1
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. eLife 2025; 13:RP100455. [PMID: 39750120 PMCID: PMC11698496 DOI: 10.7554/elife.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Kari F Lenhart
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Bataillé L, Lebreton G, Boukhatmi H, Vincent A. Insights and perspectives on the enigmatic alary muscles of arthropods. Front Cell Dev Biol 2024; 11:1337708. [PMID: 38288343 PMCID: PMC10822924 DOI: 10.3389/fcell.2023.1337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.
Collapse
|
3
|
Nagel S, Haake J, Pommerenke C, Meyer C, MacLeod RAF. Establishment of the Myeloid TBX-Code Reveals Aberrant Expression of T-Box Gene TBX1 in Chronic Myeloid Leukemia. Int J Mol Sci 2023; 25:32. [PMID: 38203204 PMCID: PMC10778679 DOI: 10.3390/ijms25010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
T-box genes encode transcription factors, which control developmental processes and promote cancer if deregulated. Recently, we described the lymphoid TBX-code, which collates T-box gene activities in normal lymphopoiesis, enabling identification of members deregulated in lymphoid malignancies. Here, we have extended this analysis to cover myelopoiesis, compiling the myeloid TBX-code and, thus, highlighting which of these genes might be deregulated in myeloid tumor types. We analyzed public T-box gene expression datasets bioinformatically for normal and malignant cells. Candidate T-box-gene-expressing model cell lines were identified and examined by RQ-PCR, Western Blotting, genomic profiling, and siRNA-mediated knockdown combined with RNA-seq analysis and live-cell imaging. The established myeloid TBX-code comprised 10 T-box genes, including progenitor-cell-restricted TBX1. Accordingly, we detected aberrant expression of TBX1 in 10% of stem/progenitor-cell-derived chronic myeloid leukemia (CML) patients. The classic CML cell line K-562 expressed TBX1 at high levels and served as a model to identify TBX1 activators, including transcription factor GATA1 and genomic amplification of the TBX1 locus at 22q11; inhibitors, including BCR::ABL1 fusion and downregulated GNAI2, as well as BMP, FGF2, and WNT signaling; and the target genes CDKN1A, MIR17HG, NAV1, and TMEM38A. The establishment of the myeloid TBX-code permitted identification of aberrant TBX1 expression in subsets of CML patients and cell lines. TBX1 forms an integral part of an oncogenic regulatory network impacting proliferation, survival, and differentiation. Thus, the data spotlight novel diagnostic markers and potential therapeutic targets for this malignancy.
Collapse
Affiliation(s)
- Stefan Nagel
- Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
4
|
Bileckyj C, Blotz B, Cripps RM. Drosophila as a Model to Understand Second Heart Field Development. J Cardiovasc Dev Dis 2023; 10:494. [PMID: 38132661 PMCID: PMC10744189 DOI: 10.3390/jcdd10120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The genetic model system Drosophila has contributed fundamentally to our understanding of mammalian heart specification, development, and congenital heart disease. The relatively simple Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists throughout the life of the animal. It functions at all stages to circulate hemolymph within the open circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled, and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral longitudinal muscles. The formation of these fibers depends critically upon genes known to be necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions of the Drosophila system to the understanding of heart development and disease, discuss the importance of the SHF to mammalian heart development and disease, and then discuss how the ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF development and disease.
Collapse
Affiliation(s)
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
5
|
Meyer C, Bataillé L, Drechsler M, Paululat A. Tailup expression in Drosophila larval and adult cardiac valve cells. Genesis 2023; 61:e23506. [PMID: 36546531 DOI: 10.1002/dvg.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
In Drosophila larvae, the direction of blood flow within the heart tube, as well as the diastolic filling of the posterior heart chamber, is regulated by a single cardiac valve. This valve is sufficient to close the heart tube at the junction of the ventricle and the aorta and is formed by only two cells; both are integral parts of the heart tube. The valve cells regulate hemolymph flow by oscillating between a spherical and a flattened cell shape during heartbeats. At the spherical stage, the opposing valve cells close the heart lumen. The dynamic cell shape changes of valve cells are supported by a dense, criss-cross orientation of myofibrils and the presence of the valvosomal compartment, a large intracellular cavity. Both structures are essential for the valve cells' function. In a screen for factors specifically expressed in cardiac valve cells, we identified the transcription factor Tailup. Knockdown of tailup causes abnormal orientation and differentiation of cardiac muscle fibers in the larval aorta and inhibits the formation of the ventral longitudinal muscle layer located underneath the heart tube in the adult fly and affects myofibrillar orientation of valve cells. Furthermore, we have identified regulatory sequences of tup that control the expression of tailup in the larval and adult valve cells.
Collapse
Affiliation(s)
- Christian Meyer
- Faculty of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | - Laetitia Bataillé
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Maik Drechsler
- Faculty of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | - Achim Paululat
- Faculty of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
6
|
Schultheis D, Frasch M. Longitudinal visceral muscles in Drosophila fully dedifferentiate and fragment prior to their reestablishment during metamorphosis. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000756. [PMID: 37008728 PMCID: PMC10051031 DOI: 10.17912/micropub.biology.000756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
Although the Drosophila longitudinal visceral muscles have been shown to undergo major morphological changes during the transition from larval to adult gut musculature, there have been conflicting views as to whether these muscles persist as such during metamorphosis or whether they are built anew (Klapper 2000; Aghajanian et al. 2016). Here we present our independent analysis using HLH54Fb-eGFP as a cell type specific marker, which strengthens the proposition by Aghajanian et al. (2016) that the syncytial larval longitudinal gut muscles completely dedifferentiate and fragment into mononucleated myoblasts during pupariation before they fuse again and redifferentiate to form the adult longitudinal gut muscles.
Collapse
Affiliation(s)
- Dorothea Schultheis
- Institute of Neuropathology, Universitätsklinikum Erlangen, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| | - Manfred Frasch
- Division of Developmental Biology, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
- Correspondence to: Manfred Frasch (
)
| |
Collapse
|
7
|
Ozerova AM, Gelfand MS. Recapitulation of the embryonic transcriptional program in holometabolous insect pupae. Sci Rep 2022; 12:17570. [PMID: 36266393 PMCID: PMC9584902 DOI: 10.1038/s41598-022-22188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023] Open
Abstract
Holometabolous insects are predominantly motionless during metamorphosis, when no active feeding is observed and the body is enclosed in a hardened cuticle. These physiological properties as well as undergoing processes resemble embryogenesis, since at the pupal stage organs and systems of the imago are formed. Therefore, recapitulation of the embryonic expression program during metamorphosis could be hypothesized. To assess this hypothesis at the transcriptome level, we have performed a comprehensive analysis of the developmental datasets available in the public domain. Indeed, for most datasets, the pupal gene expression resembles the embryonic rather than the larval pattern, interrupting gradual changes in the transcriptome. Moreover, changes in the transcriptome profile during the pupa-to-imago transition are positively correlated with those at the embryo-to-larvae transition, suggesting that similar expression programs are activated. Gene sets that change their expression level during the larval stage and revert it to the embryonic-like state during the metamorphosis are enriched with genes associated with metabolism and development.
Collapse
Affiliation(s)
- Alexandra M. Ozerova
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail S. Gelfand
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, Russia ,grid.435025.50000 0004 0619 6198Institute for Information Transmission Problems (Kharkevich Institute), RAS, Moscow, Russia
| |
Collapse
|
8
|
Rose M, Domsch K, Bartle-Schultheis J, Reim I, Schaub C. Twist regulates Yorkie activity to guide lineage reprogramming of syncytial alary muscles. Cell Rep 2022; 38:110295. [DOI: 10.1016/j.celrep.2022.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
|
9
|
Poliacikova G, Maurel-Zaffran C, Graba Y, Saurin AJ. Hox Proteins in the Regulation of Muscle Development. Front Cell Dev Biol 2021; 9:731996. [PMID: 34733846 PMCID: PMC8558437 DOI: 10.3389/fcell.2021.731996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.
Collapse
Affiliation(s)
| | | | - Yacine Graba
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
10
|
Derivation of proliferative islet1-positive cells during metamorphosis and wound response in Xenopus. Histochem Cell Biol 2020; 155:133-143. [PMID: 33070205 DOI: 10.1007/s00418-020-01929-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 10/22/2022]
Abstract
In mammalian hearts, cardiomyocytes retain a transient capacity to proliferate and regenerate following injury before birth, whereas they lose proliferative capacity immediately after birth. It has also been known that cardiac progenitor cells including islet1-positive cells do not contribute to the cardiac repair and regeneration in mammals. In contrast, hearts of zebrafish, amphibians and reptiles maintain a regenerative ability throughout life. Here, we analyzed proliferative capacity of cardiac cells during cardiac development and post-ventricular resection using Xenopus laevis, especially focusing on islet1. Immunohistochemical examination showed that islet1-positive cells were present in a wide range of the ventricle and maintained high dividing ability after metamorphosis. Interestingly, the islet1-positive cells were preserved even at 1 year after metamorphosis, some of which showed tropomyosin expression. To assess the possibility of islet1-positive cells as a cellular resource, islet1 response to cardiac resection was analyzed, using adult hearts of 3 months after metamorphosis. Transient gene activation of islet1 in apical region was detected within 1 day after amputation. Histological analyses revealed that islet1-positive cells appeared in the vicinity of resection plane at 1 day post-amputation (dpa) and increased at 3 dpa in both tropomyosin-positive and tropomyosin-negative regions. Vascular labeling analysis by biotinylated dextran amine (BDA) indicated that the islet1-positive cells in a tropomyosin-negative region were closely associated with cardiac vessels. Moreover, dividing ability at this time point was peaked. The resected region was healed with tropomyosin-positive cardiomyocytes until 3 months post-amputation. These results suggest a role of islet1-positive cells as a cellular resource for vascularization and cardiogenesis in Xenopus laevis.
Collapse
|
11
|
Muscle development : a view from adult myogenesis in Drosophila. Semin Cell Dev Biol 2020; 104:39-50. [DOI: 10.1016/j.semcdb.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
|
12
|
Jammrath J, Reim I, Saumweber H. Cbl-Associated Protein CAP contributes to correct formation and robust function of the Drosophila heart tube. PLoS One 2020; 15:e0233719. [PMID: 32469960 PMCID: PMC7259718 DOI: 10.1371/journal.pone.0233719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
The formation of a tube-like structure is a basic step in the making of functional hearts in vertebrates and invertebrates and therefore, its understanding provides important information on heart development and function. In Drosophila, the cardiac tube originates from two bilateral rows of dorsally migrating cells. On meeting at the dorsal midline, coordinated changes in cell shape and adhesive properties transform the two sheets of cells into a linear tube. ECM and transmembrane proteins linked to the cytoskeleton play an important role during these dynamic processes. Here we characterize the requirement of Cbl-Associated Protein (CAP) in Drosophila heart formation. In embryos, CAP is expressed in late migrating cardioblasts and is located preferentially at their luminal and abluminal periphery. CAP mutations result in irregular cardioblast alignment and imprecisely controlled cardioblast numbers. Furthermore, CAP mutant embryos show a strongly reduced heart lumen and an aberrant shape of lumen forming cardioblasts. Analysis of double heterozygous animals reveals a genetic interaction of CAP with Integrin- and Talin-encoding genes. In post-embryonic stages, CAP closely colocalizes with Integrin near Z-bands and at cell-cell contact sites. CAP mutants exhibit a reduced contractility in larval hearts and show a locally disrupted morphology, which correlates with a reduced pumping efficiency. Our observations imply a function of CAP in linking Integrin signaling with the actin cytoskeleton. As a modulator of the cytoskeleton, CAP is involved in the establishment of proper cell shapes during cardioblast alignment and cardiac lumen formation in the Drosophila embryo. Furthermore, CAP is required for correct heart function throughout development.
Collapse
Affiliation(s)
- Jennifer Jammrath
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Ingolf Reim
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Erlangen, Germany
| | - Harald Saumweber
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Division of Cytogenetics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Bataillé L, Colombié N, Pelletier A, Paululat A, Lebreton G, Carrier Y, Frendo JL, Vincent A. Alary muscles and thoracic alary-related muscles are atypical striated muscles involved in maintaining the position of internal organs. Development 2020; 147:dev.185645. [PMID: 32188630 DOI: 10.1242/dev.185645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Alary muscles (AMs) have been described as a component of the cardiac system in various arthropods. Lineage-related thoracic muscles (TARMs), linking the exoskeleton to specific gut regions, have recently been discovered in Drosophila Asymmetrical attachments of AMs and TARMs, to the exoskeleton on one side and internal organs on the other, suggested an architectural function in moving larvae. Here, we analysed the shape and sarcomeric organisation of AMs and TARMs, and imaged their atypical deformability in crawling larvae. We then selectively eliminated AMs and TARMs by targeted apoptosis. Elimination of AMs revealed that AMs are required for suspending the heart in proper intra-haemocelic position and for opening of the heart lumen, and that AMs constrain the curvature of the respiratory tracheal system during crawling; TARMs are required for proper positioning of visceral organs and efficient food transit. AM/TARM cardiac versus visceral attachment depends on Hox control, with visceral attachment being the ground state. TARMs and AMs are the first example of multinucleate striated muscles connecting the skeleton to the cardiac and visceral systems in bilaterians, with multiple physiological functions.
Collapse
Affiliation(s)
- Laetitia Bataillé
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Colombié
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Aurore Pelletier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Achim Paululat
- University of Osnabrück, Department of Biology/Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Gaëlle Lebreton
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Yannick Carrier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Frendo
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
14
|
Hillyer JF, Pass G. The Insect Circulatory System: Structure, Function, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:121-143. [PMID: 31585504 DOI: 10.1146/annurev-ento-011019-025003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the insect circulatory system is involved in a multitude of vital physiological processes, it has gone grossly understudied. This review highlights this critical physiological system by detailing the structure and function of the circulatory organs, including the dorsal heart and the accessory pulsatile organs that supply hemolymph to the appendages. It also emphasizes how the circulatory system develops and ages and how, by means of reflex bleeding and functional integration with the immune system, it supports mechanisms for defense against predators and microbial invaders, respectively. Beyond that, this review details evolutionary trends and novelties associated with this system, as well as the ways in which this system also plays critical roles in thermoregulation and tracheal ventilation in high-performance fliers. Finally, this review highlights how novel discoveries could be harnessed for the control of vector-borne diseases and for translational medicine, and it details principal knowledge gaps that necessitate further investigation.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA;
| | - Günther Pass
- Department of Integrative Zoology, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
15
|
Chaturvedi D, VijayRaghavan K. From a syncytium to mononucleate cells and back: Yki and JNK in symphony. J Cell Biol 2019; 218:3531-3532. [PMID: 31653672 PMCID: PMC6829652 DOI: 10.1083/jcb.201910025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alary muscle syncytia in Drosophila larvae undergo a remarkable process of dedifferentiation into single cells that then fuse to become ventral longitudinal muscle in the adult. In this issue, Schaub et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201905048) identify the Hippo and JNK signaling pathways as key regulators of this process of developmental remodeling of cell fate.
Collapse
Affiliation(s)
- Dhananjay Chaturvedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Schaub C, Rose M, Frasch M. Yorkie and JNK revert syncytial muscles into myoblasts during Org-1-dependent lineage reprogramming. J Cell Biol 2019; 218:3572-3582. [PMID: 31591186 PMCID: PMC6829659 DOI: 10.1083/jcb.201905048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
The formation and differentiation of syncytial muscles is typically considered an irreversible developmental process. Schaub et al. describe molecular events that dedifferentiate syncytial muscle into mononucleate myoblasts during a naturally occurring lineage reprogramming process. Lineage reprogramming has received increased research attention since it was demonstrated that lineage-restricted transcription factors can be used in vitro for direct reprogramming. Recently, we reported that the ventral longitudinal musculature of the adult Drosophila heart arises in vivo by direct lineage reprogramming from larval alary muscles, a process that starts with the dedifferentiation and fragmentation of syncytial muscle cells into mononucleate myoblasts and depends on Org-1 (Drosophila Tbx1). Here, we shed light on the events occurring downstream of Org-1 in this first step of transdifferentiation and show that alary muscle lineage-specific activation of Yorkie plays a key role in initiating the dedifferentiation and fragmentation of these muscles. An additional necessary input comes from active dJNK signaling, which contributes to the activation of Yorkie and furthermore activates dJun. The synergistic activities of the Yorkie/Scalloped and dJun/dFos transcriptional activators subsequently initiate alary muscle fragmentation as well as up-regulation of Myc and piwi, both crucial for lineage reprogramming.
Collapse
Affiliation(s)
- Christoph Schaub
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| | - Marcel Rose
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| | - Manfred Frasch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, Germany
| |
Collapse
|
17
|
Issa AR, Picao-Osorio J, Rito N, Chiappe ME, Alonso CR. A Single MicroRNA-Hox Gene Module Controls Equivalent Movements in Biomechanically Distinct Forms of Drosophila. Curr Biol 2019; 29:2665-2675.e4. [PMID: 31327720 PMCID: PMC6710004 DOI: 10.1016/j.cub.2019.06.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Movement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically distinct developmental stages of an organism, but it is currently unclear whether or not these movements have a common molecular cellular basis. Here we explore this problem in Drosophila, focusing on the roles played by the microRNA (miRNA) locus miR-iab4/8, which we previously showed to be essential for the normal corrective response displayed by the fruit fly larva when turned upside down (self-righting). Our study shows that miR-iab4 is required for normal self-righting across all three Drosophila larval stages. Unexpectedly, we also discover that this miRNA is essential for normal self-righting behavior in the adult fly, an organism with different morphology, neural constitution, and biomechanics. Through the combination of gene expression, optical imaging, and quantitative behavioral approaches, we provide evidence that miR-iab4 exerts its effects on adult self-righting behavior in part through repression of the Hox gene Ultrabithorax (Ubx) in a specific set of adult motor neurons, the NB2-3/lin15 neurons. Our results show that miRNA controls the function, rather than the morphology, of these neurons and demonstrate that post-developmental changes in Hox gene expression can modulate behavior in the adult. Our work reveals that a common miRNA-Hox genetic module can be re-deployed in different neurons to control functionally equivalent movements in biomechanically distinct organisms and describes a novel post-developmental role of the Hox genes in adult neural function. The fruit fly miRNA gene miR-iab4 controls the same behavior in the larva and adult miR-iab4 exerts its behavioral roles via repression of the Hox gene Ultrabithorax miRNA/Hox inputs affect the physiology and not the anatomy of specific motor neurons Conditional expression shows a novel role of the Hox genes in adult neural function
Collapse
Affiliation(s)
- A Raouf Issa
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - João Picao-Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Nuno Rito
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - M Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| |
Collapse
|
18
|
Domsch K, Carnesecchi J, Disela V, Friedrich J, Trost N, Ermakova O, Polychronidou M, Lohmann I. The Hox transcription factor Ubx stabilizes lineage commitment by suppressing cellular plasticity in Drosophila. eLife 2019; 8:42675. [PMID: 31050646 PMCID: PMC6513553 DOI: 10.7554/elife.42675] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
During development cells become restricted in their differentiation potential by repressing alternative cell fates, and the Polycomb complex plays a crucial role in this process. However, how alternative fate genes are lineage-specifically silenced is unclear. We studied Ultrabithorax (Ubx), a multi-lineage transcription factor of the Hox class, in two tissue lineages using sorted nuclei and interfered with Ubx in mesodermal cells. We find that depletion of Ubx leads to the de-repression of genes normally expressed in other lineages. Ubx silences expression of alternative fate genes by retaining the Polycomb Group protein Pleiohomeotic at Ubx targeted genomic regions, thereby stabilizing repressive chromatin marks in a lineage-dependent manner. Our study demonstrates that Ubx stabilizes lineage choice by suppressing the multipotency encoded in the genome via its interaction with Pho. This mechanism may explain why the Hox code is maintained throughout the lifecycle, since it could set a block to transdifferentiation in adult cells.
Collapse
Affiliation(s)
- Katrin Domsch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Vanessa Disela
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Jana Friedrich
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Nils Trost
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Xu K, Liu X, Wang Y, Wong C, Song Y. Temporospatial induction of homeodomain gene cut dictates natural lineage reprogramming. eLife 2018; 7:33934. [PMID: 29714689 PMCID: PMC5986271 DOI: 10.7554/elife.33934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding how cellular identity naturally interconverts with high efficiency and temporospatial precision is crucial for regenerative medicine. Here, we revealed a natural midgut-to-renal lineage conversion event during Drosophila metamorphosis and identified the evolutionarily-conserved homeodomain protein Cut as a master switch in this process. A steep Wnt/Wingless morphogen gradient intersects with a pulse of steroid hormone ecdysone to induce cut expression in a subset of midgut progenitors and reprogram them into renal progenitors. Molecularly, ecdysone-induced temporal factor Broad physically interacts with cut enhancer-bound Wnt pathway effector TCF/β-catenin and likely bridges the distant enhancer and promoter region of cut through its self-association. Such long-range enhancer-promoter looping could subsequently trigger timely cut transcription. Our results therefore led us to propose an unexpected poising-and-bridging mechanism whereby spatial and temporal cues intersect, likely via chromatin looping, to turn on a master transcription factor and dictate efficient and precise lineage reprogramming. As an embryo develops, an organism transforms from a single cell into an organized collection of different cells, tissues and organs. Regulated by genes and messenger molecules, non-specialized cells known as precursor cells, move, divide and adapt to produce the different cells in the adult body. However, sometimes already-specialized adult cells can acquire a new role in a process known as lineage reprogramming. Finding ways to artificially induce and control lineage reprogramming could be useful in regenerative medicine. This would allow cells to be reprogrammed to replace those that are lost or damaged. So far, scientists have been unable to develop a clear view of how lineage reprogramming happens naturally. Here, Xu et al. identified a cell-conversion event in the developing fruit fly. As the fly larva develops into an adult, a group of cells in the midgut reprogramme to become renal cells – the equivalent to human kidney cells. The experiments revealed that a combination of signals from a cell messenger system important for cell specialization (called Wnt) and the hormone that controls molting in insects, activate a gene called cut, which controls the midgut-to-renal lineage reprogramming. Together, Wnt and the hormone ensure that cut is activated only in a small, specific group of midgut precursor cells at a precise time. The reprogrammed cells then move into the excretory organs, the renal tubes, where they give rise to renal cells. Midgut precursor cells in which cut had been experimentally removed, still traveled into the renal tubes. However, they failed to switch their identity and gave rise to midgut cells instead. Further examination revealed that both Wnt and the ecdysone hormone are needed to activate the cut gene. This is probably achieved by creating loops in the DNA to bring together the two distantly located key regulatory elements of cut gene expression. If this mechanism can be seen in other contexts it may be possible to adapt it for medical purposes. The ability to reprogramme groups of cells with high specificity could transform medicine. It would make it easier for our bodies to regenerate and repair.
Collapse
Affiliation(s)
- Ke Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xiaodan Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yuchun Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chouin Wong
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
21
|
Cervantes-Diaz F, Contreras P, Marcellini S. Evolutionary origin of endochondral ossification: the transdifferentiation hypothesis. Dev Genes Evol 2017; 227:121-127. [PMID: 27909803 DOI: 10.1007/s00427-016-0567-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
The vertebrate endoskeleton results from the piecemeal assembly of bone and cartilage as well as additional types of calcified extracellular matrices produced by seemingly hybrid cell types of intermediate phenotypes between osteoblasts and chondrocytes. Hence, shedding light on the emergence and subsequent diversification of skeletal tissues represents a major challenge in vertebrate evolutionary developmental biology. A 150-year-old debate in the field was recently solved by lineage tracing experiments demonstrating that, during mouse endochondral bone development, a subset of chondrocytes evades apoptosis and transdifferentiates into osteoblasts at the chondro-osseous junction. Here, we interpret these new data from a broad phylogenetic perspective, integrating fossil, histological, cellular, and genetic evidence from a wide range of vertebrates. We propose a testable scenario according to which transdifferentiation played a fundamental role in the emergence of endochondral ossification, an osteichthyan-specific evolutionary novelty. The remarkable skeletal cell plasticity might be contingent on the similar architectures of the osteoblastic and chondrocytic gene regulatory networks, thereby providing a unifying mechanism underlying both complete transdifferentiation as well as partial cell type conversions observed in intermediate skeletal tissues such as the chondroid bone or globuli ossei.
Collapse
Affiliation(s)
- Fret Cervantes-Diaz
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Pedro Contreras
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile.
| |
Collapse
|
22
|
|
23
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
24
|
Abstract
Recent data have paved the way to mechanistic studies into the role of Tbx1 during development. Tbx1 is haploinsufficient and is involved in an important genetic disorder. The gene encodes a T-box transcription factor that is expressed from approximately E7.5 in mouse embryos and continues to be expressed in a highly dynamic manner. It is neither a strong transcriptional activator nor a strong repressor, but it regulates a large number of genes through epigenetic modifications. Here, we review recent literature concerning mechanisms of gene regulation by Tbx1 and its role in mammalian development, with a special focus on the cardiac, vascular, and central nervous systems.
Collapse
|
25
|
Abstract
The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi) reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.
Collapse
|
26
|
Lovato TL, Cripps RM. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3. [PMID: 27695700 PMCID: PMC5044875 DOI: 10.3390/jcdd3020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart.
Collapse
|
27
|
On the Morphology of the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3020015. [PMID: 29367564 PMCID: PMC5715677 DOI: 10.3390/jcdd3020015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
The circulatory system of Drosophilamelanogaster represents an easily amenable genetic model whose analysis at different levels, i.e., from single molecules up to functional anatomy, has provided new insights into general aspects of cardiogenesis, heart physiology and cardiac aging, to name a few examples. In recent years, the Drosophila heart has also attracted the attention of researchers in the field of biomedicine. This development is mainly due to the fact that several genes causing human heart disease are also present in Drosophila, where they play the same or similar roles in heart development, maintenance or physiology as their respective counterparts in humans. This review will attempt to briefly introduce the anatomy of the Drosophila circulatory system and then focus on the different cell types and non-cellular tissue that constitute the heart.
Collapse
|
28
|
Frasch M. Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Curr Top Dev Biol 2016; 116:331-55. [PMID: 26970627 DOI: 10.1016/bs.ctdb.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In some rare and striking cases, striated muscle fibers of the skeleton or body wall, which consist of terminally differentiated syncytia with complex ultrastructures, were found to be capable of dedifferentiating and fragmenting into mononucleate cells. Examples of such events will be discussed in which the dedifferentiated cells reenter the cell cycle, proliferate, and rebuilt damaged muscle fibers during limb regeneration or transdifferentiate to generate new types of muscles during normal development.
Collapse
Affiliation(s)
- Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
29
|
Wang Y, Cruz T, Irion U, Moussian B. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system. Biol Open 2015; 4:1753-61. [PMID: 26621831 PMCID: PMC4736026 DOI: 10.1242/bio.013086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. Summary: During embryogenesis in Drosophila melanogaster, without involving the nervous system, somatic muscles control terminal differentiation of the airway system by stimulating gas-filling before hatching.
Collapse
Affiliation(s)
- Yiwen Wang
- Animal Genetics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Tina Cruz
- Animal Genetics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Uwe Irion
- Department of Genetics, Max-Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen 72076, Germany
| | - Bernard Moussian
- Institute of Biology Valrose, University of Nice, Parc Valrose, Nice 06108, France Applied Zoology, Department of Biology, Technische Universität Dresden, Zellescher Weg 20b, Dresden D-01217, Germany
| |
Collapse
|
30
|
Bataillé L, Frendo JL, Vincent A. Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles. Mech Dev 2015. [PMID: 26219857 DOI: 10.1016/j.mod.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva.
Collapse
Affiliation(s)
- Laetitia Bataillé
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France.
| | - Jean-Louis Frendo
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| | - Alain Vincent
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France.
| |
Collapse
|