook, New York.,Center for Nervous System Disorders, Stony Brook University , Stony Brook, New York
| |
Collapse
|
12
|
Böhme MA, Grasskamp AT, Walter AM. Regulation of synaptic release-site Ca 2+ channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 2018; 592:3516-3531. [PMID: 29993122 DOI: 10.1002/1873-3468.13188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Synaptic transmission relies on the rapid fusion of neurotransmitter-containing synaptic vesicles (SVs), which happens in response to action potential (AP)-induced Ca2+ influx at active zones (AZs). A highly conserved molecular machinery cooperates at SV-release sites to mediate SV plasma membrane attachment and maturation, Ca2+ sensing, and membrane fusion. Despite this high degree of conservation, synapses - even within the same organism, organ or neuron - are highly diverse regarding the probability of APs to trigger SV fusion. Additionally, repetitive activation can lead to either strengthening or weakening of transmission. In this review, we discuss mechanisms controlling release probability and this short-term plasticity. We argue that an important layer of control is exerted by evolutionarily conserved AZ scaffolding proteins, which determine the coupling distance between SV fusion sites and voltage-gated Ca2+ channels (VGCC) and, thereby, shape synapse-specific input/output behaviors. We propose that AZ-scaffold modifications may occur to adapt the coupling distance during synapse maturation and plastic regulation of synapse strength.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
13
|
Salmasi M, Stemmler M, Glasauer S, Loebel A. Information Rate Analysis of a Synaptic Release Site Using a Two-State Model of Short-Term Depression. Neural Comput 2017; 29:1528-1560. [PMID: 28410051 DOI: 10.1162/neco_a_00962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Synapses are the communication channels for information transfer between neurons; these are the points at which pulse-like signals are converted into the stochastic release of quantized amounts of chemical neurotransmitter. At many synapses, prior neuronal activity depletes synaptic resources, depressing subsequent responses of both spontaneous and spike-evoked releases. We analytically compute the information transmission rate of a synaptic release site, which we model as a binary asymmetric channel. Short-term depression is incorporated by assigning the channel a memory of depth one. A successful release, whether spike evoked or spontaneous, decreases the probability of a subsequent release; if no release occurs on the following time step, the release probabilities recover back to their default values. We prove that synaptic depression can increase the release site's information rate if spontaneous release is more strongly depressed than spike-evoked release. When depression affects spontaneous and evoked release equally, the information rate must invariably decrease, even when the rate is normalized by the resources used for synaptic transmission. For identical depression levels, we analytically disprove the hypothesis, at least in this simplified model, that synaptic depression serves energy- and information-efficient encoding.
Collapse
Affiliation(s)
- Mehrdad Salmasi
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, and Bernstein Center for Computational Neuroscience, Munich 82152, Germany; German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Martin Stemmler
- Department of Biology II, Ludwig-Maximilians-Universität, and Bernstein Center for Computational Neuroscience, Munich 82152, Germany
| | - Stefan Glasauer
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, and Bernstein Center for Computational Neuroscience, Munich 82152, Germany; German Center for Vertigo and Balance Disorders, and Department of Neurology, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Alex Loebel
- Department of Biology II, Ludwig-Maximilians-Universität, and Bernstein Center for Computational Neuroscience, Munich 82152, Germany
| |
Collapse
|
14
|
Van Vactor D, Sigrist SJ. Presynaptic morphogenesis, active zone organization and structural plasticity in Drosophila. Curr Opin Neurobiol 2017; 43:119-129. [PMID: 28388491 DOI: 10.1016/j.conb.2017.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Effective adaptation of neural circuit function to a changing environment requires many forms of plasticity. Among these, structural plasticity is one of the most durable, and is also an intrinsic part of the developmental logic for the formation and refinement of synaptic connectivity. Structural plasticity of presynaptic sites can involve the addition, remodeling, or removal of pre- and post-synaptic elements. However, this requires coordination of morphogenesis and assembly of the subcellular machinery for neurotransmitter release within the presynaptic neuron, as well as coordination of these events with the postsynaptic cell. While much progress has been made in revealing the cell biological mechanisms of postsynaptic structural plasticity, our understanding of presynaptic mechanisms is less complete.
Collapse
Affiliation(s)
- David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Okinawa Institute of Science and Technology, Graduate University, Tancha 1919-1, Onna-son, Okinawa, Japan.
| | - Stephan J Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany.
| |
Collapse
|
15
|
Mechanisms controlling assembly and plasticity of presynaptic active zone scaffolds. Curr Opin Neurobiol 2016; 39:69-76. [DOI: 10.1016/j.conb.2016.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 11/18/2022]
|
16
|
Malomouzh AI, Petrov KA, Nurullin LF, Nikolsky EE. Metabotropic GABAB
receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction. J Neurochem 2015; 135:1149-60. [DOI: 10.1111/jnc.13373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Artem I. Malomouzh
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Kazan Federal University; Kazan Russia
| | - Konstantin A. Petrov
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Kazan Federal University; Kazan Russia
- A.E. Arbuzov Institute of Organic and Physical Chemistry; Russian Academy of Sciences; Kazan Russia
| | - Leniz F. Nurullin
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Kazan Federal University; Kazan Russia
- Kazan State Medical University; Kazan Russia
| | - Evgeny E. Nikolsky
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Kazan Federal University; Kazan Russia
- Kazan State Medical University; Kazan Russia
| |
Collapse
|
17
|
Abstract
Fast synaptic communication in the brain requires synchronous vesicle fusion that is evoked by action potential-induced Ca(2+) influx. However, synaptic terminals also release neurotransmitters by spontaneous vesicle fusion, which is independent of presynaptic action potentials. A functional role for spontaneous neurotransmitter release events in the regulation of synaptic plasticity and homeostasis, as well as the regulation of certain behaviours, has been reported. In addition, there is evidence that the presynaptic mechanisms underlying spontaneous release of neurotransmitters and their postsynaptic targets are segregated from those of evoked neurotransmission. These findings challenge current assumptions about neuronal signalling and neurotransmission, as they indicate that spontaneous neurotransmission has an autonomous role in interneuronal communication that is distinct from that of evoked release.
Collapse
|
18
|
Leitz J, Kavalali ET. Fast retrieval and autonomous regulation of single spontaneously recycling synaptic vesicles. eLife 2014; 3:e03658. [PMID: 25415052 PMCID: PMC4270043 DOI: 10.7554/elife.03658] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
Presynaptic terminals release neurotransmitters spontaneously in a manner that can be regulated by Ca(2+). However, the mechanisms underlying this regulation are poorly understood because the inherent stochasticity and low probability of spontaneous fusion events has curtailed their visualization at individual release sites. Here, using pH-sensitive optical probes targeted to synaptic vesicles, we visualized single spontaneous fusion events and found that they are retrieved extremely rapidly with faster re-acidification kinetics than their action potential-evoked counterparts. These fusion events were coupled to postsynaptic NMDA receptor-driven Ca(2+) signals, and at elevated Ca(2+) concentrations there was an increase in the number of vesicles that would undergo fusion. Furthermore, spontaneous vesicle fusion propensity in a synapse was Ca(2+)-dependent but regulated autonomously: independent of evoked fusion probability at the same synapse. Taken together, these results expand classical quantal analysis to incorporate endocytic and exocytic phases of single fusion events and uncover autonomous regulation of spontaneous fusion.
Collapse
Affiliation(s)
- Jeremy Leitz
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|