1
|
Hsiao AS, Huang JY. Microtubule Regulation in Plants: From Morphological Development to Stress Adaptation. Biomolecules 2023; 13:biom13040627. [PMID: 37189374 DOI: 10.3390/biom13040627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubules (MTs) are essential elements of the eukaryotic cytoskeleton and are critical for various cell functions. During cell division, plant MTs form highly ordered structures, and cortical MTs guide the cell wall cellulose patterns and thus control cell size and shape. Both are important for morphological development and for adjusting plant growth and plasticity under environmental challenges for stress adaptation. Various MT regulators control the dynamics and organization of MTs in diverse cellular processes and response to developmental and environmental cues. This article summarizes the recent progress in plant MT studies from morphological development to stress responses, discusses the latest techniques applied, and encourages more research into plant MT regulation.
Collapse
|
2
|
Qureshi Z, Ahmad M, Yang WX, Tan FQ. Kinesin 12 (KIF15) contributes to the development and tumorigenicity of prostate cancer. Biochem Biophys Res Commun 2021; 576:7-14. [PMID: 34474246 DOI: 10.1016/j.bbrc.2021.08.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023]
Abstract
In Asia, prostate cancer is becoming a growing concern, impacting both socially and economically, compared with what is seen in western countries. Hence, it is essential to know the mechanisms associated with the development and tumorigenesis of PCa for primary diagnosis, risk management, and development of therapy strategies against PCa. Kinesin family member 15 (KIF15), a kinesin family member, is a plus-end-directed kinesin that functions to form bipolar spindles. There is emerging evidence indicating that KIF15 plays a significant role in several malignancies, such as pancreatic cancer, hepatocellular carcinoma, lung adenocarcinoma, and breast cancer. Still, the function of KIF15 remains unclear in prostate cancer. Here, we study the functional importance of KIF15 in the tumorigenesis of PCa. The bioinformatic analysis from PCa patients revealed high KIF15 expression compared to normal prostate tissues. High expression hinting at a possible functional role of KIF15 in regulating cell proliferation of PCa, which was demonstrated by both in vitro and in vivo assays. Downregulation of KIF15 silenced the expression of CDK2, p-RB, and Cyclin D1 and likewise blocked the cells at the G1 stage of the cell cycle. In addition, KIF15 downregulation inhibited MEK-ERK signaling by significantly silencing p-ERK and p-MEK levels. In conclusion, this study confirmed the functional significance of KIF15 in the growth and development of prostate cancer and could be a novel therapeutic target for the treatment of PCa.
Collapse
Affiliation(s)
- Zeeshan Qureshi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mashaal Ahmad
- Department of Biochemistry and Cancer Institute of Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
3
|
Herrmann A, Livanos P, Zimmermann S, Berendzen K, Rohr L, Lipka E, Müller S. KINESIN-12E regulates metaphase spindle flux and helps control spindle size in Arabidopsis. THE PLANT CELL 2021; 33:27-43. [PMID: 33751090 PMCID: PMC8136872 DOI: 10.1093/plcell/koaa003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
The bipolar mitotic spindle is a highly conserved structure among eukaryotes that mediates chromosome alignment and segregation. Spindle assembly and size control are facilitated by force-generating microtubule-dependent motor proteins known as kinesins. In animals, kinesin-12 cooperates with kinesin-5 to produce outward-directed forces necessary for spindle assembly. In plants, the relevant molecular mechanisms for spindle formation are poorly defined. While an Arabidopsis thaliana kinesin-5 ortholog has been identified, the kinesin-12 ortholog in plants remains elusive. In this study, we provide experimental evidence for the function of Arabidopsis KINESIN-12E in spindle assembly. In kinesin-12e mutants, a delay in spindle assembly is accompanied by the reduction of spindle size, demonstrating that KINESIN-12E contributes to mitotic spindle architecture. Kinesin-12E localization is mitosis-stage specific, beginning with its perinuclear accumulation during prophase. Upon nuclear envelope breakdown, KINESIN-12E decorates subpopulations of microtubules in the spindle and becomes progressively enriched in the spindle midzone. Furthermore, during cytokinesis, KINESIN-12E shares its localization at the phragmoplast midzone with several functionally diversified Arabidopsis KINESIN-12 members. Changes in the kinetochore and in prophase and metaphase spindle dynamics occur in the absence of KINESIN-12E, suggest it might play an evolutionarily conserved role during spindle formation similar to its spindle-localized animal kinesin-12 orthologs.
Collapse
Affiliation(s)
- Arvid Herrmann
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Pantelis Livanos
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Steffi Zimmermann
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Kenneth Berendzen
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Leander Rohr
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Elisabeth Lipka
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Sabine Müller
- University of Tübingen, Center for Plant Molecular Biology - Developmental Genetics, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
5
|
Müller S, Livanos P. Plant Kinesin-12: Localization Heterogeneity and Functional Implications. Int J Mol Sci 2019; 20:ijms20174213. [PMID: 31466291 PMCID: PMC6747500 DOI: 10.3390/ijms20174213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/17/2023] Open
Abstract
Kinesin-12 family members are characterized by an N-terminal motor domain and the extensive presence of coiled-coil domains. Animal orthologs display microtubule plus-end directed motility, bundling of parallel and antiparallel microtubules, plus-end stabilization, and they play a crucial role in spindle assembly. In plants, kinesin-12 members mediate a number of developmental processes including male gametophyte, embryo, seedling, and seed development. At the cellular level, they participate in critical events during cell division. Several kinesin-12 members localize to the phragmoplast midzone, interact with isoforms of the conserved microtubule cross-linker MICROTUBULE-ASSOCIATED PROTEIN 65 (MAP65) family, and are required for phragmoplast stability and expansion, as well as for proper cell plate development. Throughout cell division, a subset of kinesin-12 reside, in addition or exclusively, at the cortical division zone and mediate the accurate guidance of the phragmoplast. This review aims to summarize the current knowledge on kinesin-12 in plants and shed some light onto the heterogeneous localization and domain architecture, which potentially conceals functional diversification.
Collapse
Affiliation(s)
- Sabine Müller
- Center for Plant Molecular Biology, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| | - Pantelis Livanos
- Center for Plant Molecular Biology, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
7
|
Herrmann A, Livanos P, Lipka E, Gadeyne A, Hauser MT, Van Damme D, Müller S. Dual localized kinesin-12 POK2 plays multiple roles during cell division and interacts with MAP65-3. EMBO Rep 2018; 19:e46085. [PMID: 30002118 PMCID: PMC6123660 DOI: 10.15252/embr.201846085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Kinesins are versatile nano-machines that utilize variable non-motor domains to tune specific motor microtubule encounters. During plant cytokinesis, the kinesin-12 orthologs, PHRAGMOPLAST ORIENTING KINESIN (POK)1 and POK2, are essential for rapid centrifugal expansion of the cytokinetic apparatus, the phragmoplast, toward a pre-selected cell plate fusion site at the cell cortex. Here, we report on the spatio-temporal localization pattern of POK2, mediated by distinct protein domains. Functional dissection of POK2 domains revealed the association of POK2 with the site of the future cell division plane and with the phragmoplast during cytokinesis. Accumulation of POK2 at the phragmoplast midzone depends on its functional POK2 motor domain and is fine-tuned by its carboxy-terminal region that also directs POK2 to the division site. Furthermore, POK2 likely stabilizes the phragmoplast midzone via interaction with the conserved microtubule-associated protein MAP65-3/PLEIADE, a well-established microtubule cross-linker. Collectively, our results suggest that dual localized POK2 plays multiple roles during plant cell division.
Collapse
Affiliation(s)
- Arvid Herrmann
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Pantelis Livanos
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Elisabeth Lipka
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Astrid Gadeyne
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Sabine Müller
- Center for Plant Molecular Biology - Developmental Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Logan CM, Bowen CJ, Menko AS. Functional role for stable microtubules in lens fiber cell elongation. Exp Cell Res 2017; 362:477-488. [PMID: 29253534 DOI: 10.1016/j.yexcr.2017.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
The process of tissue morphogenesis, especially for tissues reliant on the establishment of a specific cytoarchitecture for their functionality, depends a balanced interplay between cytoskeletal elements and their interactions with cell adhesion molecules. The microtubule cytoskeleton, which has many roles in the cell, is a determinant of directional cell migration, a process that underlies many aspects of development. We investigated the role of microtubules in development of the lens, a tissue where cell elongation underlies morphogenesis. Our studies with the microtubule depolymerizing agent nocodazole revealed an essential function for the acetylated population of stable microtubules in the elongation of lens fiber cells, which was linked to their regulation of the activation state of myosin. Suppressing myosin activation with the inhibitor blebbistatin could attenuate the loss of acetylated microtubules by nocodazole and rescue the effect of this microtubule depolymerization agent on both fiber cell elongation and lens integrity. Our results also suggest that acetylated microtubules impact lens morphogenesis through their interaction with N-cadherin junctions, with which they specifically associate in the region where lens fiber cell elongate. Disruption of the stable microtubule network increased N-cadherin junctional organization along lateral borders of differentiating lens fiber cells, which was prevented by suppression of myosin activity. These results reveal a role for the stable microtubule population in lens fiber cell elongation, acting in tandem with N-cadherin cell-cell junctions and the actomyosin network, giving insight into the cooperative role these systems play in tissue morphogenesis.
Collapse
Affiliation(s)
- Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Caitlin J Bowen
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
9
|
Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med Chem 2016; 8:463-89. [PMID: 26976726 PMCID: PMC4896392 DOI: 10.4155/fmc.16.5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The kinesin class of microtubule-associated motor proteins present attractive anti-cancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms, and explore the implications for future anticancer drug development against these targets.
Collapse
|
10
|
Kinesin-12 motors cooperate to suppress microtubule catastrophes and drive the formation of parallel microtubule bundles. Proc Natl Acad Sci U S A 2016; 113:E1635-44. [PMID: 26969727 DOI: 10.1073/pnas.1516370113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human Kinesin-12 (hKif15) plays a crucial role in assembly and maintenance of the mitotic spindle. These functions of hKif15 are partially redundant with Kinesin-5 (Eg5), which can cross-link and drive the extensile sliding of antiparallel microtubules. Although both motors are known to be tetramers, the functional properties of hKif15 are less well understood. Here we reveal how single or multiple Kif15 motors can cross-link, transport, and focus the plus-ends of intersecting microtubules. During transport, Kif15 motors step simultaneously along both microtubules with relative microtubule transport driven by a velocity differential between motor domain pairs. Remarkably, this differential is affected by the underlying intersection geometry: the differential is low on parallel and extreme on antiparallel microtubules where one motor domain pair becomes immobile. As a result, when intersecting microtubules are antiparallel, canonical transport of one microtubule along the other is allowed because one motor is firmly attached to one microtubule while it is stepping on the other. When intersecting microtubules are parallel, however, Kif15 motors can drive (biased) parallel sliding because the motor simultaneously steps on both microtubules that it cross-links. These microtubule rearrangements will focus microtubule plus-ends and finally lead to the formation of parallel bundles. At the same time, Kif15 motors cooperate to suppress catastrophe events at polymerizing microtubule plus-ends, raising the possibility that Kif15 motors may synchronize the dynamics of bundles that they have assembled. Thus, Kif15 is adapted to operate on parallel microtubule substrates, a property that clearly distinguishes it from the other tetrameric spindle motor, Eg5.
Collapse
|