1
|
Larrondo LF. Circadian rhythms: pervasive, and often times evasive. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230477. [PMID: 39842475 DOI: 10.1098/rstb.2023.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 01/24/2025] Open
Abstract
Most circadian texts begin by stating that clocks are pervasive throughout the tree of life. Indeed, clock mechanisms have been described from cyanobacteria to humans, representing a notable example of convergent evolution: yet, there are several phyla in animals, protists or within fungi and bacteria, in which homologs of some-or all-known clock components seem to be absent, posing inevitable questions about the evolution of circadian systems. Moreover, as we move away from model organisms, there are several taxa in which core clock elements can be identified at the genomic levels. However, the functional description of those putative clocks has been hard to achieve, as rhythmicity is not observed unless defined abiotic or nutritional cues are provided. The mechanisms 'conditioning' the functionality of clocks remain uncertain, emphasizing the need to delve further into non-model circadian systems. As the absence of evidence is not evidence of absence, the lack of known core-clock homologs or of observable rhythms in a given organism, cannot be an a priori criterion to discard the presence of a functional clock, as rhythmicity may be limited to yet untested experimental conditions or phenotypes. This article seeks to reflect on these topics, highlighting some of the pressing questions awaiting to be addressed.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Luis F Larrondo
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
2
|
Perry BA, Desjardin DE, Stevani CV. Diversity, Distribution, and Evolution of Bioluminescent Fungi. J Fungi (Basel) 2024; 11:19. [PMID: 39852438 PMCID: PMC11766655 DOI: 10.3390/jof11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
All known bioluminescent fungi are basidiomycetes belonging to the Agaricales. They emit 520-530 nm wavelength light 24 h per day in a circadian rhythm. The number of known bioluminescent fungi has more than doubled in the past 15 years from 64 to 132 species. We currently recognize five distinct lineages of bioluminescent Agaricales belonging to the Omphalotaceae (18 species), Physalacriaceae (14), Mycenaceae (96), Lucentipes lineage (3), and Cyphellopsidaceae (1). They are distributed across the globe with the highest diversity occurring on woody or leafy substrates in subtropical closed canopy forests with high plant diversity. With the caveat that most regions of the world have not been extensively sampled for bioluminescent fungi, the areas with the most known species are Japan (36), South America (30), North America (27), Malesia, South Asia, and Southeast Asia (26), Europe (23), Central America (21), China (13), Africa (10), Australasia, Papua New Guinea, and New Caledonia (11), and the Pacific Islands (5). Recent studies have elucidated the biochemical and genetic pathways of fungal bioluminescence and suggest the phenomenon originated a single time early in the evolution of the Agaricales. Multiple independent evolutionary losses explain the absence of luminescence in many species found within the five lineages and in the majority of Agaricales.
Collapse
Affiliation(s)
- Brian A. Perry
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Dennis E. Desjardin
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| | - Cassius V. Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
3
|
Schwarze FWMR, Carvalho T, Reina G, Greca LG, Buenter U, Gholam Z, Krupnik L, Neels A, Boesel L, Morris H, Heeb M, Huch A, Nyström G, Giovannini G. Taming the Production of Bioluminescent Wood Using the White Rot Fungus Desarmillaria Tabescens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403215. [PMID: 39263934 PMCID: PMC11600283 DOI: 10.1002/advs.202403215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/19/2024] [Indexed: 09/13/2024]
Abstract
Although bioluminescence is documented both anecdotally and experimentally, the parameters involved in the production of fungal bioluminescence during wood colonization have not been identified to date. Here, for the first time, this work develops a methodology to produce a hybrid living material by manipulating wood colonization through merging the living fungus Desarmillaria tabescens with nonliving balsa (Ochroma pyramidale) wood to achieve and control the autonomous emission of bioluminescence. The hybrid material with the highest bioluminescence is produced by soaking the wood blocks before co-cultivating them with the fungus for 3 months. Regardless of the incubation period, the strongest bioluminescence is evident from balsa wood blocks with a moisture content of 700-1200%, highlighting the fundamental role of moisture content for bioluminescence production. Further characterization reveals that D. tabescens preferentially degraded hemicelluloses and lignin in balsa wood. Fourier-transform infrared spectroscopy reveals a decrease in lignin, while X-ray diffraction analysis confirms that the cellulose crystalline structure is not altered during the colonization process. This information will enable the design of ad-hoc synthetic materials that use fungi as tools to maximize bioluminescence production, paving the way for an innovative hybrid material that could find application in the sustainable production of light.
Collapse
Affiliation(s)
| | - Tiago Carvalho
- Laboratory for Cellulose and Wood MaterialsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Giacomo Reina
- Laboratory for Particles‐Biology InteractionsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Luiz Garcia Greca
- Laboratory for Cellulose and Wood MaterialsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Urs Buenter
- Laboratory for Cellulose and Wood MaterialsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Zennat Gholam
- Laboratory for Cellulose and Wood MaterialsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Leonard Krupnik
- Center for X‐ray AnalyticsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Antonia Neels
- Center for X‐ray AnalyticsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Luciano Boesel
- Giorgia GiovanniniLaboratory for Biomimetic Membranes and Textiles EmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Hugh Morris
- Integrated Land Management DepartmentSRUCBarony, ParkgateDumfriesDG1 3NEUK
| | - Markus Heeb
- Laboratory for Cellulose and Wood MaterialsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Anja Huch
- Laboratory for Cellulose and Wood MaterialsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose and Wood MaterialsEmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Giorgia Giovannini
- Giorgia GiovanniniLaboratory for Biomimetic Membranes and Textiles EmpaLerchenfeldstrasse 5St. Gallen9014Switzerland
| |
Collapse
|
4
|
Muller A, Morales-Montero P, Boss A, Hiltmann A, Castaneda-Alvarez C, Bhat AH, Arce CCM, Glauser G, Joyce SA, Clarke DJ, Machado RAR. Bacterial bioluminescence is an important regulator of multitrophic interactions in the soil. Cell Rep 2024; 43:114817. [PMID: 39365701 DOI: 10.1016/j.celrep.2024.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Enormous efforts have been made to understand the functions of bioluminescence; however, its relevance in soil ecosystems has barely been investigated. In addition, our understanding of the biological relevance of bioluminescence is hampered by the scarcity of tools to genetically manipulate this trait. Using the symbionts of entomopathogenic nematodes, Photorhabdus bacteria, we show that bioluminescence plays important regulatory roles in multitrophic interactions in the soil. Through genetic modifications and exploiting natural variability, we provide direct evidence for the multifunctional nature of bioluminescence. It regulates abiotic and biotic stress resistance, impacts other trophic levels, including nematodes, insects, and plants, and contributes to symbiosis. Our study contributes to understanding the factors that have driven the evolution and maintenance of this trait in belowground ecosystems.
Collapse
Affiliation(s)
- Arthur Muller
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Patricia Morales-Montero
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Anja Boss
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Alexandre Hiltmann
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Carlos Castaneda-Alvarez
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Aashaq H Bhat
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Carla C M Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; School of Biochemistry and Cell Biology, University College Cork, T12 YN60 Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - Ricardo A R Machado
- Experimental Biology Group, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
5
|
Amaral DT, Kaplan RA, Takishita TKE, de Souza DR, Oliveira AG, Rosa SP. Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil. Photochem Photobiol Sci 2024; 23:1373-1392. [PMID: 38733516 DOI: 10.1007/s43630-024-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC (UFABC), Santo André, São Paulo, Brazil.
- Programa de Pós Graduação Em Biotecnociência, Universidade Federal Do ABC (UFABC), Avenida Dos Estados, Bloco A, Room 504-3. ZIP 09210-580, Santo André, São Paulo, 5001, Brazil.
| | - Rachel A Kaplan
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | | | - Daniel R de Souza
- Laboratório de Estudos Avançados Em Jornalismo, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Anderson G Oliveira
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Simone Policena Rosa
- Instituto de Recursos Naturais (IRN), Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brazil
| |
Collapse
|
6
|
Heinzelmann, R, Baggenstos, H, Rudolf, A. Is the bioluminescence in many Mycena species overlooked? - A case study from M. crocata in Switzerland. MYCOSCIENCE 2024; 65:173-179. [PMID: 39493651 PMCID: PMC11527772 DOI: 10.47371/mycosci.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 11/05/2024]
Abstract
Fungal bioluminescence is mystifying humans since ancient times. Nevertheless, the biosynthetic pathway behind this phenomenon was only very recently resolved. Fungal bioluminescence occurs in five distantly related linages (Omphalotaceae lineage, Armillaria lineage, mycenoid lineage, Lucentipes lineage and Eoscyphella lineage) of the basidiomycete order Agaricales. Recent research suggests fungal bioluminescence has emerged 160 million years ago in the most common ancestor of the mycenoid and marasmioid clade and is maintained since then. Surprisingly, in the mycenoid linage, primarily represented by the genus Mycena, most species are considered non-luminescent, implying that many mycenoid species have lost their bioluminescent ability. Here, we report evidence for bioluminescence in Mycena crocata and show that the genome of this species is fully equipped with the genes associated with fungal bioluminescence. Mycena crocata is a long-known species frequently reported from Europe and Japan, which was considered non-luminescent until now. The low light emission intensity and the restriction of the luminescence to the vegetative mycelium and the base of the basidiome may be reasons why bioluminescence was not perceived earlier. We assume there might be other known Mycena species whose luminescent properties are not yet discovered, and that therefore the number of bioluminescent Mycena species is currently underestimated.
Collapse
|
7
|
Park MJ, Kim E, Kim MJ, Jang Y, Ryoo R, Ka KH. Cloning and Expression Analysis of Bioluminescence Genes in Omphalotus guepiniiformis Reveal Stress-Dependent Regulation of Bioluminescence. MYCOBIOLOGY 2024; 52:42-50. [PMID: 38415178 PMCID: PMC10896133 DOI: 10.1080/12298093.2024.2302661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024]
Abstract
Bioluminescence is a type of chemiluminescence that arises from a luciferase-catalyzed oxidation reaction of luciferin. Molecular biology and comparative genomics have recently elucidated the genes involved in fungal bioluminescence and the evolutionary history of their clusters. However, most studies on fungal bioluminescence have been limited to observing the changes in light intensity under various conditions. To understand the molecular basis of bioluminescent responses in Omphalotus guepiniiformis under different environmental conditions, we cloned and sequenced the genes of hispidin synthase, hispidin-3-hydroxylase, and luciferase enzymes, which are pivotal in the fungal bioluminescence pathway. Each gene showed high sequence similarity to that of other luminous fungal species. Furthermore, we investigated their transcriptional changes in response to abiotic stresses. Wound stress enhanced the bioluminescence intensity by increasing the expression of bioluminescence pathway genes, while temperature stress suppressed the bioluminescence intensity via the non-transcriptional pathway. Our data suggested that O. guepiniiformis regulates bioluminescence to respond differentially to specific environmental stresses. To our knowledge, this is the first study on fungal bioluminescence at the gene expression level. Further studies are required to address the biological and ecological meaning of different bioluminescence responses in changing environments, and O. quepiniiformis could be a potential model species.
Collapse
Affiliation(s)
- Mi-Jeong Park
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Eunjin Kim
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Min-Jun Kim
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Yeongseon Jang
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Rhim Ryoo
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Kang-Hyeon Ka
- Forest Microbiology Division, Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, Republic of Korea
| |
Collapse
|
8
|
Ramírez Martínez C, Gómez-Pérez LS, Ordaz A, Torres-Huerta AL, Antonio-Perez A. Current Trends of Bacterial and Fungal Optoproteins for Novel Optical Applications. Int J Mol Sci 2023; 24:14741. [PMID: 37834188 PMCID: PMC10572898 DOI: 10.3390/ijms241914741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Photoproteins, luminescent proteins or optoproteins are a kind of light-response protein responsible for the conversion of light into biochemical energy that is used by some bacteria or fungi to regulate specific biological processes. Within these specific proteins, there are groups such as the photoreceptors that respond to a given light wavelength and generate reactions susceptible to being used for the development of high-novel applications, such as the optocontrol of metabolic pathways. Photoswitchable proteins play important roles during the development of new materials due to their capacity to change their conformational structure by providing/eliminating a specific light stimulus. Additionally, there are bioluminescent proteins that produce light during a heatless chemical reaction and are useful to be employed as biomarkers in several fields such as imaging, cell biology, disease tracking and pollutant detection. The classification of these optoproteins from bacteria and fungi as photoreceptors or photoresponse elements according to the excitation-emission spectrum (UV-Vis-IR), as well as their potential use in novel applications, is addressed in this article by providing a structured scheme for this broad area of knowledge.
Collapse
Affiliation(s)
| | | | | | | | - Aurora Antonio-Perez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Ciudad López Mateos, Atizapán de Zaragoza 52926, Estado de México, Mexico; (C.R.M.); (L.S.G.-P.); (A.O.); (A.L.T.-H.)
| |
Collapse
|
9
|
Ding R, Liu D, Feng Y, Liu H, Ji H, He L, Liu S. Unexcited Light Source Imaging for Biomedical Applications. Chemistry 2023; 29:e202301689. [PMID: 37401914 DOI: 10.1002/chem.202301689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Optical imaging has a wide range of applications in the biomedical field, allowing the visualization of physiological processes and helping in the diagnosis and treatment of diseases. Unexcited light source imaging technologies, such as chemiluminescence imaging, bioluminescence imaging and afterglow imaging have attracted great attention in recent years because of the absence of excitation light interference in their application and the advantages of high sensitivity and high signal-to-noise ratio. In this review, the latest advances in unexcited light source imaging technology for biomedical applications are highlighted. The design strategies of unexcited light source luminescent probes in improving luminescence brightness, penetration depth, quantum yield and targeting, and their applications in inflammation imaging, tumor imaging, liver and kidney injury imaging and bacterial infection imaging are introduced in detail. The research progress and future prospects of unexcited light source imaging for medical applications are further discussed.
Collapse
Affiliation(s)
- Ruihao Ding
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Yu Feng
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Haoxin Liu
- Augustana Faculty, University of Alberta, T4V2R3, Camrose, Canada
| | - Hongrui Ji
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Liangcan He
- Key Laboratory of Micro-systems and, Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, China
| | - Shaoqin Liu
- Key Laboratory of Micro-systems and, Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, China
| |
Collapse
|
10
|
Krah FS, Büntgen U, Bässler C. Temperature affects the timing and duration of fungal fruiting patterns across major terrestrial biomes. Ecol Lett 2023; 26:1572-1583. [PMID: 37340568 DOI: 10.1111/ele.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023]
Abstract
The Earth's ecosystems are affected by a complex interplay of biotic and abiotic factors. While global temperatures increase, associated changes in the fruiting behaviour of fungi remain unknown. Here, we analyse 6.1 million fungal fruit body (mushroom) records and show that the major terrestrial biomes exhibit similarities and differences in fruiting events. We observed one main fruiting peak in most years across all biomes. However, in boreal and temperate biomes, there was a substantial number of years with a second peak, indicating spring and autumn fruiting. Distinct fruiting peaks are spatially synchronized in boreal and temperate biomes, but less defined and longer in the humid tropics. The timing and duration of fungal fruiting were significantly related to temperature mean and variability. Temperature-dependent aboveground fungal fruiting behaviour, which is arguably also representative of belowground processes, suggests that the observed biome-specific differences in fungal phenology will change in space and time when global temperatures continue to increase.
Collapse
Affiliation(s)
- Franz-Sebastian Krah
- Fungal Ecology and BayCEER, University of Bayreuth, Bayreuth, Germany
- Conservation Biology, Institute for Ecology, Evolution and Diversity Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, UK
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Claus Bässler
- Fungal Ecology and BayCEER, University of Bayreuth, Bayreuth, Germany
- Conservation Biology, Institute for Ecology, Evolution and Diversity Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Bavarian Forest National Park, Grafenau, Germany
| |
Collapse
|
11
|
Oba Y, Hosaka K. The Luminous Fungi of Japan. J Fungi (Basel) 2023; 9:615. [PMID: 37367550 DOI: 10.3390/jof9060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Luminous fungi have long attracted public attention in Japan, from old folklore and fiction to current tourism, children's toys, games, and picture books. At present, 25 species of luminous fungi have been discovered in Japan, which correspond to approximately one-fourth of the globally recognized species. This species richness is arguably due to the abundant presence of mycophiles looking to find new mushroom species and a tradition of night-time activities, such as firefly watching, in Japan. Bioluminescence, a field of bioscience focused on luminous organisms, has long been studied by many Japanese researchers, including the biochemistry and chemistry of luminous fungi. A Japanese Nobel Prize winner, Osamu Shimomura (1928-2018), primarily focused on the bioluminescence system of luminous fungi in the latter part of his life, and total elucidation of the mechanism was finally accomplished by an international research team with representatives from Russia, Brazil, and Japan in 2018. In this review, we focused on multiple aspects related to luminous fungi of Japan, including myth, taxonomy, and modern sciences.
Collapse
Affiliation(s)
- Yuichi Oba
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Kentaro Hosaka
- Department of Botany, National Museum of Nature and Science, Tsukuba 305-0005, Ibaraki, Japan
| |
Collapse
|
12
|
Zheng P, Ge J, Ji J, Zhong J, Chen H, Luo D, Li W, Bi B, Ma Y, Tong W, Han L, Ma S, Zhang Y, Wu J, Zhao Y, Pan R, Fan P, Lu M, Du H. Metabolic engineering and mechanical investigation of enhanced plant autoluminescence. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37155328 PMCID: PMC10363767 DOI: 10.1111/pbi.14068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
The fungal bioluminescence pathway (FBP) was identified from glowing fungi, which releases self-sustained visible green luminescence. However, weak bioluminescence limits the potential application of the bioluminescence system. Here, we screened and characterized a C3'H1 (4-coumaroyl shikimate/quinate 3'-hydroxylase) gene from Brassica napus, which efficiently converts p-coumaroyl shikimate to caffeic acid and hispidin. Simultaneous expression of BnC3'H1 and NPGA (null-pigment mutant in A. nidulans) produces more caffeic acid and hispidin as the natural precursor of luciferin and significantly intensifies the original fungal bioluminescence pathway (oFBP). Thus, we successfully created enhanced FBP (eFBP) plants emitting 3 × 1011 photons/min/cm2 , sufficient to illuminate its surroundings and visualize words clearly in the dark. The glowing plants provide sustainable and bio-renewable illumination for the naked eyes, and manifest distinct responses to diverse environmental conditions via caffeic acid biosynthesis pathway. Importantly, we revealed that the biosynthesis of caffeic acid and hispidin in eFBP plants derived from the sugar pathway, and the inhibitors of the energy production system significantly reduced the luminescence signal rapidly from eFBP plants, suggesting that the FBP system coupled with the luciferin metabolic flux functions in an energy-driven way. These findings lay the groundwork for genetically creating stronger eFBP plants and developing more powerful biological tools with the FBP system.
Collapse
Affiliation(s)
- Peng Zheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jieyu Ge
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiayi Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jingling Zhong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Hongyu Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Daren Luo
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Bo Bi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yongjun Ma
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wanghui Tong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuqi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Hao Du
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Liu X, Wang M, Liu Y. Chemistry in Fungal Bioluminescence: Theoretical Studies on Biosynthesis of Luciferin from Caffeic Acid and Regeneration of Caffeic Acid from Oxidized Luciferin. J Fungi (Basel) 2023; 9:369. [PMID: 36983537 PMCID: PMC10053366 DOI: 10.3390/jof9030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Fungal bioluminescence is widely distributed in the terrestrial environment. At a specific stage of growth, luminescent fungi shine green light at the fruiting body or mycelium. From the viewpoint of chemistry, fungal bioluminescence involves an in vivo cycle of caffeic acid. The complete cycle is composed of three stages: biosynthesis of luciferin from caffeic acid, luminescence process from luciferin to oxidized luciferin, and regeneration of caffeic acid from oxidized luciferin. Experimental studies roughly proposed this cycle but not the detailed reaction process and mechanism. Our previous theoretical study clearly described the mechanism of the middle stage. The present article attempts to describe the reaction processes and mechanisms of the other two stages by theoretical calculations. A complete theoretical study on the chemistry in the entire process of fungal bioluminescence is helpful to deeply understand fungal bioluminescence.
Collapse
Affiliation(s)
- Xiayu Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry Beijing Normal University, Beijing 100875, China
| | - Mingyu Wang
- School of Science, Hainan University, Haikou 570228, China
| | - Yajun Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
14
|
Powell GS, Saxton NA, Pacheco YM, Stanger-Hall KF, Martin GJ, Kusy D, Felipe Lima Da Silveira L, Bocak L, Branham MA, Bybee SM. Beetle bioluminescence outshines extant aerial predators. Proc Biol Sci 2022; 289:20220821. [PMID: 35855602 PMCID: PMC9297012 DOI: 10.1098/rspb.2022.0821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86-152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.
Collapse
Affiliation(s)
- Gareth S. Powell
- Department of Biology and Monte L. Bean Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Natalie A. Saxton
- Research and Collections Division, The Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH 44106, USA,Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Yelena M. Pacheco
- Plant Biology Department, University of Georgia, 4510 Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Kathrin F. Stanger-Hall
- Plant Biology Department, University of Georgia, 4510 Miller Plant Sciences Building, Athens, GA 30602, USA
| | - Gavin J. Martin
- School of Math and Sciences, Laramie County Community College, 1400 E. College Dr., Cheyenne, WY 82007, USA
| | - Dominik Kusy
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute (CRH), Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| | - Luiz Felipe Lima Da Silveira
- Biology Department, Western Carolina University, 206 Stillwell Building, 1 University Dr., Cullowhee, NC 2723, USA
| | - Ladislav Bocak
- Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute (CRH), Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic
| | - Marc A. Branham
- Department of Entomology and Nematology, University of Florida, P.O. Box 110620, Gainesville, FL 32611, USA
| | - Seth M. Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| |
Collapse
|
15
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Nóbrega BB, Soares DMM, Zamuner CK, Stevani CV. Optimized methodology for obtention of high-yield and -quality RNA from the mycelium of the bioluminescent fungus Neonothopanus gardneri. J Microbiol Methods 2021; 191:106348. [PMID: 34699864 DOI: 10.1016/j.mimet.2021.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Neonothopanus gardneri, also known as coconut flower mushroom (flor-de-coco), is a Brazilian bioluminescent basidiomycete found in Palm Forest, a transitional biome between the Amazonian Forest and Caatinga (Savanna-like vegetation) in Northeast Brazil, especially in Piauí State. Recent advances toward the elucidation of fungal bioluminescence have contributed to the discovery of four genes (hisps, h3h, luz and cph) involved with the bioluminescence process, the so-called Caffeic Acid Cycle (CAC) and to develop biotechnological applications such autoluminescent tobacco plants and luciferase-based reporter genes. High-yield and -quality RNA-extraction methods are required for most of these purposes. Herein, four methods for RNA isolation from the mycelium of N. gardneri were evaluated: RNeasy® kit (QIAGEN), TRI+, TRI18G+, and TRI26G+. Highest RNA yield was observed for TRI18G+ and TRI26G+ methods, an increase of ~130% in comparison to the RNeasy® method and of ~40% to the TRI+ protocol. All the RNA samples showed good purity and integrity, except by gDNA contamination in RNA samples produced with the RNeasy® method. High quality of RNA samples was confirmed by successful cDNA synthesis and PCR amplification of the coding sequence of h3h gene, responsible for the hydroxylation of the precursor of fungal luciferin (3-hydroxyhispidin). Similarly, RT-qPCR amplification of ef-tu gene, related to the protein biosynthesis in the cell, was demonstrated from RNA samples. This is the first report of a reproducible, time-saving and low-cost optimized method for isolation of high-quality and -yield, DNA-free RNA from a bioluminescent fungus, but that can also be useful for other basidiomycetes.
Collapse
Affiliation(s)
- Bianca B Nóbrega
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas M M Soares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Caio K Zamuner
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Wang MY, Liu YJ. Chemistry in Fungal Bioluminescence: A Theoretical Study from Luciferin to Light Emission. J Org Chem 2021; 86:1874-1881. [DOI: 10.1021/acs.joc.0c02788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ming-Yu Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Ke HM, Lee HH, Lin CYI, Liu YC, Lu MR, Hsieh JWA, Chang CC, Wu PH, Lu MJ, Li JY, Shang G, Lu RJH, Nagy LG, Chen PY, Kao HW, Tsai IJ. Mycena genomes resolve the evolution of fungal bioluminescence. Proc Natl Acad Sci U S A 2020; 117:31267-31277. [PMID: 33229585 PMCID: PMC7733832 DOI: 10.1073/pnas.2010761117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mushroom-forming fungi in the order Agaricales represent an independent origin of bioluminescence in the tree of life; yet the diversity, evolutionary history, and timing of the origin of fungal luciferases remain elusive. We sequenced the genomes and transcriptomes of five bonnet mushroom species (Mycena spp.), a diverse lineage comprising the majority of bioluminescent fungi. Two species with haploid genome assemblies ∼150 Mb are among the largest in Agaricales, and we found that a variety of repeats between Mycena species were differentially mediated by DNA methylation. We show that bioluminescence evolved in the last common ancestor of mycenoid and the marasmioid clade of Agaricales and was maintained through at least 160 million years of evolution. Analyses of synteny across genomes of bioluminescent species resolved how the luciferase cluster was derived by duplication and translocation, frequently rearranged and lost in most Mycena species, but conserved in the Armillaria lineage. Luciferase cluster members were coexpressed across developmental stages, with the highest expression in fruiting body caps and stipes, suggesting fruiting-related adaptive functions. Our results contribute to understanding a de novo origin of bioluminescence and the corresponding gene cluster in a diverse group of enigmatic fungal species.
Collapse
Affiliation(s)
- Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chan-Yi Ivy Lin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| | - Jo-Wei Allison Hsieh
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chiung-Chih Chang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Hsuan Wu
- Master Program for Plant Medicine and Good Agricultural Practice, National Chung Hsing University, Taichung 402, Taiwan
| | - Meiyeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jeng-Yi Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Gaus Shang
- Department of Biotechnology, Ming Chuan University, Taoyuan 333, Taiwan
| | - Rita Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Centre, 6726 Szeged, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Pao-Yang Chen
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiao-Wei Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
19
|
Love AC, Prescher JA. Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology. Cell Chem Biol 2020; 27:904-920. [PMID: 32795417 PMCID: PMC7472846 DOI: 10.1016/j.chembiol.2020.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
Bioluminescence has long been used to image biological processes in vivo. This technology features luciferase enzymes and luciferin small molecules that produce visible light. Bioluminescent photons can be detected in tissues and live organisms, enabling sensitive and noninvasive readouts on physiological function. Traditional applications have focused on tracking cells and gene expression patterns, but new probes are pushing the frontiers of what can be visualized. The past few years have also seen the merger of bioluminescence with optogenetic platforms. Luciferase-luciferin reactions can drive light-activatable proteins, ultimately triggering signal transduction and other downstream events. This review highlights these and other recent advances in bioluminescence technology, with an emphasis on tool development. We showcase how new luciferins and engineered luciferases are expanding the scope of optical imaging. We also highlight how bioluminescent systems are being leveraged not just for sensing-but also controlling-biological processes.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
García-Iriepa C, Losantos R, Fernández-Martínez D, Sampedro D, Navizet I. Fungal Light Emitter: Understanding Its Chemical Nature and pH-Dependent Emission in Water Solution. J Org Chem 2020; 85:5503-5510. [PMID: 32202422 DOI: 10.1021/acs.joc.0c00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fungal bioluminescence is a fascinating natural process, standing out for the continuous conversion of chemical energy into light. The structure of fungal oxyluciferin (light emitter) was proposed in 2017, being different and more complex than other oxyluciferins. The complexity of fungal oxyluciferin arises from diverse equilibria such as keto/enol tautomerization or deprotonation equilibria of four titratable groups. For this reason, still some crucial details of its structure remain unexplored. To obtain further structural information, a combined experimental and computational study of natural and three synthetic fungal oxyluciferin analogues has been performed. Here, we state the most stable chemical form of fungal oxyluciferin regarding its keto and enol tautomers, in the ground and excited states. We propose the (3Z,5E)-6-(3,4-dihydroxyphenyl)-4-hydroxy-2-oxohexa-3,5-dienoic acid form as the light emitter (fluorescent state) in water solution. Moreover, we show that chemical modifications on fungal oxyluciferin can affect the relative stability of the conformers. Furthermore, we show the clear effect of pH on emission. General conclusions about the role of these titratable groups in emission modulation have been drawn, such as the key role of dihydroxyphenyl deprotonation. This study is key to further analyze the properties of fungal bioluminescence and propose novel synthetic analogues.
Collapse
Affiliation(s)
- Cristina García-Iriepa
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France.,Departamento de Quı́mica Analı́tica, Quı́mica Fı́sica e Ingenierı́a Quı́mica, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Raúl Losantos
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Diana Fernández-Martínez
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Diego Sampedro
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Isabelle Navizet
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France.,MSME, Univ Gustave Eiffel, UPEC, CNRS, F-77454 Marne-la-Vallée, France
| |
Collapse
|
21
|
Khakhar A, Starker CG, Chamness JC, Lee N, Stokke S, Wang C, Swanson R, Rizvi F, Imaizumi T, Voytas DF. Building customizable auto-luminescent luciferase-based reporters in plants. eLife 2020; 9:52786. [PMID: 32209230 PMCID: PMC7164954 DOI: 10.7554/elife.52786] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Bioluminescence is a powerful biological signal that scientists have repurposed as a reporter for gene expression in plants and animals. However, there are downsides associated with the need to provide a substrate to these reporters, including its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) in planta using a composable toolbox of parts. We demonstrate that the FBP can create luminescence across various tissues in a broad range of plants without external substrate addition. We also show how our toolbox can be used to deploy the FBP in planta to build auto-luminescent reporters for the study of gene-expression and hormone fluxes. A low-cost imaging platform for gene expression profiling is also described. These experiments lay the groundwork for future construction of programmable auto-luminescent plant traits, such as light driven plant-pollinator interactions or light emitting plant-based sensors.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Colby G Starker
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - James C Chamness
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, United States
| | - Sydney Stokke
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Cecily Wang
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Ryan Swanson
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Furva Rizvi
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, United States
| | - Daniel F Voytas
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| |
Collapse
|
22
|
Krah FS, Büntgen U, Schaefer H, Müller J, Andrew C, Boddy L, Diez J, Egli S, Freckleton R, Gange AC, Halvorsen R, Heegaard E, Heideroth A, Heibl C, Heilmann-Clausen J, Høiland K, Kar R, Kauserud H, Kirk PM, Kuyper TW, Krisai-Greilhuber I, Norden J, Papastefanou P, Senn-Irlet B, Bässler C. European mushroom assemblages are darker in cold climates. Nat Commun 2019; 10:2890. [PMID: 31253790 PMCID: PMC6599080 DOI: 10.1038/s41467-019-10767-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Thermal melanism theory states that dark-colored ectotherm organisms are at an advantage at low temperature due to increased warming. This theory is generally supported for ectotherm animals, however, the function of colors in the fungal kingdom is largely unknown. Here, we test whether the color lightness of mushroom assemblages is related to climate using a dataset of 3.2 million observations of 3,054 species across Europe. Consistent with the thermal melanism theory, mushroom assemblages are significantly darker in areas with cold climates. We further show differences in color phenotype between fungal lifestyles and a lifestyle differentiated response to seasonality. These results indicate a more complex ecological role of mushroom colors and suggest functions beyond thermal adaption. Because fungi play a crucial role in terrestrial carbon and nutrient cycles, understanding the links between the thermal environment, functional coloration and species' geographical distributions will be critical in predicting ecosystem responses to global warming.
Collapse
Affiliation(s)
- Franz-Sebastian Krah
- Plant Biodiversity Research Group, Department of Ecology & Ecosystem Management, Technische Universität München, 85354, Freising, Germany.
- Bavarian Forest National Park, 94481, Grafenau, Germany.
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
- Global Change Research Centre and Masaryk University, 61300, Brno, Czech Republic
| | - Hanno Schaefer
- Plant Biodiversity Research Group, Department of Ecology & Ecosystem Management, Technische Universität München, 85354, Freising, Germany
| | - Jörg Müller
- Bavarian Forest National Park, 94481, Grafenau, Germany
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg, 96181, Rauhenebrach, Germany
| | - Carrie Andrew
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jeffrey Diez
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Simon Egli
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Robert Freckleton
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alan C Gange
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Rune Halvorsen
- Natural History Museum, University of Oslo, Blindern, 0318, Oslo, Norway
| | - Einar Heegaard
- Norwegian Institute of Bioeconomy Research, 5244, Fana, Norway
| | - Antje Heideroth
- Bavarian Forest National Park, 94481, Grafenau, Germany
- Ecology Research Group, Department of Biology, Philipps Uuniversity Marburg, 35043, Marburg, Germany
| | | | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Klaus Høiland
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Ritwika Kar
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, 72076, Tuebingen, Germany
| | - Håvard Kauserud
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Paul M Kirk
- Mycology Section, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, TW9 3DS, UK
| | - Thomas W Kuyper
- Department of Soil Quality, Wageningen University, 6700 AA, Wageningen, The Netherlands
| | - Irmgard Krisai-Greilhuber
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, 1030, Vienna, Austria
| | - Jenni Norden
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Phillip Papastefanou
- TUM School of Life Sciences Weihenstephan, Land Surface-Atmosphere Interactions, Technical University of Munich, 85354, Freising, Germany
| | - Beatrice Senn-Irlet
- Research Unit Biodiversity & Conservation Biology, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Claus Bässler
- Bavarian Forest National Park, 94481, Grafenau, Germany.
- Technical University of Munich, Chair for Terrestrial Ecology, 85354, Freising, Germany.
| |
Collapse
|
23
|
Rosário J, da Luz LL, Geris R, Ramalho JGS, da Silva AF, Júnior SA, Malta M. Photoluminescent organisms: how to make fungi glow through biointegration with lanthanide metal-organic frameworks. Sci Rep 2019; 9:7302. [PMID: 31086220 PMCID: PMC6513872 DOI: 10.1038/s41598-019-43835-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
We show that filamentous fungi can emit green or red light after the accumulation of particulate lanthanide metal-organic frameworks over the cell wall. These new biohybrids present photoluminescence properties that are unaffected by the components of the cell wall. In addition, the fungal cells internalise lanthanide metal-organic framework particles, storing them into organelles, thereby making these materials promising for applications in living imaging studies.
Collapse
Affiliation(s)
- Jeferson Rosário
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Leonis L da Luz
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Regina Geris
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Jéssica G S Ramalho
- Institute of Physics, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Antônio F da Silva
- Institute of Physics, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil
| | - Severino Alves Júnior
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, Recife, PE, Brazil.
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, Salvador, BA, Brazil.
| |
Collapse
|
24
|
Abstract
Protoplasmic flow carries signals through fungal networks, alerting distant regions to predators or new food sources. A new study now shows that, by regularly alternating its direction, this flow links up all parts of the network, revealing new degrees of control over flow within fungal networks.
Collapse
|
25
|
Abstract
We present identification of the luciferase and enzymes of the biosynthesis of a eukaryotic luciferin from fungi. Fungi possess a simple bioluminescent system, with luciferin being only two enzymatic steps from well-known metabolic pathways. The expression of genes from the fungal bioluminescent pathway is not toxic to eukaryotic cells, and the luciferase can be easily co-opted to bioimaging applications. With the fungal system being a genetically encodable bioluminescent system from eukaryotes, it is now possible to create artificially bioluminescent eukaryotes by expression of three genes. The fungal bioluminescent system represents an example of molecular evolution of a complex ecological trait and with molecular details reported in the paper, will allow additional research into ecological significance of fungal bioluminescence. Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.
Collapse
|
26
|
Bioluminescence expression during the transition from mycelium to mushroom in three North American Armillaria and Desarmillaria species. Fungal Biol 2018; 122:1064-1068. [PMID: 30342622 DOI: 10.1016/j.funbio.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Unlike most bioluminescent fungi, mycelia of Armillaria and Desarmillaria are constitutively bioluminescent while mature mushrooms are not. The absence of the luciferin, 3-hydroxyhispidin, and its precursor hispidin in mature mushrooms have been proposed to explain the lack of bioluminescence from Armillaria mushrooms. Using three North American species, A. gallica, A. mellea and D. tabescens (syn., Armillaria tabescens), we documented a decline in luminescence of ten fold during the transition from mycelia to, immature mushrooms (i.e., pins) for the two Armillaria species. As pins matured, luminescence declined by an additional two or three orders of magnitude. Lower initial luminescence of D. tabescens mycelia declined to negligible levels during mushroom development. Further, light production was localized in the gills and lower stipe of A. mellea mushrooms. The decline in luminescence during mushroom formation was reversed by addition of hispidin to stipe or gills which significantly enhanced luminescence by one and three orders of magnitude, respectively. We conclude that the modulation of Armillaria and Desarmillaria luminescence is achieved by luciferin availability early in mushroom development. However, since the temporal regulation of bioluminescence differs between Armillaria species and other genera, we conclude that bioluminescence in Armillaria is under unique selective pressures.
Collapse
|
27
|
|
28
|
Larrondo LF, Canessa P. The Clock Keeps on Ticking: Emerging Roles for Circadian Regulation in the Control of Fungal Physiology and Pathogenesis. Curr Top Microbiol Immunol 2018; 422:121-156. [PMID: 30255278 DOI: 10.1007/82_2018_143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tic-tac, tic-tac, the sound of time is familiar to us, yet, it also silently shapes daily biological processes conferring 24-hour rhythms in, among others, cellular and systemic signaling, gene expression, and metabolism. Indeed, circadian clocks are molecular machines that permit temporal control of a variety of processes in individuals, with a close to 24-hour period, optimizing cellular dynamics in synchrony with daily environmental cycles. For over three decades, the molecular bases of these clocks have been extensively described in the filamentous fungus Neurospora crassa, yet, there have been few molecular studies in fungi other than Neurospora, despite evidence of rhythmic phenomena in many fungal species, including pathogenic ones. This chapter will revise the mechanisms underlying clock regulation in the model fungus N. crassa, as well as recent findings obtained in several fungi. In particular, this chapter will review the effect of circadian regulation of virulence and organismal interactions, focusing on the phytopathogen Botrytis cinerea, as well as several entomopathogenic fungi, including the behavior-manipulating species Ophiocordyceps kimflemingiae and Entomophthora muscae. Finally, this review will comment current efforts in the study of mammalian pathogenic fungi, while highlighting recent circadian lessons from parasites such as Trypanosoma and Plasmodium. The clock keeps on ticking, whether we can hear it or not.
Collapse
Affiliation(s)
- Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile. .,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Paulo Canessa
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Facultad de Ciencias de la Vida, Centro de Biotecnologia Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
29
|
BECHARA ETELVINOJ, STEVANI CASSIUSV. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado. ACTA ACUST UNITED AC 2018; 90:663-679. [DOI: 10.1590/0001-3765201820170504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/11/2017] [Indexed: 11/21/2022]
|
30
|
Koritala BSC, Lee K. Natural Variation of the Circadian Clock in Neurospora. ADVANCES IN GENETICS 2017; 99:1-37. [PMID: 29050553 DOI: 10.1016/bs.adgen.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most living organisms on earth experience daily and expected changes from the rotation of the earth. For an organism, the ability to predict and prepare for incoming stresses or resources is a very important skill for survival. This cellular process of measuring daily time of the day is collectively called the circadian clock. Because of its fundamental role in survival in nature, there is a great interest in studying the natural variation of the circadian clock. However, characterizing the genetic and molecular mechanisms underlying natural variation of circadian clocks remains a challenging task. In this chapter, we will summarize the progress in studying natural variation of the circadian clock in the successful eukaryotic model Neurospora, which led to discovering many design principles of the molecular mechanisms of the eukaryotic circadian clock. Despite the success of the system in revealing the molecular mechanisms of the circadian clock, Neurospora has not been utilized to extensively study natural variation. We will review the challenges that hindered the natural variation studies in Neurospora, and how they were overcome. We will also review the advantages of Neurospora for natural variation studies. Since Neurospora is the model fungal species for circadian study, it represents over 5 million species of fungi on earth. These fungi play important roles in ecosystems on earth, and as such Neurospora could serve as an important model for understanding the ecological role of natural variation in fungal circadian clocks.
Collapse
Affiliation(s)
- Bala S C Koritala
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States
| | - Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States.
| |
Collapse
|
31
|
Bastos EL, Farahani P, Bechara EJ, Baader WJ. Four-membered cyclic peroxides: Carriers of chemical energy. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3725] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erick Leite Bastos
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Pooria Farahani
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Etelvino J.H. Bechara
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | - Wilhelm Josef Baader
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| |
Collapse
|
32
|
Dunlap JC, Loros JJ. Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0039-2016. [PMID: 28527179 PMCID: PMC5446046 DOI: 10.1128/microbiolspec.funk-0039-2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/03/2023] Open
Abstract
The capacity for biological timekeeping arose at least three times through evolution, in prokaryotic cyanobacteria, in cells that evolved into higher plants, and within the group of organisms that eventually became the fungi and the animals. Neurospora is a tractable model system for understanding the molecular bases of circadian rhythms in the last of these groups, and is perhaps the most intensively studied circadian cell type. Rhythmic processes described in fungi include growth rate, stress responses, developmental capacity, and sporulation, as well as much of metabolism; fungi use clocks to anticipate daily environmental changes. A negative feedback loop comprises the core of the circadian system in fungi and animals. In Neurospora, the best studied fungal model, it is driven by two transcription factors, WC-1 and WC-2, that form the White Collar Complex (WCC). WCC elicits expression of the frq gene. FRQ complexes with other proteins, physically interacts with the WCC, and reduces its activity; the kinetics of these processes is strongly influenced by progressive phosphorylation of FRQ. When FRQ becomes sufficiently phosphorylated that it loses the ability to influence WCC activity, the circadian cycle starts again. Environmental cycles of light and temperature influence frq and FRQ expression and thereby reset the internal circadian clocks. The molecular basis of circadian output is also becoming understood. Taken together, molecular explanations are emerging for all the canonical circadian properties, providing a molecular and regulatory framework that may be extended to many members of the fungal and animal kingdoms, including humans.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
33
|
Kaskova ZM, Dörr FA, Petushkov VN, Purtov KV, Tsarkova AS, Rodionova NS, Mineev KS, Guglya EB, Kotlobay A, Baleeva NS, Baranov MS, Arseniev AS, Gitelson JI, Lukyanov S, Suzuki Y, Kanie S, Pinto E, Di Mascio P, Waldenmaier HE, Pereira TA, Carvalho RP, Oliveira AG, Oba Y, Bastos EL, Stevani CV, Yampolsky IV. Mechanism and color modulation of fungal bioluminescence. SCIENCE ADVANCES 2017; 3:e1602847. [PMID: 28508049 PMCID: PMC5406138 DOI: 10.1126/sciadv.1602847] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/01/2017] [Indexed: 05/16/2023]
Abstract
Bioluminescent fungi are spread throughout the globe, but details on their mechanism of light emission are still scarce. Usually, the process involves three key components: an oxidizable luciferin substrate, a luciferase enzyme, and a light emitter, typically oxidized luciferin, and called oxyluciferin. We report the structure of fungal oxyluciferin, investigate the mechanism of fungal bioluminescence, and describe the use of simple synthetic α-pyrones as luciferins to produce multicolor enzymatic chemiluminescence. A high-energy endoperoxide is proposed as an intermediate of the oxidation of the native luciferin to the oxyluciferin, which is a pyruvic acid adduct of caffeic acid. Luciferase promiscuity allows the use of simple α-pyrones as chemiluminescent substrates.
Collapse
Affiliation(s)
- Zinaida M. Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
- Institute of Biophysics Siberian Branch of Russian Academy of Sciences (SB RAS), Federal Research Center “Krasnoyarsk Science Center SB RAS,” Akademgorodok, Krasnoyarsk 660036, Russia
| | - Felipe A. Dörr
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Valentin N. Petushkov
- Institute of Biophysics Siberian Branch of Russian Academy of Sciences (SB RAS), Federal Research Center “Krasnoyarsk Science Center SB RAS,” Akademgorodok, Krasnoyarsk 660036, Russia
| | - Konstantin V. Purtov
- Institute of Biophysics Siberian Branch of Russian Academy of Sciences (SB RAS), Federal Research Center “Krasnoyarsk Science Center SB RAS,” Akademgorodok, Krasnoyarsk 660036, Russia
| | - Aleksandra S. Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
- Institute of Biophysics Siberian Branch of Russian Academy of Sciences (SB RAS), Federal Research Center “Krasnoyarsk Science Center SB RAS,” Akademgorodok, Krasnoyarsk 660036, Russia
| | - Natalja S. Rodionova
- Institute of Biophysics Siberian Branch of Russian Academy of Sciences (SB RAS), Federal Research Center “Krasnoyarsk Science Center SB RAS,” Akademgorodok, Krasnoyarsk 660036, Russia
| | - Konstantin S. Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Elena B. Guglya
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Alexey Kotlobay
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Institute of Biophysics Siberian Branch of Russian Academy of Sciences (SB RAS), Federal Research Center “Krasnoyarsk Science Center SB RAS,” Akademgorodok, Krasnoyarsk 660036, Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Alexander S. Arseniev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Josef I. Gitelson
- Institute of Biophysics Siberian Branch of Russian Academy of Sciences (SB RAS), Federal Research Center “Krasnoyarsk Science Center SB RAS,” Akademgorodok, Krasnoyarsk 660036, Russia
| | - Sergey Lukyanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
| | - Yoshiki Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shusei Kanie
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ernani Pinto
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Hans E. Waldenmaier
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Tatiana A. Pereira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Rodrigo P. Carvalho
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Anderson G. Oliveira
- Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, 05508-120, Brazil
| | - Yuichi Oba
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Japan
| | - Erick L. Bastos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Cassius V. Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Ilia V. Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia
- Institute of Biophysics Siberian Branch of Russian Academy of Sciences (SB RAS), Federal Research Center “Krasnoyarsk Science Center SB RAS,” Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
34
|
Oba Y, Stevani CV, Oliveira AG, Tsarkova AS, Chepurnykh TV, Yampolsky IV. Selected Least Studied but not Forgotten Bioluminescent Systems. Photochem Photobiol 2017; 93:405-415. [DOI: 10.1111/php.12704] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Yuichi Oba
- Department of Environmental Biology; Chubu University; Kasugai Japan
| | - Cassius V. Stevani
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo; São Paulo Brazil
| | - Anderson G. Oliveira
- Departamento de Oceanografia Física; Química e Geológica; Instituto Oceanográfico; Universidade de São Paulo; São Paulo Brazil
| | - Aleksandra S. Tsarkova
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
- Pirogov Russian National Research Medical University; Moscow Russia
| | - Tatiana V. Chepurnykh
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
- Pirogov Russian National Research Medical University; Moscow Russia
| | - Ilia V. Yampolsky
- Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
- Pirogov Russian National Research Medical University; Moscow Russia
| |
Collapse
|
35
|
Weinstein P, Delean S, Wood T, Austin AD. Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects. IMA Fungus 2016; 7:229-234. [PMID: 27990328 PMCID: PMC5159592 DOI: 10.5598/imafungus.2016.07.02.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 09/29/2016] [Indexed: 11/12/2022] Open
Abstract
Bioluminescence has been known from fungi since ancient times, but little work has been done to establish its potential role. There is evidence that some bioluminescent fungi differentially attract potential spore-dispersing insects, and we aimed to establish if this was the case for the ghost fungus, Omphalotus nidiformis (Agaricales,Marasmiaceae), a widespread Australian temperate zone species. We examined three corroborative lines of evidence: circadian rhythmicity of bioluminescence; field-recorded insect abundance at the time of basidiome production; and attractiveness of glowing fungi to flying insects. Basidiomes glowed continuously day and night, and were present in winter (June-July) when insect abundance was low. To assess attractiveness, we deployed sticky-traps in open woodland in the absence of light pollution, in Treatment (baited with fresh bioluminescent O. nidiformis) and Control pairs, for 480 trap-hours on moonless nights. There was no statistical difference in mean insect abundance between Treatment and Control traps (mean 0.33 and 0.54 individuals per trap night, respectively). To interpret these results, we provide a brief review of competing hypotheses for fungal bioluminescence, and conclude that for some fungi, bioluminescence may be an incidental by-product of metabolism rather than conferring any selective advantage. It is possible that the role of bioluminescence differs among evolutionary lineages of fungi and/or with attributes of their growth environments that could affect spore dispersal, such as wind and insect abundance.
Collapse
Affiliation(s)
- Philip Weinstein
- Department of Ecology and Environmental Sciences, School of Biological Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Steven Delean
- Department of Ecology and Environmental Sciences, School of Biological Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Tom Wood
- Department of Ecology and Environmental Sciences, School of Biological Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, and Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
36
|
Hevia MA, Canessa P, Larrondo LF. Circadian clocks and the regulation of virulence in fungi: Getting up to speed. Semin Cell Dev Biol 2016; 57:147-155. [DOI: 10.1016/j.semcdb.2016.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022]
|
37
|
Souza GA, Peixoto MMM, Santos APF, Baader WJ. General Acid and Base Catalysis by Phosphate in Peroxyoxalate Chemiluminescence. ChemistrySelect 2016. [DOI: 10.1002/slct.201600436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Glalci A. Souza
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo, São Paulo, Brazil.; Av. Prof. Lineu Prestes, 748. São Paulo, SP 05508-000 Brazil
| | - Mônica M. M. Peixoto
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo, São Paulo, Brazil.; Av. Prof. Lineu Prestes, 748. São Paulo, SP 05508-000 Brazil
| | - Ana P. F. Santos
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo, São Paulo, Brazil.; Av. Prof. Lineu Prestes, 748. São Paulo, SP 05508-000 Brazil
| | - Wilhelm J. Baader
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo, São Paulo, Brazil.; Av. Prof. Lineu Prestes, 748. São Paulo, SP 05508-000 Brazil
| |
Collapse
|
38
|
Halbwachs H, Simmel J, Bässler C. Tales and mysteries of fungal fruiting: How morphological and physiological traits affect a pileate lifestyle. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses. mBio 2016; 7:mBio.00464-16. [PMID: 27143387 PMCID: PMC4959675 DOI: 10.1128/mbio.00464-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP(+) showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. IMPORTANCE Cyanobacteria are photosynthetic microbes that use energy from sunlight and CO2 as feedstock. Certain cyanobacterial strains are amenable to facile genetic manipulation, thus enabling synthetic biology and metabolic engineering applications. Such strains are being developed as a chassis for the sustainable production of food, feed, and fuel. To this end, a holistic knowledge of cyanobacterial physiology and its correlation with gene expression patterns under the diurnal cycle is warranted. In this report, a genomewide transcriptional analysis of Synechocystis PCC 6803, the most widely studied model cyanobacterium, sheds light on the global coordination of cellular processes during diurnal periods. Furthermore, we found that, in addition to light, the redox level of NADP(H) is an important endogenous regulator of diurnal entrainment of Synechocystis PCC 6803.
Collapse
|
40
|
Abstract
A recent study shows that green light emission by Neonothopanus gardneri mushrooms, endemic to coconut forests of Northern Brazil, is controlled by a circadian clock. Furthermore, insects are attracted by the light, raising the possibility that bioluminescence functions in spore dispersal and fungal dissemination.
Collapse
Affiliation(s)
- Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
41
|
Hurley JM, Loros JJ, Dunlap JC. The circadian system as an organizer of metabolism. Fungal Genet Biol 2015; 90:39-43. [PMID: 26498192 DOI: 10.1016/j.fgb.2015.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/06/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
The regulation of metabolism by circadian systems is believed to be a key reason for the extensive representation of circadian rhythms within the tree of life. Despite this, surprisingly little work has focused on the link between metabolism and the clock in Neurospora, a key model system in circadian research. The analysis that has been performed has focused on the unidirectional control from the clock to metabolism and largely ignored the feedback from metabolism on the clock. Recent efforts to understand these links have broken new ground, revealing bidirectional control from the clock to metabolism and vise-versa, showing just how strongly interconnected these two cellular systems can be in fungi. This review describes both well understood and emerging links between the clock and metabolic output of fungi as well as the role that metabolism plays in influencing the rhythm set by the clock.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
42
|
Analysis of Circadian Rhythms in the Basal Filamentous Ascomycete Pyronema confluens. G3-GENES GENOMES GENETICS 2015; 5:2061-71. [PMID: 26254031 PMCID: PMC4592989 DOI: 10.1534/g3.115.020461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many organisms use circadian clocks to adapt to daily changes in the environment. Major insights into the molecular mechanisms of circadian oscillators have been gained through studies of the model organism Neurospora crassa; however, little is known about molecular components of circadian clocks in other fungi. An important part of the N. crassa circadian clock is the frequency (frq) gene, homologs of which can be found in Sordariomycetes, Dothideomycetes, and Leotiomycetes, but not Eurotiomycetes. Recently, we identified a frq homolog in Pyronema confluens, a member of the early-diverging Pezizomycete lineage of filamentous ascomycetes. The P. confluens FRQ shares many conserved domains with the N. crassa FRQ. However, there is no known morphological phenotype showing overt circadian rhythmicity in P. confluens. To investigate whether a molecular clock is present, we analyzed frq transcription in constant darkness, and found circadian oscillation of frq with a peak in the subjective morning. This rhythm was temperature compensated. To identify additional clock-controlled genes, we performed RNA sequencing of two time points (subjective morning and evening). Circadian expression of two morning-specific genes was verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) over a full time course, whereas expression of two putative morning-specific and five putative evening-specific genes could not be verified as circadian. frq expression was synchronized, but not entrained by light. In summary, we have found evidence for two of the three main properties of circadian rhythms (free-running rhythm, temperature compensation) in P. confluens, suggesting that a circadian clock with rhythmically expressed frq is present in this basal filamentous ascomycete.
Collapse
|
43
|
A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:8744-9. [PMID: 26124115 DOI: 10.1073/pnas.1508432112] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The circadian clock of the plant model Arabidopsis thaliana modulates defense mechanisms impacting plant-pathogen interactions. Nevertheless, the effect of clock regulation on pathogenic traits has not been explored in detail. Moreover, molecular description of clocks in pathogenic fungi--or fungi in general other than the model ascomycete Neurospora crassa--has been neglected, leaving this type of question largely unaddressed. We sought to characterize, therefore, the circadian system of the plant pathogen Botrytis cinerea to assess if such oscillatory machinery can modulate its virulence potential. Herein, we show the existence of a functional clock in B. cinerea, which shares similar components and circuitry with the Neurospora circadian system, although we found that its core negative clock element FREQUENCY (BcFRQ1) serves additional roles, suggesting extracircadian functions for this protein. We observe that the lesions produced by this necrotrophic fungus on Arabidopsis leaves are smaller when the interaction between these two organisms occurs at dawn. Remarkably, this effect does not depend solely on the plant clock, but instead largely relies on the pathogen circadian system. Genetic disruption of the B. cinerea oscillator by mutation, overexpression of BcFRQ1, or by suppression of its rhythmicity by constant light, abrogates circadian regulation of fungal virulence. By conducting experiments with out-of-phase light:dark cycles, we confirm that indeed, it is the fungal clock that plays the main role in defining the outcome of the Arabidopsis-Botrytis interaction, providing to our knowledge the first evidence of a microbial clock modulating pathogenic traits at specific times of the day.
Collapse
|
44
|
Montenegro-Montero A, Canessa P, Larrondo LF. Around the Fungal Clock. ADVANCES IN GENETICS 2015; 92:107-84. [DOI: 10.1016/bs.adgen.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|