1
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
2
|
Vareberg AD, Bok I, Eizadi J, Ren X, Hai A. Inference of network connectivity from temporally binned spike trains. J Neurosci Methods 2024; 404:110073. [PMID: 38309313 PMCID: PMC10949361 DOI: 10.1016/j.jneumeth.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Processing neural activity to reconstruct network connectivity is a central focus of neuroscience, yet the spatiotemporal requisites of biological nervous systems are challenging for current neuronal sensing modalities. Consequently, methods that leverage limited data to successfully infer synaptic connections, predict activity at single unit resolution, and decipher their effect on whole systems, can uncover critical information about neural processing. Despite the emergence of powerful methods for inferring connectivity, network reconstruction based on temporally subsampled data remains insufficiently unexplored. NEW METHOD We infer synaptic weights by processing firing rates within variable time bins for a heterogeneous feed-forward network of excitatory, inhibitory, and unconnected units. We assess classification and optimize model parameters for postsynaptic spike train reconstruction. We test our method on a physiological network of leaky integrate-and-fire neurons displaying bursting patterns and assess prediction of postsynaptic activity from microelectrode array data. RESULTS Results reveal parameters for improved prediction and performance and suggest that lower resolution data and limited access to neurons can be preferred. COMPARISON WITH EXISTING METHOD(S) Recent computational methods demonstrate highly improved reconstruction of connectivity from networks of parallel spike trains by considering spike lag, time-varying firing rates, and other underlying dynamics. However, these methods insufficiently explore temporal subsampling representative of novel data types. CONCLUSIONS We provide a framework for reverse engineering neural networks from data with limited temporal quality, describing optimal parameters for each bin size, which can be further improved using non-linear methods and applied to more complicated readouts and connectivity distributions in multiple brain circuits.
Collapse
Affiliation(s)
- Adam D Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Xiaoxuan Ren
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States.
| |
Collapse
|
3
|
Arnsten AFT, Wang M, D’Esposito M. Dynamic Network Connectivity: from monkeys to humans. Front Hum Neurosci 2024; 18:1353043. [PMID: 38384333 PMCID: PMC10879414 DOI: 10.3389/fnhum.2024.1353043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Human brain imaging research using functional MRI (fMRI) has uncovered flexible variations in the functional connectivity between brain regions. While some of this variability likely arises from the pattern of information flow through circuits, it may also be influenced by rapid changes in effective synaptic strength at the molecular level, a phenomenon called Dynamic Network Connectivity (DNC) discovered in non-human primate circuits. These neuromodulatory molecular mechanisms are found in layer III of the macaque dorsolateral prefrontal cortex (dlPFC), the site of the microcircuits shown by Goldman-Rakic to be critical for working memory. This research has shown that the neuromodulators acetylcholine, norepinephrine, and dopamine can rapidly change the strength of synaptic connections in layer III dlPFC by (1) modifying the depolarization state of the post-synaptic density needed for NMDA receptor neurotransmission and (2) altering the open state of nearby potassium channels to rapidly weaken or strengthen synaptic efficacy and the strength of persistent neuronal firing. Many of these actions involve increased cAMP-calcium signaling in dendritic spines, where varying levels can coordinate the arousal state with the cognitive state. The current review examines the hypothesis that some of the dynamic changes in correlative strength between cortical regions observed in human fMRI studies may arise from these molecular underpinnings, as has been seen when pharmacological agents or genetic alterations alter the functional connectivity of the dlPFC consistent with the macaque physiology. These DNC mechanisms provide essential flexibility but may also confer vulnerability to malfunction when dysregulated in cognitive disorders.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Min Wang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Mark D’Esposito
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
4
|
Stiernman L, Grill F, McNulty C, Bahrd P, Panes Lundmark V, Axelsson J, Salami A, Rieckmann A. Widespread fMRI BOLD Signal Overactivations during Cognitive Control in Older Adults Are Not Matched by Corresponding Increases in fPET Glucose Metabolism. J Neurosci 2023; 43:2527-2536. [PMID: 36868855 PMCID: PMC10082451 DOI: 10.1523/jneurosci.1331-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 03/05/2023] Open
Abstract
A common observation in fMRI studies using the BOLD signal is that older adults, compared with young adults, show overactivations, particularly during less demanding tasks. The neuronal underpinnings of such overactivations are not known, but a dominant view is that they are compensatory in nature and involve recruitment of additional neural resources. We scanned 23 young (20-37 years) and 34 older (65-86 years) healthy human adults of both sexes with hybrid positron emission tomography/MRI. The radioligand [18F]fluoro-deoxyglucose was used to assess dynamic changes in glucose metabolism as a marker of task-dependent synaptic activity, along with simultaneous fMRI BOLD imaging. Participants performed two verbal working memory (WM) tasks: one involving maintenance (easy) and one requiring manipulation (difficult) of information in WM. Converging activations to the WM tasks versus rest were observed for both imaging modalities and age groups in attentional, control, and sensorimotor networks. Upregulation of activity to WM-demand, comparing the more difficult to the easier task, also converged between both modalities and age groups. For regions in which older adults showed task-dependent BOLD overactivations compared with the young adults, no corresponding increases in glucose metabolism were found. To conclude, findings from the current study show that task-induced changes in the BOLD signal and synaptic activity as measured by glucose metabolism generally converge, but overactivations observed with fMRI in older adults are not coupled with increased synaptic activity, which suggests that these overactivations are not neuronal in origin.SIGNIFICANCE STATEMENT Findings of increased fMRI activations in older compared with younger adults have been suggested to reflect increased use of neuronal resources to cope with reduced brain function. The physiological underpinnings of such compensatory processes are poorly understood, however, and rest on the assumption that vascular signals accurately reflect neuronal activity. Comparing fMRI and simultaneously acquired functional positron emission tomography as an alternative index of synaptic activity, we show that age-related overactivations do not appear to be neuronal in origin. This result is important because mechanisms underlying compensatory processes in aging are potential targets for interventions aiming to prevent age-related cognitive decline.
Collapse
Affiliation(s)
- Lars Stiernman
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Filip Grill
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden
| | - Charlotte McNulty
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Philip Bahrd
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Vania Panes Lundmark
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm, 171 65 Solna, Sweden
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden
- Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social Policy, Munich, 80799 München, Germany
| |
Collapse
|
5
|
Soto FA, Narasiwodeyar S. Improving the validity of neuroimaging decoding tests of invariant and configural neural representation. PLoS Comput Biol 2023; 19:e1010819. [PMID: 36689555 PMCID: PMC9894561 DOI: 10.1371/journal.pcbi.1010819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/02/2023] [Accepted: 12/15/2022] [Indexed: 01/24/2023] Open
Abstract
Many research questions in sensory neuroscience involve determining whether the neural representation of a stimulus property is invariant or specific to a particular stimulus context (e.g., Is object representation invariant to translation? Is the representation of a face feature specific to the context of other face features?). Between these two extremes, representations may also be context-tolerant or context-sensitive. Most neuroimaging studies have used operational tests in which a target property is inferred from a significant test against the null hypothesis of the opposite property. For example, the popular cross-classification test concludes that representations are invariant or tolerant when the null hypothesis of specificity is rejected. A recently developed neurocomputational theory suggests two insights regarding such tests. First, tests against the null of context-specificity, and for the alternative of context-invariance, are prone to false positives due to the way in which the underlying neural representations are transformed into indirect measurements in neuroimaging studies. Second, jointly performing tests against the nulls of invariance and specificity allows one to reach more precise and valid conclusions about the underlying representations, particularly when the null of invariance is tested using the fine-grained information from classifier decision variables rather than only accuracies (i.e., using the decoding separability test). Here, we provide empirical and computational evidence supporting both of these theoretical insights. In our empirical study, we use encoding of orientation and spatial position in primary visual cortex as a case study, as previous research has established that these properties are encoded in a context-sensitive way. Using fMRI decoding, we show that the cross-classification test produces false-positive conclusions of invariance, but that more valid conclusions can be reached by jointly performing tests against the null of invariance. The results of two simulations further support both of these conclusions. We conclude that more valid inferences about invariance or specificity of neural representations can be reached by jointly testing against both hypotheses, and using neurocomputational theory to guide the interpretation of results.
Collapse
Affiliation(s)
- Fabian A. Soto
- Department of Psychology, Florida International University, Miami, Florida, United States of America
- * E-mail:
| | - Sanjay Narasiwodeyar
- Department of Psychology, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
6
|
The cerebral haemodynamic response to somatosensory stimulation in preterm newborn lambs is reduced following intrauterine inflammation and dopamine infusion. Exp Neurol 2022; 352:114049. [DOI: 10.1016/j.expneurol.2022.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/01/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022]
|
7
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
8
|
Macedo-Lima M, Remage-Healey L. Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 2021; 61:316-336. [PMID: 33822047 PMCID: PMC8600016 DOI: 10.1093/icb/icab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goal-directed learning is a key contributor to evolutionary fitness in animals. The neural mechanisms that mediate learning often involve the neuromodulator dopamine. In higher order cortical regions, most of what is known about dopamine's role is derived from brain regions involved in motivation and decision-making, while significantly less is known about dopamine's potential role in motor and/or sensory brain regions to guide performance. Research on rodents and primates represents over 95% of publications in the field, while little beyond basic anatomy is known in other vertebrate groups. This significantly limits our general understanding of how dopamine signaling systems have evolved as organisms adapt to their environments. This review takes a pan-vertebrate view of the literature on the role of dopamine in motor/sensory cortical regions, highlighting, when available, research on non-mammalian vertebrates. We provide a broad perspective on dopamine function and emphasize that dopamine-induced plasticity mechanisms are widespread across all cortical systems and associated with motor and sensory adaptations. The available evidence illustrates that there is a strong anatomical basis-dopamine fibers and receptor distributions-to hypothesize that pallial dopamine effects are widespread among vertebrates. Continued research progress in non-mammalian species will be crucial to further our understanding of how the dopamine system evolved to shape the diverse array of brain structures and behaviors among the vertebrate lineage.
Collapse
Affiliation(s)
- Matheus Macedo-Lima
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
- CAPES Foundation, Ministry of Education of Brazil, 70040-031 Brasília, Brazil
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Abstract
Many studies have revealed that reward-associated features capture attention. Neurophysiological evidence further suggests that this reward-driven attention effect modulates visual processes by enhancing low-level visual salience. However, no behavioral study to date has directly examined whether reward-driven attention changes how people see. Combining the two-phase paradigm with a psychophysical method, the current study found that compared with nonsalient cues associated with lower reward, the nonsalient cues associated with higher reward captured more attention, and increased the perceived contrast of the subsequent stimuli. This is the first direct behavioral evidence of the effect of reward-driven attention on low-level visual perception.
Collapse
Affiliation(s)
- Nan Qin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, P. R. China.,Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium.,
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, P. R. China.,
| | - Jingming Xue
- Faculty of Psychology, Beijing Normal University, Beijing, P. R. China.,
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA.,
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, P. R. China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China.,
| |
Collapse
|
10
|
Qin W, Gan Q, Yang L, Wang Y, Qi W, Ke B, Xi L. High-resolution in vivo imaging of rhesus cerebral cortex with ultrafast portable photoacoustic microscopy. Neuroimage 2021; 238:118260. [PMID: 34118393 DOI: 10.1016/j.neuroimage.2021.118260] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Revealing the structural and functional change of microvasculature is essential to match vascular response with neuronal activities in the investigation of neurovascular coupling. The increasing use of rhesus models in fundamental and clinical studies of neurovascular coupling presents an emerging need for a new imaging modality. Here we report a structural and functional cerebral vascular study of rhesus monkeys using an ultrafast, portable, and high resolution photoacoustic microscopic system with a long working distance and a special scanning mechanism to eliminate the relative displacement between the imaging interface and samples. We derived the structural and functional response of the cerebral vasculature to the alternating normoxic and hypoxic conditions by calculating the vascular diameter and functional connectivity. Both vasodilatation and vasoconstriction were observed in hypoxia. In addition to the change of vascular diameter, the decrease of functional connectivity is also an important phenomenon induced by the reduction of oxygen ventilatory. These results suggest that photoacoustic microscopy is a promising method to study the neurovascular coupling and cerebral vascular diseases due to the advanced features of high spatiotemporal resolution, excellent sensitivity to hemoglobin, and label-free imaging capability of observing hemodynamics.
Collapse
Affiliation(s)
- Wei Qin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Qi Gan
- Department of Neurosurgery, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China
| | - Lei Yang
- Department of Anesthesiology and Critical Care Medicine, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Bowen Ke
- Department of Anesthesiology and Critical Care Medicine, West China Hospital Sichuan University, Chengdu 610040, Sichuan, China.
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
11
|
Mervin LH, Mitricheva E, Logothetis NK, Bifone A, Bender A, Noori HR. Neurochemical underpinning of hemodynamic response to neuropsychiatric drugs: A meta- and cluster analysis of preclinical studies. J Cereb Blood Flow Metab 2021; 41:874-885. [PMID: 32281457 PMCID: PMC7983335 DOI: 10.1177/0271678x20916003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/30/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is an extensively used method for the investigation of normal and pathological brain function. In particular, fMRI has been used to characterize spatiotemporal hemodynamic response to pharmacological challenges as a non-invasive readout of neuronal activity. However, the mechanisms underlying regional signal changes are yet unclear. In this study, we use a meta-analytic approach to converge data from microdialysis experiments with relative cerebral blood volume (rCBV) changes following acute administration of neuropsychiatric drugs in adult male rats. At whole-brain level, the functional response patterns show very weak correlation with neurochemical alterations, while for numerous brain areas a strong positive correlation with noradrenaline release exists. At a local scale of individual brain regions, the rCBV response to neurotransmitters is anatomically heterogeneous and, importantly, based on a complex interplay of different neurotransmitters that often exert opposing effects, thus providing a mechanism for regulating and fine tuning hemodynamic responses in specific regions.
Collapse
Affiliation(s)
- Lewis H Mervin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ekaterina Mitricheva
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hamid R Noori
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Inocencio IM, Tran NT, Khor SJ, Wiersma M, Nakamura S, Walker DW, Wong FY. The cerebral haemodynamic response to somatosensory stimulation in preterm newborn lambs is reduced with dopamine or dobutamine infusion. Exp Neurol 2021; 341:113687. [PMID: 33713656 DOI: 10.1016/j.expneurol.2021.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In the adult brain, increases in neural activity lead to increases in local blood flow. However, in the preterm neonate, studies of cerebral functional haemodynamics have yielded inconsistent results, including negative responses suggesting decreased perfusion and localised tissue hypoxia, probably due to immature neurovascular coupling. Furthermore, the impact of vasoactive medications, such as dopamine and dobutamine used as inotropic therapies in preterm neonates, on cerebrovascular responses to somatosensory input is unknown. We aimed to characterise the cerebral haemodynamic functional response after somatosensory stimulation in the preterm newborn brain, with and without dopamine or dobutamine treatment. METHODS We studied the cerebral haemodynamic functional response in 13 anaesthetised preterm lambs, using near infrared spectroscopy to measure changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb) following left median nerve stimulation using stimulus trains of 1.8, 4.8 and 7.8 s. The 4.8 and 7.8 s stimulations were repeated during dopamine or dobutamine infusion. RESULTS Stimulation always produced a somatosensory evoked response. Majority of preterm lambs demonstrated positive functional responses (i.e. increased ΔoxyHb) in the contralateral cortex following stimulus trains of all durations. Dopamine increased baseline oxyHb and total Hb, whereas dobutamine increased baseline deoxyHb. Both dopamine and dobutamine reduced the evoked ΔoxyHb responses to 4.8 and 7.8 s stimulations. CONCLUSIONS Somatosensory stimulation increases cerebral oxygenation in the preterm brain, consistent with increased cerebral blood flow due to neurovascular coupling. Notably, our results show that dopamine/dobutamine reduces oxygen delivery relative to consumption in the preterm brain during somatosensory stimulations, suggesting there may be a risk of intermittent localised tissue hypoxia which has clear implications for clinical practice and warrants further investigation.
Collapse
Affiliation(s)
- Ishmael M Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Nhi T Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Song J Khor
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Manon Wiersma
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Shinji Nakamura
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - David W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Flora Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia; Monash Newborn, Monash Medical Centre, Melbourne, Australia.
| |
Collapse
|
13
|
Howarth C, Mishra A, Hall CN. More than just summed neuronal activity: how multiple cell types shape the BOLD response. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190630. [PMID: 33190598 PMCID: PMC7116385 DOI: 10.1098/rstb.2019.0630] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Functional neuroimaging techniques are widely applied to investigations of human cognition and disease. The most commonly used among these is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. The BOLD signal occurs because neural activity induces an increase in local blood supply to support the increased metabolism that occurs during activity. This supply usually outmatches demand, resulting in an increase in oxygenated blood in an active brain region, and a corresponding decrease in deoxygenated blood, which generates the BOLD signal. Hence, the BOLD response is shaped by an integration of local oxygen use, through metabolism, and supply, in the blood. To understand what information is carried in BOLD signals, we must understand how several cell types in the brain-local excitatory neurons, inhibitory neurons, astrocytes and vascular cells (pericytes, vascular smooth muscle and endothelial cells), and their modulation by ascending projection neurons-contribute to both metabolism and haemodynamic changes. Here, we review the contributions of each cell type to the regulation of cerebral blood flow and metabolism, and discuss situations where a simplified interpretation of the BOLD response as reporting local excitatory activity may misrepresent important biological phenomena, for example with regards to arousal states, ageing and neurological disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
14
|
Manoliu A, Sladky R, Scherpiet S, Jäncke L, Kirschner M, Haugg A, Bolsinger J, Kraehenmann R, Stämpfli P, Scharnowski F, Herwig U, Seifritz E, Brühl AB. Dopaminergic neuromodulation has no detectable effect on visual-cue induced haemodynamic response function in the visual cortex: A double-blind, placebo-controlled functional magnetic resonance imaging study. J Psychopharmacol 2021; 35:100-102. [PMID: 33307959 DOI: 10.1177/0269881120972341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the effect of acute dopamine agonistic and antagonistic manipulation on the visual-cue induced blood oxygen level-dependent signal response in healthy volunteers. Seventeen healthy volunteers in a double-blind placebo-controlled cross-over design received either a dopamine antagonist, agonist or placebo and underwent functional magnetic resonance imaging. Using classical inference and Bayesian statistics, we found no effect of dopaminergic modulation on properties of visual-cue induced blood oxygen level-dependent signals in the visual cortex, particularly on distinct properties of the haemodynamic response function (amplitude, time-to-peak and width). Dopamine-related effects modulating the neurovascular coupling in the visual cortex might be negligible when measured via functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Andrei Manoliu
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Ronald Sladky
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Social, Cognitive and Affective Neuroscience (SCAN) Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Sigrid Scherpiet
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- Psychological Institute, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Amelie Haugg
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Julia Bolsinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Rainer Kraehenmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zürich, University of Zürich, Zurich, Switzerland.,Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Uwe Herwig
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Psychiatrisches Zentrum Appenzell Ausserrhoden, Herisau, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Annette B Brühl
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Gao Y, Mareyam A, Sun Y, Witzel T, Arango N, Kuang I, White J, Roe AW, Wald L, Stockmann J, Zhang X. A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T. Neuroimage 2020; 207:116396. [PMID: 31778818 PMCID: PMC7309650 DOI: 10.1016/j.neuroimage.2019.116396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/07/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) in monkeys is important for bridging the gap between invasive animal brain studies and non-invasive human brain studies. To resolve the finer functional structure of the monkey brain, ultra-high-field (UHF) MR is essential, and high-performance, close-fitting RF receive coils are typically desired to fully leverage the intrinsic gains provided by UHF MRI. Moreover, static field (B0) inhomogeneity arising from the tissue susceptibility interface is more severe at UHF, presenting an obstacle to achieving high-resolution fMRI. B0 shim of the monkey head is challenging due to its smaller size and more complex sources of B0 offsets in multi-modal imaging tasks. In the present work, we have customized an array coil for lightly-anesthetized monkey fMRI in the 7T human scanner that combines RF and multi-coil (MC) B0 shim functionality (also referred to as AC/DC coils) to provide high imaging SNR and high-spatial-order, rapidly switchable B0-shim capability. Additional space was retained on the coil to render it compatible with monkey multi-modal imaging studies. Both MC global (whole-volume) and dynamic (slice-optimized) shim methods were tested and evaluated, and the benefits of MC shim for fMRI experiments was also studied. A minor reduction in RF coil performance was found after introducing additional B0 shim circuitry. However, the proposed RF coil provided higher image SNR and more uniform contrast compared to a commercially available coil for human knee imaging. Compared with static 2nd-order shim, the B0 inhomogeneity was reduced by 56.8%, and 95-percentile B0 offset was reduced to within 28.2 Hz through MC shim, versus 68.7 Hz with 2nd-order static shim. As a result, functional image quality could be improved, and brain activation can be better detected using the proposed AC/DC monkey coil.
Collapse
Affiliation(s)
- Yang Gao
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; School of Medicine, Zhejiang University, Hangzhou, China
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nicolas Arango
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Irene Kuang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; School of Medicine, Zhejiang University, Hangzhou, China
| | - Lawrence Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Xiaotong Zhang
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Turner MP, Fischer H, Sivakolundu DK, Hubbard NA, Zhao Y, Rypma B, Bäckman L. Age-differential relationships among dopamine D1 binding potential, fusiform BOLD signal, and face-recognition performance. Neuroimage 2020; 206:116232. [PMID: 31593794 DOI: 10.1016/j.neuroimage.2019.116232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/26/2019] [Indexed: 11/19/2022] Open
Abstract
Facial recognition ability declines in adult aging, but the neural basis for this decline remains unknown. Cortical areas involved in face recognition exhibit lower dopamine (DA) receptor availability and lower blood-oxygen-level-dependent (BOLD) signal during task performance with advancing adult age. We hypothesized that changes in the relationship between these two neural systems are related to age differences in face-recognition ability. To test this hypothesis, we leveraged positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to measure D1 receptor binding potential (BPND) and BOLD signal during face-recognition performance. Twenty younger and 20 older participants performed a face-recognition task during fMRI scanning. Face recognition accuracy was lower in older than in younger adults, as were D1 BPND and BOLD signal across the brain. Using linear regression, significant relationships between DA and BOLD were found in both age-groups in face-processing regions. Interestingly, although the relationship was positive in younger adults, it was negative in older adults (i.e., as D1 BPND decreased, BOLD signal increased). Ratios of BOLD:D1 BPND were calculated and relationships to face-recognition performance were tested. Multiple linear regression revealed a significant Group × BOLD:D1 BPND Ratio interaction. These results suggest that, in the healthy system, synchrony between neurotransmitter (DA) and hemodynamic (BOLD) systems optimizes the level of BOLD activation evoked for a given DA input (i.e., the gain parameter of the DA input-neural activation function), facilitating task performance. In the aged system, however, desynchronization between these brain systems would reduce the gain parameter of this function, adversely impacting task performance and contributing to reduced face recognition in older adults.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
17
|
Dan R, Růžička F, Bezdicek O, Roth J, Růžička E, Vymazal J, Goelman G, Jech R. Impact of dopamine and cognitive impairment on neural reactivity to facial emotion in Parkinson's disease. Eur Neuropsychopharmacol 2019; 29:1258-1272. [PMID: 31607424 DOI: 10.1016/j.euroneuro.2019.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
Emotional and cognitive impairments in Parkinson's disease (PD) are prevalent, hamper interpersonal relations and reduce quality of life. It is however unclear to what extent these domains interplay in PD-related deficits and how they are influenced by dopaminergic availability. This study examined the effect of cognitive impairment and dopaminergic medication on neural and behavioral mechanisms of facial emotion recognition in PD patients. PD patients on and off dopaminergic medication and matched healthy controls underwent an emotional face matching task during functional MRI. In addition, a comprehensive neuropsychological evaluation of cognitive function was conducted. Increased BOLD response to emotional faces was found in the visual cortex of PD patients relative to controls irrespective of cognitive function and medication status. Administration of dopaminergic medication in PD patients resulted in restored behavioral accuracy for emotional faces relative to controls and decreased retrosplenial cortex BOLD response to emotion relative to off-medication state. Furthermore, cognitive impairment in PD patients was associated with reduced behavioral accuracy for non-emotional stimuli and predicted BOLD response to emotion in the anterior and posterior cingulate cortices, depending on medication status. Findings of aberrant visual and retrosplenial BOLD response to emotion are suggested to stem from altered attentional and/or emotion-driven modulation from subcortical and higher cortical regions. Our results indicate neural disruptions and behavioral deficits in emotion processing in PD patients that are dependent on dopaminergic availability and independent of cognitive function. Our findings highlight the importance of dopaminergic treatment not only for the motor symptoms but also the emotional disturbances in PD.
Collapse
Affiliation(s)
- Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia; Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Ondrej Bezdicek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Gadi Goelman
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University in Prague, Prague, Czechia; Department of Radiology, Na Homolce Hospital, Prague, Czechia
| |
Collapse
|
18
|
Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. Neuroimage 2019; 197:742-760. [DOI: 10.1016/j.neuroimage.2017.07.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
|
19
|
Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex. Proc Natl Acad Sci U S A 2018; 115:E12073-E12082. [PMID: 30510000 PMCID: PMC6304994 DOI: 10.1073/pnas.1808507115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
fMRI changes are typically assumed to be due to changes in neural activity, although whether this remains valid under the influence of neuromodulators is relatively unknown. Here, we found evidence that intracortical acetylcholine elicits distinct profiles of fMRI and electrophysiological activity in visual cortex. Two patterns of cholinergic activity were observed, depending on the distance to the injection site, although neurovascular coupling was preserved. Our results illustrate the effects of neuromodulators on fMRI and electrophysiological responses and show that these depend on neuromodulator concentration and kinetics. Cholinergic neuromodulation is involved in all aspects of sensory processing and is crucial for processes such as attention, learning and memory, etc. However, despite the known roles of acetylcholine (ACh), we still do not how to disentangle ACh contributions from sensory or task-evoked changes in functional magnetic resonance imaging (fMRI). Here, we investigated the effects of local injection of ACh on fMRI and neural signals in the primary visual cortex (V1) of anesthetized macaques by combining pharmaco-based MRI (phMRI) with electrophysiological recordings, using single electrodes and electrode arrays. We found that local injection of ACh elicited two distinct profiles of fMRI and neurophysiological activity, depending on the distance from the injector. Near the injection site, we observed an increase in the baseline blood oxygen-level-dependent (BOLD) and cerebral blood flow (CBF) responses, while their visual modulation decreased. In contrast, further from the injection site, we observed an increase in the visually induced BOLD and CBF modulation without changes in baseline. Neurophysiological recordings suggest that the spatial correspondence between fMRI responses and neural activity does not change in the gamma, high-gamma, and multiunit activity (MUA) bands. The results near the injection site suggest increased inhibitory drive and decreased metabolism, contrasting to the far region. These changes are thought to reflect the kinetics of ACh and its metabolism to choline.
Collapse
|
20
|
Li Y, Zhang L, Long K, Gong H, Lei H. Real-time monitoring prefrontal activities during online video game playing by functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700308. [PMID: 29451742 DOI: 10.1002/jbio.201700308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
A growing body of literature has suggested that video game playing can induce functional and structural plasticity of the brain. The underlying mechanisms, however, remain poorly understood. In this study, functional near-infrared spectroscopy (fNIRS) was used to record prefrontal activities in 24 experienced game players when they played a massively multiplayer online battle arena video game, League of Legends (LOL), under naturalistic conditions. It was observed that game onset was associated with significant activations in the ventrolateral prefrontal cortex (VLPFC) and concomitant deactivations in the dorsolateral prefrontal cortex (DLPFC) and frontal pole area (FPA). Game events, such as slaying an enemy and being slain by an enemy evoked region-specific time-locked hemodynamic/oxygenation responses in the prefrontal cortex (PFC). It was proposed that the VLPFC activities during LOL playing are likely responses to visuo-motor task load of the game, while the DLPFC/FPA activities may be involved in the constant shifts of attentional states and allocation of cognitive resources required by game playing. The present study demonstrated that it is feasible to use fNIRS to monitor real-time prefrontal activity during online video game playing.
Collapse
Affiliation(s)
- Yue Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Lei Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kehong Long
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Hui Gong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| |
Collapse
|
21
|
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018; 12:51. [PMID: 30042662 PMCID: PMC6048220 DOI: 10.3389/fncir.2018.00051] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal processing and resulting behavioral changes are most commonly reported for higher order cognitive brain functions. Comparatively little is known about how neuromodulators shape processing in sensory brain areas that provide the signals for downstream regions to operate on. In this article, we review the current knowledge about how the monoamine neuromodulators serotonin, dopamine and noradrenaline influence the representation of sensory stimuli in the mammalian sensory system. We review the functional organization of the monoaminergic brainstem neuromodulatory systems in relation to their role for sensory processing and summarize recent neurophysiological evidence showing that monoamines have diverse effects on early sensory processing, including changes in gain and in the precision of neuronal responses to sensory inputs. We also highlight the substantial evidence for complementarity between these neuromodulatory systems with different patterns of innervation across brain areas and cortical layers as well as distinct neuromodulatory actions. Studying the effects of neuromodulators at various target sites is a crucial step in the development of a mechanistic understanding of neuronal information processing in the healthy brain and in the generation and maintenance of mental diseases.
Collapse
Affiliation(s)
- Simon N Jacob
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neuroimage 2018; 172:341-356. [DOI: 10.1016/j.neuroimage.2018.01.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 11/19/2022] Open
|
23
|
Dukart J, Holiga Š, Chatham C, Hawkins P, Forsyth A, McMillan R, Myers J, Lingford-Hughes AR, Nutt DJ, Merlo-Pich E, Risterucci C, Boak L, Umbricht D, Schobel S, Liu T, Mehta MA, Zelaya FO, Williams SC, Brown G, Paulus M, Honey GD, Muthukumaraswamy S, Hipp J, Bertolino A, Sambataro F. Cerebral blood flow predicts differential neurotransmitter activity. Sci Rep 2018; 8:4074. [PMID: 29511260 PMCID: PMC5840131 DOI: 10.1038/s41598-018-22444-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Application of metabolic magnetic resonance imaging measures such as cerebral blood flow in translational medicine is limited by the unknown link of observed alterations to specific neurophysiological processes. In particular, the sensitivity of cerebral blood flow to activity changes in specific neurotransmitter systems remains unclear. We address this question by probing cerebral blood flow in healthy volunteers using seven established drugs with known dopaminergic, serotonergic, glutamatergic and GABAergic mechanisms of action. We use a novel framework aimed at disentangling the observed effects to contribution from underlying neurotransmitter systems. We find for all evaluated compounds a reliable spatial link of respective cerebral blood flow changes with underlying neurotransmitter receptor densities corresponding to their primary mechanisms of action. The strength of these associations with receptor density is mediated by respective drug affinities. These findings suggest that cerebral blood flow is a sensitive brain-wide in-vivo assay of metabolic demands across a variety of neurotransmitter systems in humans.
Collapse
Affiliation(s)
- Juergen Dukart
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland.
| | - Štefan Holiga
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Christopher Chatham
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Peter Hawkins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Anna Forsyth
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jim Myers
- Neuropsychopharmacology Unit, Imperial College London, London, United Kingdom
| | | | - David J Nutt
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Emilio Merlo-Pich
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Celine Risterucci
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Lauren Boak
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Daniel Umbricht
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Scott Schobel
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Thomas Liu
- Center for Functional MRI, University of California San Diego, 9500 Gilman Drive MC 0677, La Jolla, CA 92093, United States
- Departments of Radiology, Psychiatry and Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Fernando O Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steve C Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Gregory Brown
- University of California, San Diego, La Jolla, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Martin Paulus
- University of California, San Diego, La Jolla, USA
- Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Garry D Honey
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Joerg Hipp
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
| | - Alessandro Bertolino
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
- Institute Of Psychiatry, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Fabio Sambataro
- F. Hoffmann-La Roche, pharma Research Early Development, Roche Innovation Centre Basel, Basel, Switzerland
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| |
Collapse
|
24
|
Souza BOF, Abou Rjeili M, Quintana C, Beaulieu JM, Casanova C. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice. Front Integr Neurosci 2018; 11:41. [PMID: 29379422 PMCID: PMC5775240 DOI: 10.3389/fnint.2017.00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023] Open
Abstract
Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p < 0.01) were higher in D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development.
Collapse
Affiliation(s)
| | - Mira Abou Rjeili
- Laboratory of Visual Neuroscience, Optometry School, University of Montreal, Montreal, QC, Canada
| | - Clémentine Quintana
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jean M Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Christian Casanova
- Laboratory of Visual Neuroscience, Optometry School, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
25
|
Zaldivar D, Goense J, Lowe SC, Logothetis NK, Panzeri S. Dopamine Is Signaled by Mid-frequency Oscillations and Boosts Output Layers Visual Information in Visual Cortex. Curr Biol 2018; 28:224-235.e5. [PMID: 29307559 DOI: 10.1016/j.cub.2017.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 11/25/2022]
Abstract
Neural oscillations are ubiquitously observed in cortical activity, and are widely believed to be crucial for mediating transmission of information across the cortex. Yet, the neural phenomena contributing to each oscillation band, and their effect on information coding and transmission, are largely unknown. Here, we investigated whether individual frequency bands specifically reflect changes in the concentrations of dopamine, an important neuromodulator, and how dopamine affects oscillatory information processing. We recorded the local field potential (LFP) at different depths of primary visual cortex (V1) in anesthetized monkeys (Macaca mulatta) during spontaneous activity and during visual stimulation with Hollywood movie clips while pharmacologically mimicking dopaminergic neuromodulation by systemic injection of L-DOPA (a metabolic precursor of dopamine). We found that dopaminergic neuromodulation had marked effects on both spontaneous and movie-evoked neural activity. During spontaneous activity, dopaminergic neuromodulation increased the power of the LFP specifically in the [19-38 Hz] band, suggesting that the power of endogenous visual cortex oscillations in this band can be used as a robust marker of dopaminergic neuromodulation. Moreover, dopamine increased visual information encoding over all frequencies during movie stimulation. The information increase due to dopamine was prominent in the supragranular layers of cortex that project to higher cortical areas and in the gamma [50-100 Hz] band that has been previously implicated in mediating feedforward information transfer. These results thus individuate new neural mechanisms by which dopamine may promote the readout of relevant sensory information by strengthening the transmission of information from primary to higher areas.
Collapse
Affiliation(s)
- Daniel Zaldivar
- Max Planck Institute for Biological Cybernetics, Max-Planck Ring 8, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany.
| | - Jozien Goense
- School of Psychology and Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, UK.
| | - Scott C Lowe
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics, Max-Planck Ring 8, 72076 Tübingen, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK
| | - Stefano Panzeri
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.
| |
Collapse
|
26
|
Towards a cognitive neuroscience of self-awareness. Neurosci Biobehav Rev 2017; 83:765-773. [DOI: 10.1016/j.neubiorev.2016.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/19/2016] [Accepted: 04/07/2016] [Indexed: 11/17/2022]
|
27
|
Lohrenz T, Kishida KT, Montague PR. BOLD and its connection to dopamine release in human striatum: a cross-cohort comparison. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0352. [PMID: 27574306 PMCID: PMC5003854 DOI: 10.1098/rstb.2015.0352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
Activity in midbrain dopamine neurons modulates the release of dopamine in terminal structures including the striatum, and controls reward-dependent valuation and choice. This fluctuating release of dopamine is thought to encode reward prediction error (RPE) signals and other value-related information crucial to decision-making, and such models have been used to track prediction error signals in the striatum as encoded by BOLD signals. However, until recently there have been no comparisons of BOLD responses and dopamine responses except for one clear correlation of these two signals in rodents. No such comparisons have been made in humans. Here, we report on the connection between the RPE-related BOLD signal recorded in one group of subjects carrying out an investment task, and the corresponding dopamine signal recorded directly using fast-scan cyclic voltammetry in a separate group of Parkinson's disease patients undergoing DBS surgery while performing the same task. The data display some correspondence between the signal types; however, there is not a one-to-one relationship. Further work is necessary to quantify the relationship between dopamine release, the BOLD signal and the computational models that have guided our understanding of both at the level of the striatum. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.
Collapse
Affiliation(s)
- Terry Lohrenz
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Kenneth T Kishida
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA
| | - P Read Montague
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA Department of Physics, Virginia Tech, Blacksburg, VA, USA Wellcome Trust Centre for Neuroimaging, London, UK
| |
Collapse
|
28
|
Havlicek M, Ivanov D, Roebroeck A, Uludağ K. Determining Excitatory and Inhibitory Neuronal Activity from Multimodal fMRI Data Using a Generative Hemodynamic Model. Front Neurosci 2017; 11:616. [PMID: 29249925 PMCID: PMC5715391 DOI: 10.3389/fnins.2017.00616] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Hemodynamic responses, in general, and the blood oxygenation level-dependent (BOLD) fMRI signal, in particular, provide an indirect measure of neuronal activity. There is strong evidence that the BOLD response correlates well with post-synaptic changes, induced by changes in the excitatory and inhibitory (E-I) balance between active neuronal populations. Typical BOLD responses exhibit transients, such as the early-overshoot and post-stimulus undershoot, that can be linked to transients in neuronal activity, but they can also result from vascular uncoupling between cerebral blood flow (CBF) and venous cerebral blood volume (venous CBV). Recently, we have proposed a novel generative hemodynamic model of the BOLD signal within the dynamic causal modeling framework, inspired by physiological observations, called P-DCM (Havlicek et al., 2015). We demonstrated the generative model's ability to more accurately model commonly observed neuronal and vascular transients in single regions but also effective connectivity between multiple brain areas (Havlicek et al., 2017b). In this paper, we additionally demonstrate the versatility of the generative model to jointly explain dynamic relationships between neuronal and hemodynamic physiological variables underlying the BOLD signal using multi-modal data. For this purpose, we utilized three distinct data-sets of experimentally induced responses in the primary visual areas measured in human, cat, and monkey brain, respectively: (1) CBF and BOLD responses; (2) CBF, total CBV, and BOLD responses (Jin and Kim, 2008); and (3) positive and negative neuronal and BOLD responses (Shmuel et al., 2006). By fitting the generative model to the three multi-modal experimental data-sets, we showed that the presence or absence of dynamic features in the BOLD signal is not an unambiguous indication of presence or absence of those features on the neuronal level. Nevertheless, the generative model that takes into account the dynamics of the physiological mechanisms underlying the BOLD response allowed dissociating neuronal from vascular transients and deducing excitatory and inhibitory neuronal activity time-courses from BOLD data alone and from multi-modal data.
Collapse
Affiliation(s)
- Martin Havlicek
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
29
|
Dopamine Activation Preserves Visual Motion Perception Despite Noise Interference of Human V5/MT. J Neurosci 2017; 36:9303-12. [PMID: 27605607 DOI: 10.1523/jneurosci.4452-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/27/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED When processing sensory signals, the brain must account for noise, both noise in the stimulus and that arising from within its own neuronal circuitry. Dopamine receptor activation is known to enhance both visual cortical signal-to-noise-ratio (SNR) and visual perceptual performance; however, it is unknown whether these two dopamine-mediated phenomena are linked. To assess this, we used single-pulse transcranial magnetic stimulation (TMS) applied to visual cortical area V5/MT to reduce the SNR focally and thus disrupt visual motion discrimination performance to visual targets located in the same retinotopic space. The hypothesis that dopamine receptor activation enhances perceptual performance by improving cortical SNR predicts that dopamine activation should antagonize TMS disruption of visual perception. We assessed this hypothesis via a double-blinded, placebo-controlled study with the dopamine receptor agonists cabergoline (a D2 agonist) and pergolide (a D1/D2 agonist) administered in separate sessions (separated by 2 weeks) in 12 healthy volunteers in a William's balance-order design. TMS degraded visual motion perception when the evoked phosphene and the visual stimulus overlapped in time and space in the placebo and cabergoline conditions, but not in the pergolide condition. This suggests that dopamine D1 or combined D1 and D2 receptor activation enhances cortical SNR to boost perceptual performance. That local visual cortical excitability was unchanged across drug conditions suggests the involvement of long-range intracortical interactions in this D1 effect. Because increased internal noise (and thus lower SNR) can impair visual perceptual learning, improving visual cortical SNR via D1/D2 agonist therapy may be useful in boosting rehabilitation programs involving visual perceptual training. SIGNIFICANCE STATEMENT In this study, we address the issue of whether dopamine activation improves visual perception despite increasing sensory noise in the visual cortex. We show specifically that dopamine D1 (or combined D1/D2) receptor activation enhances the cortical signal-to-noise-ratio to boost perceptual performance. Together with the previously reported effects of dopamine upon brain plasticity and learning (Wolf et al., 2003; Hansen and Manahan-Vaughan, 2014), our results suggest that combining rehabilitation with dopamine agonists could enhance both the saliency of the training signal and the long-term effects on brain plasticity to boost rehabilitation regimens for brain injury.
Collapse
|
30
|
Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory. J Neurosci 2017; 37:537-545. [PMID: 28100737 DOI: 10.1523/jneurosci.4032-15.2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/02/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022] Open
Abstract
Reward motivation has been demonstrated to enhance declarative memory by facilitating systems-level consolidation. Although high-reward information is often intermixed with lower reward information during an experience, memory for high value information is prioritized. How is this selectivity achieved? One possibility is that postencoding consolidation processes bias memory strengthening to those representations associated with higher reward. To test this hypothesis, we investigated the influence of differential reward motivation on the selectivity of postencoding markers of systems-level memory consolidation. Human participants encoded intermixed, trial-unique memoranda that were associated with either high or low-value during fMRI acquisition. Encoding was interleaved with periods of rest, allowing us to investigate experience-dependent changes in connectivity as they related to later memory. Behaviorally, we found that reward motivation enhanced 24 h associative memory. Analysis of patterns of postencoding connectivity showed that, even though learning trials were intermixed, there was significantly greater connectivity with regions of high-level, category-selective visual cortex associated with high-reward trials. Specifically, increased connectivity of category-selective visual cortex with both the VTA and the anterior hippocampus predicted associative memory for high- but not low-reward memories. Critically, these results were independent of encoding-related connectivity and univariate activity measures. Thus, these findings support a model by which the selective stabilization of memories for salient events is supported by postencoding interactions with sensory cortex associated with reward. SIGNIFICANCE STATEMENT Reward motivation is thought to promote memory by supporting memory consolidation. Yet, little is known as to how brain selects relevant information for subsequent consolidation based on reward. We show that experience-dependent changes in connectivity of both the anterior hippocampus and the VTA with high-level visual cortex selectively predicts memory for high-reward memoranda at a 24 h delay. These findings provide evidence for a novel mechanism guiding the consolidation of memories for valuable events, namely, postencoding interactions between neural systems supporting mesolimbic dopamine activation, episodic memory, and perception.
Collapse
|
31
|
Metzger FL, Auer T, Helms G, Paulus W, Frahm J, Sommer M, Neef NE. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering. Brain Struct Funct 2017; 223:165-182. [PMID: 28741037 PMCID: PMC5772149 DOI: 10.1007/s00429-017-1476-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/07/2017] [Indexed: 11/29/2022]
Abstract
Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.
Collapse
Affiliation(s)
- F Luise Metzger
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Tibor Auer
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.,MRC Cognition and Brain Sciences Unit, Cambridge, UK.,Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Gunther Helms
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Nicole E Neef
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| |
Collapse
|
32
|
Hermes D, Nguyen M, Winawer J. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential. PLoS Biol 2017; 15:e2001461. [PMID: 28742093 PMCID: PMC5524566 DOI: 10.1371/journal.pbio.2001461] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/22/2017] [Indexed: 01/07/2023] Open
Abstract
The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8-13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30-80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity.
Collapse
Affiliation(s)
- Dora Hermes
- Department of Psychology, New York University, New York, New York, United States of America
- Brain Center Rudolf Magnus, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - Mai Nguyen
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
| |
Collapse
|
33
|
Poplawsky AJ, Fukuda M, Kim SG. Foundations of layer-specific fMRI and investigations of neurophysiological activity in the laminarized neocortex and olfactory bulb of animal models. Neuroimage 2017; 199:718-729. [PMID: 28502845 DOI: 10.1016/j.neuroimage.2017.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022] Open
Abstract
Laminar organization of neuronal circuits is a recurring feature of how the brain processes information. For instance, different layers compartmentalize different cell types, synaptic activities, and have unique intrinsic and extrinsic connections that serve as units for specialized signal processing. Functional MRI is an invaluable tool to investigate laminar processing in the in vivo human brain, but it measures neuronal activity indirectly by way of the hemodynamic response. Therefore, the accuracy of high-resolution laminar fMRI depends on how precisely it can measure localized microvascular changes nearest to the site of evoked activity. To determine the specificity of fMRI responses to the true neurophysiological responses across layers, the flexibility to invasive procedures in animal models has been necessary. In this review, we will examine different fMRI contrasts and their appropriate uses for layer-specific fMRI, and how localized laminar processing was examined in the neocortex and olfactory bulb. Through collective efforts, it was determined that microvessels, including capillaries, are regulated within single layers and that several endogenous and contrast-enhanced fMRI contrast mechanisms can separate these neural-specific vascular changes from the nonspecific, especially cerebral blood volume-weighted fMRI with intravenous contrast agent injection. We will also propose some open questions that are relevant for the successful implementation of layer-specific fMRI and its potential future directions to study laminar processing when combined with optogenetics.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mitsuhiro Fukuda
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
34
|
Helbing C, Tischmeyer W, Angenstein F. Late effect of dopamine D 1/5 receptor activation on stimulus-induced BOLD responses in the hippocampus and its target regions depends on the history of previous stimulations. Neuroimage 2017; 152:119-129. [DOI: 10.1016/j.neuroimage.2017.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022] Open
|
35
|
Zhang M, Tu J, Dong B, Chen C, Bao M. Preliminary evidence for a role of the personality trait in visual perceptual learning. Neurobiol Learn Mem 2017; 139:22-27. [DOI: 10.1016/j.nlm.2016.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 11/28/2022]
|
36
|
Harris JJ, Reynell C. How do antidepressants influence the BOLD signal in the developing brain? Dev Cogn Neurosci 2016; 25:45-57. [PMID: 28089656 PMCID: PMC6987820 DOI: 10.1016/j.dcn.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
Depression is a highly prevalent life-threatening disorder, with its first onset commonly occurring during adolescence. Adolescent depression is increasingly being treated with antidepressants, such as fluoxetine. The use of medication during this sensitive period of physiological and cognitive brain development produces neurobiological changes, some of which may outlast the course of treatment. In this review, we look at how antidepressant treatment in adolescence is likely to alter neurovascular coupling and brain energy use and how these changes, in turn, affect our ability to identify neuronal activity changes between participant groups. BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging), the method most commonly used to record brain activity in humans, is an indirect measure of neuronal activity. This means that between-group comparisons – adolescent versus adult, depressed versus healthy, medicated versus non-medicated – rely upon a stable relationship existing between neuronal activity and the BOLD response across these groups. We use data from animal studies to detail the ways in which fluoxetine may alter this relationship, and explore how these alterations may influence the interpretation of BOLD signal differences between groups that have been treated with fluoxetine and those that have not.
Collapse
Affiliation(s)
- Julia J Harris
- Life Sciences Department, Imperial College London, SW7 2AZ, UK; Francis Crick Institute, Midland Road, London, NW1 1AT, UK.
| | - Clare Reynell
- Département de Neurosciences, Université de Montréal, H3C 3J7, Canada.
| |
Collapse
|
37
|
Tinaz S, Lauro PM, Ghosh P, Lungu C, Horovitz SG. Changes in functional organization and white matter integrity in the connectome in Parkinson's disease. NEUROIMAGE-CLINICAL 2016; 13:395-404. [PMID: 28116232 PMCID: PMC5226806 DOI: 10.1016/j.nicl.2016.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) leads to dysfunction in multiple cortico-striatal circuits. The neurodegeneration has also been associated with impaired white matter integrity. This structural and functional “disconnection” in PD needs further characterization. We investigated the structural and functional organization of the PD whole brain connectome consisting of 200 nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network properties; and network modularity as a measure of information flow. PD patients showed reduced white matter connectivity in frontoparietal-striatal nodes compared to controls, but no change in modular organization of the white matter tracts. PD group also showed reduction in functional local network metrics in many nodes distributed across the connectome. There was also decreased functional modularity in the core cognitive networks including the default mode and dorsal attention networks, and sensorimotor network, as well as a lack of modular distinction in the orbitofrontal and basal ganglia nodes in the PD group compared to controls. Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the functional modular organization of the PD connectome. DTI and rs-fMRI investigation of the connectome in Parkinson's disease (PD) Local network properties and modularity were examined using graph theory. White matter connectivity was decreased in frontoparietal-striatal nodes in PD. Functional modularity of cognitive and motor networks was reduced in PD.
Collapse
Affiliation(s)
- Sule Tinaz
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter M Lauro
- Office of the Clinical Director, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pritha Ghosh
- Office of the Clinical Director, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Parkinson's Disease and Movement Disorders Program, Department of Neurology, George Washington University, Washington, DC, USA
| | - Codrin Lungu
- Office of the Clinical Director, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Silvina G Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Lecrux C, Hamel E. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150350. [PMID: 27574304 PMCID: PMC5003852 DOI: 10.1098/rstb.2015.0350] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/18/2022] Open
Abstract
Brain imaging techniques that use vascular signals to map changes in neuronal activity, such as blood oxygenation level-dependent functional magnetic resonance imaging, rely on the spatial and temporal coupling between changes in neurophysiology and haemodynamics, known as 'neurovascular coupling (NVC)'. Accordingly, NVC responses, mapped by changes in brain haemodynamics, have been validated for different stimuli under physiological conditions. In the cerebral cortex, the networks of excitatory pyramidal cells and inhibitory interneurons generating the changes in neural activity and the key mediators that signal to the vascular unit have been identified for some incoming afferent pathways. The neural circuits recruited by whisker glutamatergic-, basal forebrain cholinergic- or locus coeruleus noradrenergic pathway stimulation were found to be highly specific and discriminative, particularly when comparing the two modulatory systems to the sensory response. However, it is largely unknown whether or not NVC is still reliable when brain states are altered or in disease conditions. This lack of knowledge is surprising since brain imaging is broadly used in humans and, ultimately, in conditions that deviate from baseline brain function. Using the whisker-to-barrel pathway as a model of NVC, we can interrogate the reliability of NVC under enhanced cholinergic or noradrenergic modulation of cortical circuits that alters brain states.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- C Lecrux
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Quebec, Canada H3A 2B4
| | - E Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Quebec, Canada H3A 2B4
| |
Collapse
|
39
|
Febo M, Foster TC. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline. Front Aging Neurosci 2016; 8:158. [PMID: 27468264 PMCID: PMC4942756 DOI: 10.3389/fnagi.2016.00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
40
|
Goense J, Bohraus Y, Logothetis NK. fMRI at High Spatial Resolution: Implications for BOLD-Models. Front Comput Neurosci 2016; 10:66. [PMID: 27445782 PMCID: PMC4923185 DOI: 10.3389/fncom.2016.00066] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI.
Collapse
Affiliation(s)
- Jozien Goense
- Department of Psychology, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Yvette Bohraus
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological CyberneticsTübingen, Germany; Divison of Imaging Science and Biomedical Engineering, University of ManchesterManchester, UK
| |
Collapse
|
41
|
Ross EK, Kim JP, Settell ML, Han SR, Blaha CD, Min HK, Lee KH. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens. Neuroimage 2016; 128:138-148. [PMID: 26780572 PMCID: PMC4764383 DOI: 10.1016/j.neuroimage.2015.12.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/04/2015] [Accepted: 12/31/2015] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. METHODS A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. RESULTS Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. CONCLUSIONS The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and that the medial limbic and corticolimbic circuits interact in a functional loop.
Collapse
Affiliation(s)
- Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Joo Pyung Kim
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurosurgery, Bundang CHA Hospital, CHA University School of Medicine, Seongnam, Korea
| | - Megan L Settell
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Seong Rok Han
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurosurgery, Ilsan Paik Hospital, College of Medicine, Inje University, Goyang, Korea
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
42
|
Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, Katovich K, Mehta H, Patenaude B, Ramakrishnan C, Kalanithi P, Etkin A, Knutson B, Glover GH, Deisseroth K. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 2016; 351:aac9698. [PMID: 26722001 DOI: 10.1126/science.aac9698] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions.
Collapse
Affiliation(s)
- Emily A Ferenczi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Kelly A Zalocusky
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Conor Liston
- Brain Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Debha Amatya
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kiefer Katovich
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Hershel Mehta
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Brian Patenaude
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Paul Kalanithi
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Gary H Glover
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
43
|
Feher da Silva C, Morgero KCS, Mota AM, Piemonte MEP, Baldo MVC. Aging and Parkinson's disease as functional models of temporal order perception. Neuropsychologia 2015; 78:1-9. [DOI: 10.1016/j.neuropsychologia.2015.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
|
44
|
DOP-2 D2-Like Receptor Regulates UNC-7 Innexins to Attenuate Recurrent Sensory Motor Neurons during C. elegans Copulation. J Neurosci 2015; 35:9990-10004. [PMID: 26156999 DOI: 10.1523/jneurosci.0940-15.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Neuromodulation of self-amplifying circuits directs context-dependent behavioral executions. Although recurrent networks are found throughout the Caenorhabditis elegans connectome, few reports describe the mechanisms that regulate reciprocal neural activity during complex behavior. We used C. elegans male copulation to dissect how a goal-oriented motor behavior is regulated by recurrently wired sensory-motor neurons. As the male tail presses against the hermaphrodite's vulva, cholinergic and glutamatergic reciprocal innervations of post cloaca sensilla (PCS) neurons (PCA, PCB, and PCC), hook neurons (HOA, HOB), and their postsynaptic sex muscles execute rhythmic copulatory spicule thrusts. These repetitive spicule movements continue until the male shifts off the vulva or genital penetration is accomplished. However, the signaling mechanism that temporally and spatially restricts repetitive intromission attempts to vulva cues was unclear. Here, we report that confinement of spicule insertion attempts to the vulva is facilitated by D2-like receptor modulation of gap-junctions between PCB and the hook sensillum. We isolated a missense mutation in the UNC-7(L) gap-junction isoform, which perturbs DOP-2 signaling in the PCB neuron and its electrical partner, HOA. The glutamate-gated chloride channel AVR-14 is expressed in HOA. Our analysis of the unc-7 mutant allele indicates that when DOP-2 promotes UNC-7 electrical communication, AVR-14-mediated inhibitory signals pass from HOA to PCB. As a consequence, PCB is less receptive to be stimulated by its recurrent synaptic partner, PCA. Behavioral observations suggest that dopamine neuromodulation of UNC-7 ensures attenuation of recursive intromission attempts when the male disengages or is dislodged from the hermaphrodite genitalia. SIGNIFICANCE STATEMENT Using C. elegans male copulation as a model, we found that the neurotransmitter dopamine stimulates D2-like receptors in two sensory circuits to terminate futile behavioral loops. The D2-like receptors promote inhibitory electrical junction activity between a chemosensory and a mechanosensory circuit. Therefore, both systems are attenuated and the animal ceases the recursive behavior.
Collapse
|