1
|
Liao G, Diekman CO, Bose A. Dynamics of phase tumbling and the reentrainment of circadian oscillators. Math Biosci 2025; 381:109381. [PMID: 39929435 DOI: 10.1016/j.mbs.2025.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
Circadian clocks are comprised of networks of cellular oscillators that synchronize to produce endogenous daily rhythms in gene expression and protein abundance. These clocks have evolved to align the physiology and behavior of organisms to the 24-h environmental cycles arising from Earth's rotation. Rapid travel across time zones causes misalignment between an organism's circadian rhythms and its environment, leading to sleep problems and other jet lag symptoms until the circadian system entrains to the external cycles of the new time zone. Experimental and modeling work has shown that phase tumbling, defined as desynchronizing networks of circadian oscillators prior to an abrupt phase shift of the light-dark cycle, can speed up the process of reentrainment. Here, we use a mathematical model of circadian oscillators and 2-D entrainment maps to analyze the conditions under which phase tumbling has a positive, neutral, or negative effect on reentrainment time. We find that whether or not phase tumbling is beneficial depends on the size of the external phase shift and the location of the perturbed oscillator with respect to the fixed points and invariant manifolds of the entrainment map.
Collapse
Affiliation(s)
- Guangyuan Liao
- Key Laboratory of Intelligent Analysis and Decision on Complex Systems, School of Science, Chongqing University of Posts and Telecommunications, Chongwen Road, Nan'an, 400065, Chongqing, China.
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States of America.
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, United States of America.
| |
Collapse
|
2
|
Skubatz H. Nonsteroidal anti-inflammatory drugs as antipyretics and modulators of a molecular clock(s) in the appendix of Sauromatum venosum inflorescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:152-160. [PMID: 36074072 DOI: 10.1111/plb.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The appendix of the Sauromatum senosum inflorescence is a striking example of thermogenesis in plants. On the day of opening, the Sauromatum appendix becomes hot, reaching up to 32 °C. Aspirin, salicylic acid and 2,6-dihydroxybenzoic acid, a subclass of NSAIDs, induce a temperature rise from three mitochondrial sources: alternative oxidase, F1 FO -ATP synthase and adenine nucleotide translocator. This temperature rise is synchronized and compounded under various light/dark regimes. We studied the effect of different subgroups of NSAIDs on the temperature rise. Tissue slices of appendix of Sauromatum and Arum italicum inflorescences at a pre-mature stage were treated with the three inducers in combination with one NSAID under constant light or darkness and under different photoperiods. Temperature rise generated by the three heat sources in the presence of inducers and different non-selective NSAIDs were not compounded and occurred at three different times. Under constant light, DuP-697, ibuprofen, flurbiprofen, acetaminophen and diclofenac suppressed the temperature rise induced by the three salicylates. Desynchronization and delayed temperature rise were detected with 6/42-h light/ dark and 15/33-h light/dark regimes in the presence of celecoxib and ibuprofen. With a 24/24-h light/dark regime, temperature rise was suppressed in the presence of ibuprofen. There were differences in response to individual NSAIDs between appendix tissue of A. italicum and S. venosum. Mitochondrial energy balance is affected by NSAIDs. There is an interaction between light/dark regime and temperature rise and a relationship between timing mechanism and temperature rise.
Collapse
|
3
|
Liao G, Bose A. Entrainment within hierarchical circadian oscillator networks. Math Biosci 2022; 351:108883. [PMID: 35907509 DOI: 10.1016/j.mbs.2022.108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Circadian rhythms are endogenous oscillations, widely found across biological species, that have the capability of entraining to the 24-h light-dark cycle. Circadian systems often consist of both central oscillators that receive direct light-dark input and peripheral oscillators that receive input from the central oscillators. In this paper, we address questions related to what governs the time to and pattern of entrainment of these hierarchical circadian systems after an abrupt switch in the light-dark phasing. For a network consisting of a single central oscillator coupled to a chain of N feed-forward peripheral oscillators, we introduce a systematic way to derive an N-dimensional entrainment map whose fixed points correspond to entrained solutions. Using the map, we explain that the direction of reentrainment can involve fairly complicated phase advancing and delaying behavior as well as reentrainment times that depend sensitively on the nature of the perturbation. We also study the dynamics of a hierarchical system in which the peripheral oscillators are mutually coupled. We study how reentrainment times vary as a function of the degree to which the oscillators are desynchronized at the time of the change in light-dark phasing. We show that desynchronizing the peripheral oscillators can, in some circumstances, speed up their ultimate reentrainment following perturbations.
Collapse
Affiliation(s)
- Guangyuan Liao
- Key Laboratory of Intelligent Analysis and Decision on Complex Systems, School of Science, Chongqing University of Posts and Telecommunications, Chongwen Road, Nan'an, 400065, Chongqing, China
| | - Amitabha Bose
- Department of Mathematical Sciences, NJIT, Newark, NJ, 07102, USA.
| |
Collapse
|
4
|
Gaspar LS, Álvaro AR, Carmo‐Silva S, Mendes AF, Relógio A, Cavadas C. The importance of determining circadian parameters in pharmacological studies. Br J Pharmacol 2019; 176:2827-2847. [PMID: 31099023 PMCID: PMC6637036 DOI: 10.1111/bph.14712] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022] Open
Abstract
In mammals, most molecular and cellular processes show circadian changes, leading to daily variations in physiology and ultimately in behaviour. Such daily variations induce a temporal coordination of processes that is essential to ensure homeostasis and health. Thus, it is of no surprise that pharmacokinetics (PK) and pharmacodynamics (PD) of many drugs are also subject to circadian variations, profoundly affecting their efficacy and tolerability. Understanding how circadian rhythms influence drug PK, PD, and toxicity might significantly improve treatment efficacy and decrease related side effects. Therefore, it is essential to take circadian variations into account and to determine circadian parameters in pharmacological studies, especially when drugs have a short half-life or target rhythmic processes. This review provides an overview of the current knowledge on circadian rhythms and their relevance to the field of pharmacology. Methodologies to evaluate circadian rhythms in vitro, in rodent models and in humans, from experimental to computational approaches, are described and discussed. Lastly, we aim at alerting the scientific, medical, and regulatory communities to the relevance of the physiological time, as a key parameter to be considered when designing pharmacological studies. This will eventually lead to more successful preclinical and clinical trials and pave the way to a more personalized treatment to the benefit of the patients.
Collapse
Affiliation(s)
- Laetitia S. Gaspar
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Institute for Interdisciplinary Research (IIIUC)University of CoimbraCoimbraPortugal
| | - Ana Rita Álvaro
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Sara Carmo‐Silva
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Alexandrina Ferreira Mendes
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Angela Relógio
- Institute for Theoretical BiologyCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt—Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research CenterCharité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt—Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Cláudia Cavadas
- CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
5
|
Chen K, Wang Y, Gai X, Wang H, Li Y, Wen H, Pan W, Yang X. Design of a Time-Controlled Pulsatile Release System for Propranolol Using the Dry-Coated Method: In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2017; 18:2683-2690. [PMID: 28281210 DOI: 10.1208/s12249-017-0746-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/19/2017] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to design a time-controlled pulsatile release (TCPR) system containing propranolol (PNH) as an active pharmaceutical ingredient. Here, the developed dosage forms were coated with hydroxypropyl-methylcellulose (HPMC) and other excipients as barrier layer using dry-coated technology. The influence of HPMC, microcrystalline cellulose (MCC), and lactose in the outer coating and the coating weight on drug release were investigated. Then, a three-factor, five-level central composite design (CCD) and response surface method were used to optimize the formula of the coating. After data processing, the optimal prescription was found to be as follows: HPMC E50(X1) 86.2 mg, MCC(X2) 43.8 mg, and lactose (X3) 21.3 mg in the coating. Moreover, the in vitro tests showed that the optimized formulation of TCPR had a lag time of 4 h followed by a 4-h drug release. Also, determination of the extent of erosion of the TCPR tablets revealed that the lag time is related to the coating erosion speed. The in vivo test in beagle dogs and comparison of the parameters for the TCPR tablets and reference preparations showed significant differences for Tmax (7.83 ± 0.408 and 2 ± 0.00) and Cmax (185.45 ± 28.561 and 587 ± 45.27 ng/ml) but no significant differences in the AUC0-∞ (1757.876 ± 208.832 and 1779.69 ± 229.02 ng h/ml). These results demonstrated that the TCPR tablets successfully prolonged the lag time and controlled the release of propranolol.
Collapse
|
6
|
Roberts L, Leise TL, Welsh DK, Holmes TC. Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics. J Biol Rhythms 2016; 31:337-51. [PMID: 27221103 DOI: 10.1177/0748730416649550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light is the primary signal that calibrates circadian neural circuits and thus coordinates daily physiological and behavioral rhythms with solar entrainment cues. Drosophila and mammalian circadian circuits consist of diverse populations of cellular oscillators that exhibit a wide range of dynamic light responses, periods, phases, and degrees of synchrony. How heterogeneous circadian circuits can generate robust physiological rhythms while remaining flexible enough to respond to synchronizing stimuli has long remained enigmatic. Cryptochrome is a short-wavelength photoreceptor that is endogenously expressed in approximately half of Drosophila circadian neurons. In a previous study, physiological light response was measured using real-time bioluminescence recordings in Drosophila whole-brain explants, which remain intrinsically light-sensitive. Here we apply analysis of real-time bioluminescence experimental data to show detailed dynamic ensemble representations of whole circadian circuit light entrainment at single neuron resolution. Organotypic whole-brain explants were either maintained in constant darkness (DD) for 6 days or exposed to a phase-advancing light pulse on the second day. We find that stronger circadian oscillators support robust overall circuit rhythmicity in DD, whereas weaker oscillators can be pushed toward transient desynchrony and damped amplitude to facilitate a new state of phase-shifted network synchrony. Additionally, we use mathematical modeling to examine how a network composed of distinct oscillator types can give rise to complex dynamic signatures in DD conditions and in response to simulated light pulses. Simulations suggest that complementary coupling mechanisms and a combination of strong and weak oscillators may enable a robust yet flexible circadian network that promotes both synchrony and entrainment. A more complete understanding of how the properties of oscillators and their signaling mechanisms facilitate their distinct roles in light entrainment may allow us to direct and augment the circadian system to speed recovery from jet lag, shift work, and seasonal affective disorder.
Collapse
Affiliation(s)
- Logan Roberts
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| | - Tanya L Leise
- Department of Mathematics and Statistics, Amherst College, Amherst, MA
| | - David K Welsh
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, La Jolla, CA Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA
| |
Collapse
|
7
|
García-Gómez D, Gaisl T, Bregy L, Martínez-Lozano Sinues P, Kohler M, Zenobi R. Secondary electrospray ionization coupled to high-resolution mass spectrometry reveals tryptophan pathway metabolites in exhaled human breath. Chem Commun (Camb) 2016; 52:8526-8. [DOI: 10.1039/c6cc03070j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A real-time non-invasive breath analysis technique (secondary ESI-HRMS) reveals the hitherto unknown occurrence of tryptophan pathway metabolites in breath.
Collapse
Affiliation(s)
| | - Thomas Gaisl
- Department of Pulmonology
- University Hospital Zurich
- 8091 Zurich
- Switzerland
| | - Lukas Bregy
- Department of Chemistry and Applied Biosciences
- 8093 Zurich
- Switzerland
| | | | - Malcolm Kohler
- Department of Pulmonology
- University Hospital Zurich
- 8091 Zurich
- Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences
- 8093 Zurich
- Switzerland
| |
Collapse
|