1
|
Nguyen MT, Lee GJ, Kim B, Kim HJ, Tak J, Park MK, Kim EJ, Kang GJ, Rho SB, Lee H, Lee K, Kim SG, Lee CH. Penfluridol suppresses MYC-driven ANLN expression and liver cancer progression by disrupting the KEAP1-NRF2 interaction. Pharmacol Res 2024; 210:107512. [PMID: 39643070 DOI: 10.1016/j.phrs.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
Hepatocellular carcinoma (HCC) comprises the majority of primary liver cancers and possesses a low 5-year survival rate when in the advanced stages. Anillin (ANLN), a key player in cell growth and cytokinesis, is implicated in HCC development. Currently, no treatment agents are known to suppress ANLN. Analysis of The Cancer Genome Atlas data showed that high ANLN expression is associated with poor prognosis and survival in HCC patients. ANLN knockdown was shown to inhibit proliferation, cell cycle progression, and PD-L1 expression in liver cancer cells. The antipsychotic drug penfluridol was identified to suppress ANLN expression in the Connectivity Map analysis. Penfluridol downregulated ANLN at both the mRNA and protein levels, leading to G2/M cell cycle arrest and reduced colony formation in liver cancer cells. Mechanistically, penfluridol inhibited the transcription factor MYC from binding to an E-box motif in the ANLN promoter. This process was mediated by penfluridol-induced upregulation of NRF2, which competitively bound and sequestered MYC away from the ANLN promoter. Penfluridol inhibited the interaction between NRF2 and KEAP1, increasing NRF2. In a syngeneic mouse model, penfluridol suppressed liver tumour growth accompanied by increased NRF2 and decreased MYC and ANLN expression. These findings suggest penfluridol can be applied as the first ANLN blocker to modulate the MYC/NRF2/KEAP1 axis.
Collapse
Affiliation(s)
- Minh Tuan Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihoon Tak
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyung Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
2
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
3
|
Tuan NM, Lee CH. Role of Anillin in Tumour: From a Prognostic Biomarker to a Novel Target. Cancers (Basel) 2020; 12:E1600. [PMID: 32560530 PMCID: PMC7353083 DOI: 10.3390/cancers12061600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023] Open
Abstract
Anillin (ANLN), an actin-binding protein, reportedly plays a vital role in cell proliferation and migration, particularly in cytokinesis. Although there have been findings pointing to a contribution of ANLN to the development of cancer, the association of ANLN to cancer remains not fully understood. Here, we gather evidence to determine the applicability of ANLN as a prognostic tool for some types of cancer, and the impact that ANLN has on the hallmarks of cancer. We searched academic repositories including PubMed and Google Scholar to find and review studies related to cancer and ANLN. The conclusion is that ANLN could be a potent target for cancer treatment, but the roles ANLN, other than in cytokinesis and its influence on tumour microenvironment remodeling in cancer development, must be further elucidated, and specific ANLN inhibitors should be found.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea;
| |
Collapse
|