1
|
Pathak AK, Simonian H, Ibrahim IAA, Hrechdakian P, Behar DM, Ayub Q, Arsanov P, Metspalu E, Yepiskoposyan L, Rootsi S, Endicott P, Villems R, Sahakyan H. Human Y chromosome haplogroup L1-M22 traces Neolithic expansion in West Asia and supports the Elamite and Dravidian connection. iScience 2024; 27:110016. [PMID: 38883810 PMCID: PMC11177204 DOI: 10.1016/j.isci.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
West and South Asian populations profoundly influenced Eurasian genetic and cultural diversity. We investigate the genetic history of the Y chromosome haplogroup L1-M22, which, while prevalent in these regions, lacks in-depth study. Robust Bayesian analyses of 165 high-coverage Y chromosomes favor a West Asian origin for L1-M22 ∼20.6 thousand years ago (kya). Moreover, this haplogroup parallels the genome-wide genetic ancestry of hunter-gatherers from the Iranian Plateau and the Caucasus. We characterized two L1-M22 harboring population groups during the Early Holocene. One expanded with the West Asian Neolithic transition. The other moved to South Asia ∼8-6 kya but showed no expansion. This group likely participated in the spread of Dravidian languages. These South Asian L1-M22 lineages expanded ∼4-3 kya, coinciding with the Steppe ancestry introduction. Our findings advance the current understanding of Eurasian historical dynamics, emphasizing L1-M22's West Asian origin, associated population movements, and possible linguistic impacts.
Collapse
Affiliation(s)
- Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Hovann Simonian
- Armenian DNA Project at Family Tree DNA, Houston, TX 77008, USA
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Doron M. Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Qasim Ayub
- Monash University Malaysia Genomics Platform, School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Pakhrudin Arsanov
- Chechen-Noahcho DNA Project at Family Tree DNA, Kostanay 110008, Kazakhstan
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Levon Yepiskoposyan
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Phillip Endicott
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Department of Archaeology and Anthropology, Bournemouth University, Fern Barrow, Poole, Dorset BH12 5BB, UK
- Department of Linguistics, University of Hawai’i at Mānoa, Honolulu, Hawai’i 96822, USA
- DFG Center for Advanced Studies, University of Tübingen, 72074 Tübingen, Germany
| | - Richard Villems
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Hovhannes Sahakyan
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
- Laboratory of Evolutionary Genomics, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| |
Collapse
|
2
|
Modi A, Lancioni H, Cardinali I, Capodiferro MR, Rambaldi Migliore N, Hussein A, Strobl C, Bodner M, Schnaller L, Xavier C, Rizzi E, Bonomi Ponzi L, Vai S, Raveane A, Cavadas B, Semino O, Torroni A, Olivieri A, Lari M, Pereira L, Parson W, Caramelli D, Achilli A. The mitogenome portrait of Umbria in Central Italy as depicted by contemporary inhabitants and pre-Roman remains. Sci Rep 2020; 10:10700. [PMID: 32612271 PMCID: PMC7329865 DOI: 10.1038/s41598-020-67445-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Umbria is located in Central Italy and took the name from its ancient inhabitants, the Umbri, whose origins are still debated. Here, we investigated the mitochondrial DNA (mtDNA) variation of 545 present-day Umbrians (with 198 entire mitogenomes) and 28 pre-Roman individuals (obtaining 19 ancient mtDNAs) excavated from the necropolis of Plestia. We found a rather homogeneous distribution of western Eurasian lineages across the region, with few notable exceptions. Contemporary inhabitants of the eastern part, delimited by the Tiber River and the Apennine Mountains, manifest a peculiar mitochondrial proximity to central-eastern Europeans, mainly due to haplogroups U4 and U5a, and an overrepresentation of J (30%) similar to the pre-Roman remains, also excavated in East Umbria. Local genetic continuities are further attested to by six terminal branches (H1e1, J1c3, J2b1, U2e2a, U8b1b1 and K1a4a) shared between ancient and modern mitogenomes. Eventually, we identified multiple inputs from various population sources that likely shaped the mitochondrial gene pool of ancient Umbri over time, since early Neolithic, including gene flows with central-eastern Europe. This diachronic mtDNA portrait of Umbria fits well with the genome-wide population structure identified on the entire peninsula and with historical sources that list the Umbri among the most ancient Italic populations.
Collapse
Affiliation(s)
- Alessandra Modi
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Marco R Capodiferro
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Abir Hussein
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, CNR, Segrate, 20090, Milan, Italy
| | | | - Stefania Vai
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Bruno Cavadas
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Martina Lari
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Luisa Pereira
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, PA, 16801, USA
| | - David Caramelli
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
3
|
Malyarchuk BA. Sources of the mitochondrial gene pool of Russians by the results of analysis of modern and paleogenomic data. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Paleogenomic studies of recent years have shown that the Bronze Age migrations of populations of the PontoCaspian steppes from the east to the west of Europe had a great influence on the formation of the genetic makeup of modern Europeans. The results of studies of the variability of mitochondrial genomes in the modern Russian populations of Eastern Europe also made it possible to identify an increase in the effective population size during the Bronze Age, which, apparently, could be related to the migration processes of this time. This paper presents the results of analysis of data on the variability of entire mitochondrial genomes in the modern Russian populations in comparison with the distribution of mtDNA haplogroups in the ancient populations of Europe and the Caucasus of the Neolithic and Bronze Age. It was shown that the formation of the modern appearance of the Russian mitochondrial gene pool began approximately 4 thousand years B.C. due to the influx of mtDNA haplotypes characteristic of the population of Central and Western Europe to the east of Europe. It is assumed that the migrations of the ancient populations of the Ponto-Caspian steppes in the western direction led to the formation of mixed populations in Central Europe, bearing mitochondrial haplogroups H, J, T, K, W characteristic of Western and Central Europeans. Further expansion of these populations to the east of Europe and further to Asia explains the emergence of new features of the mitochondrial gene pool in Eastern Europeans. The results of a phylogeographic analysis are also presented, showing that the features of the geographical distribution of the subgroups of the mitochondrial haplogroup R1a in Europe are a reflection of the “Caucasian” component that appeared in the gene pools of various groups of Europeans during the migration of the Bronze Age. The results of phylogeographic analysis of mitochondrial haplogroups U2e2a1d, U4d2, N1a1a1a1, H2b, and H8b1 testify to the migrations of ancient Eastern Europeans to Asia – the south of Siberia and the Indian subcontinent.
Collapse
|
4
|
Brandini S, Bergamaschi P, Cerna MF, Gandini F, Bastaroli F, Bertolini E, Cereda C, Ferretti L, Gómez-Carballa A, Battaglia V, Salas A, Semino O, Achilli A, Olivieri A, Torroni A. The Paleo-Indian Entry into South America According to Mitogenomes. Mol Biol Evol 2018; 35:299-311. [PMID: 29099937 PMCID: PMC5850732 DOI: 10.1093/molbev/msx267] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent and compelling archaeological evidence attests to human presence ∼14.5 ka at multiple sites in South America and a very early exploitation of extreme high-altitude Andean environments. Considering that, according to genetic evidence, human entry into North America from Beringia most likely occurred ∼16 ka, these archeological findings would imply an extremely rapid spread along the double continent. To shed light on this issue from a genetic perspective, we first completely sequenced 217 novel modern mitogenomes of Native American ancestry from the northwestern area of South America (Ecuador and Peru); we then evaluated them phylogenetically together with other available mitogenomes (430 samples, both modern and ancient) from the same geographic area and, finally, with all closely related mitogenomes from the entire double continent. We detected a large number (N = 48) of novel subhaplogroups, often branching into further subclades, belonging to two classes: those that arose in South America early after its peopling and those that instead originated in North or Central America and reached South America with the first settlers. Coalescence age estimates for these subhaplogroups provide time boundaries indicating that early Paleo-Indians probably moved from North America to the area corresponding to modern Ecuador and Peru over the short time frame of ∼1.5 ka comprised between 16.0 and 14.6 ka.
Collapse
Affiliation(s)
- Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Paola Bergamaschi
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Servizio di Immunoematologia e Medicina Trasfusionale, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Fernando Cerna
- Biotechnology Laboratory, Salesian Polytechnic University of Ecuador, Quito, Ecuador
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | | | - Emilie Bertolini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Center, National Neurological Institute C. Mondino, Pavia, Italy
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alberto Gómez-Carballa
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Unidade de Xenética, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Unidade de Xenética, Galicia, Spain
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, Galicia, Spain
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Antonio Salas
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Unidade de Xenética, Galicia, Spain
- GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Unidade de Xenética, Galicia, Spain
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| |
Collapse
|
5
|
Pereira JB, Costa MD, Vieira D, Pala M, Bamford L, Harich N, Cherni L, Alshamali F, Hatina J, Rychkov S, Stefanescu G, King T, Torroni A, Soares P, Pereira L, Richards MB. Reconciling evidence from ancient and contemporary genomes: a major source for the European Neolithic within Mediterranean Europe. Proc Biol Sci 2018; 284:rspb.2016.1976. [PMID: 28330913 DOI: 10.1098/rspb.2016.1976] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2017] [Indexed: 11/12/2022] Open
Abstract
Important gaps remain in our understanding of the spread of farming into Europe, due partly to apparent contradictions between studies of contemporary genetic variation and ancient DNA. It seems clear that farming was introduced into central, northern, and eastern Europe from the south by pioneer colonization. It is often argued that these dispersals originated in the Near East, where the potential source genetic pool resembles that of the early European farmers, but clear ancient DNA evidence from Mediterranean Europe is lacking, and there are suggestions that Mediterranean Europe may have resembled the Near East more than the rest of Europe in the Mesolithic. Here, we test this proposal by dating mitogenome founder lineages from the Near East in different regions of Europe. We find that whereas the lineages date mainly to the Neolithic in central Europe and Iberia, they largely date to the Late Glacial period in central/eastern Mediterranean Europe. This supports a scenario in which the genetic pool of Mediterranean Europe was partly a result of Late Glacial expansions from a Near Eastern refuge, and that this formed an important source pool for subsequent Neolithic expansions into the rest of Europe.
Collapse
Affiliation(s)
- Joana B Pereira
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Instituto de Investigacão e Inovacão em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal
| | - Marta D Costa
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniel Vieira
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Lisa Bamford
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nourdin Harich
- Laboratoire d'Anthropogenetique, Department de Biologie, Universite Chouaib Doukkali, El Jadida 24000, Morocco
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia.,Tunis and High Institute of Biotechnology, University of Monastir, 5000 Monastir, Tunisia
| | - Farida Alshamali
- General Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai 1493, United Arab Emirates
| | - Jiři Hatina
- Medical Faculty in Pilsen, Institute of Biology, Charles University, Pilsen, Czech Republic
| | | | | | - Turi King
- Department of Genetics, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie 'L. Spallanzani', Università di Pavia, Pavia, Italy
| | - Pedro Soares
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal.,Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - Luísa Pereira
- Instituto de Investigacão e Inovacão em Saúde (i3S), Universidade do Porto, Porto 4200-135, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-465, Portugal.,Faculdade de Medicina da Universidade do Porto, Porto 4200-319, Portugal
| | - Martin B Richards
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK .,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| |
Collapse
|
6
|
Olivieri A, Sidore C, Achilli A, Angius A, Posth C, Furtwängler A, Brandini S, Capodiferro MR, Gandini F, Zoledziewska M, Pitzalis M, Maschio A, Busonero F, Lai L, Skeates R, Gradoli MG, Beckett J, Marongiu M, Mazzarello V, Marongiu P, Rubino S, Rito T, Macaulay V, Semino O, Pala M, Abecasis GR, Schlessinger D, Conde-Sousa E, Soares P, Richards MB, Cucca F, Torroni A. Mitogenome Diversity in Sardinians: A Genetic Window onto an Island's Past. Mol Biol Evol 2017; 34:1230-1239. [PMID: 28177087 PMCID: PMC5400395 DOI: 10.1093/molbev/msx082] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sardinians are "outliers" in the European genetic landscape and, according to paleogenomic nuclear data, the closest to early European Neolithic farmers. To learn more about their genetic ancestry, we analyzed 3,491 modern and 21 ancient mitogenomes from Sardinia. We observed that 78.4% of modern mitogenomes cluster into 89 haplogroups that most likely arose in situ. For each Sardinian-specific haplogroup (SSH), we also identified the upstream node in the phylogeny, from which non-Sardinian mitogenomes radiate. This provided minimum and maximum time estimates for the presence of each SSH on the island. In agreement with demographic evidence, almost all SSHs coalesce in the post-Nuragic, Nuragic and Neolithic-Copper Age periods. For some rare SSHs, however, we could not dismiss the possibility that they might have been on the island prior to the Neolithic, a scenario that would be in agreement with archeological evidence of a Mesolithic occupation of Sardinia.
Collapse
Affiliation(s)
- Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy.,Center for Advanced Studies, Research and Development in Sardinia (CRS4), AGCT Program, Parco Scientifico e Tecnologico della Sardegna, Pula, Italy
| | - Cosimo Posth
- Max Planck Institute for the Science of Human History, Jena, Germany.,Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Anja Furtwängler
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | | | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy.,Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, Queensgate, United Kingdom
| | | | | | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Luca Lai
- Department of Anthropology, University of South Florida, Tampa, FL
| | - Robin Skeates
- Department of Archaeology, Durham University, Durham, United Kingdom
| | | | | | - Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | | | - Patrizia Marongiu
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Salvatore Rubino
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences & ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga, Portugal
| | - Vincent Macaulay
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, Queensgate, United Kingdom
| | - Gonçalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging US National Institutes of Health, Baltimore, Maryland, MD
| | - Eduardo Conde-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, Queensgate, United Kingdom
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| |
Collapse
|
7
|
Population resequencing of European mitochondrial genomes highlights sex-bias in Bronze Age demographic expansions. Sci Rep 2017; 7:12086. [PMID: 28935946 PMCID: PMC5608872 DOI: 10.1038/s41598-017-11307-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/22/2017] [Indexed: 11/17/2022] Open
Abstract
Interpretations of genetic data concerning the prehistory of Europe have long been a subject of great debate, but increasing amounts of ancient and modern DNA data are now providing new and more informative evidence. Y-chromosome resequencing studies in Europe have highlighted the prevalence of recent expansions of male lineages, and focused interest on the Bronze Age as a period of cultural and demographic change. These findings contrast with phylogeographic studies based on mitochondrial DNA (mtDNA), which have been interpreted as supporting expansions from glacial refugia. Here we have undertaken a population-based resequencing of complete mitochondrial genomes in Europe and the Middle East, in 340 samples from 17 populations for which Y-chromosome sequence data are also available. Demographic reconstructions show no signal of Bronze Age expansion, but evidence of Paleolithic expansions in all populations except the Saami, and with an absence of detectable geographical pattern. In agreement with previous inference from modern and ancient DNA data, the unbiased comparison between the mtDNA and Y-chromosome population datasets emphasizes the sex-biased nature of recent demographic transitions in Europe.
Collapse
|
8
|
Larruga JM, Marrero P, Abu-Amero KK, Golubenko MV, Cabrera VM. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area. BMC Evol Biol 2017; 17:115. [PMID: 28535779 PMCID: PMC5442693 DOI: 10.1186/s12862-017-0964-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.
Collapse
Affiliation(s)
- Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Patricia Marrero
- Research Support General Service, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
9
|
Origin and spread of human mitochondrial DNA haplogroup U7. Sci Rep 2017; 7:46044. [PMID: 28387361 PMCID: PMC5384202 DOI: 10.1038/srep46044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 01/17/2023] Open
Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
Collapse
|
10
|
Silva M, Oliveira M, Vieira D, Brandão A, Rito T, Pereira JB, Fraser RM, Hudson B, Gandini F, Edwards C, Pala M, Koch J, Wilson JF, Pereira L, Richards MB, Soares P. A genetic chronology for the Indian Subcontinent points to heavily sex-biased dispersals. BMC Evol Biol 2017; 17:88. [PMID: 28335724 PMCID: PMC5364613 DOI: 10.1186/s12862-017-0936-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND India is a patchwork of tribal and non-tribal populations that speak many different languages from various language families. Indo-European, spoken across northern and central India, and also in Pakistan and Bangladesh, has been frequently connected to the so-called "Indo-Aryan invasions" from Central Asia ~3.5 ka and the establishment of the caste system, but the extent of immigration at this time remains extremely controversial. South India, on the other hand, is dominated by Dravidian languages. India displays a high level of endogamy due to its strict social boundaries, and high genetic drift as a result of long-term isolation which, together with a very complex history, makes the genetic study of Indian populations challenging. RESULTS We have combined a detailed, high-resolution mitogenome analysis with summaries of autosomal data and Y-chromosome lineages to establish a settlement chronology for the Indian Subcontinent. Maternal lineages document the earliest settlement ~55-65 ka (thousand years ago), and major population shifts in the later Pleistocene that explain previous dating discrepancies and neutrality violation. Whilst current genome-wide analyses conflate all dispersals from Southwest and Central Asia, we were able to tease out from the mitogenome data distinct dispersal episodes dating from between the Last Glacial Maximum to the Bronze Age. Moreover, we found an extremely marked sex bias by comparing the different genetic systems. CONCLUSIONS Maternal lineages primarily reflect earlier, pre-Holocene processes, and paternal lineages predominantly episodes within the last 10 ka. In particular, genetic influx from Central Asia in the Bronze Age was strongly male-driven, consistent with the patriarchal, patrilocal and patrilineal social structure attributed to the inferred pastoralist early Indo-European society. This was part of a much wider process of Indo-European expansion, with an ultimate source in the Pontic-Caspian region, which carried closely related Y-chromosome lineages, a smaller fraction of autosomal genome-wide variation and an even smaller fraction of mitogenomes across a vast swathe of Eurasia between 5 and 3.5 ka.
Collapse
Affiliation(s)
- Marina Silva
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Marisa Oliveira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Daniel Vieira
- Department of Informatics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreia Brandão
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Teresa Rito
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana B Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Ross M Fraser
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,Synpromics Ltd, Nine Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - Bob Hudson
- Archaeology Department, University of Sydney, Sydney, NSW, 2006, Australia
| | - Francesca Gandini
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Ceiridwen Edwards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maria Pala
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - John Koch
- University of Wales Centre for Advanced Welsh and Celtic Studies, National Library of Wales, Aberystwyth, SY23 3HH, Wales, UK
| | - James F Wilson
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, Scotland, UK
| | - Luísa Pereira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), R. Alfredo Allen 208, 4200-135, Porto, Portugal.,IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Martin B Richards
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Pedro Soares
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal. .,CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
11
|
Marrero P, Abu-Amero KK, Larruga JM, Cabrera VM. Carriers of human mitochondrial DNA macrohaplogroup M colonized India from southeastern Asia. BMC Evol Biol 2016; 16:246. [PMID: 27832758 PMCID: PMC5105315 DOI: 10.1186/s12862-016-0816-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022] Open
Abstract
Background From a mtDNA dominant perspective, the exit from Africa of modern humans to colonize Eurasia occurred once, around 60 kya, following a southern coastal route across Arabia and India to reach Australia short after. These pioneers carried with them the currently dominant Eurasian lineages M and N. Based also on mtDNA phylogenetic and phylogeographic grounds, some authors have proposed the coeval existence of a northern route across the Levant that brought mtDNA macrohaplogroup N to Australia. To contrast both hypothesis, here we reanalyzed the phylogeography and respective ages of mtDNA haplogroups belonging to macrohaplogroup M in different regions of Eurasia and Australasia. Results The macrohaplogroup M has a historical implantation in West Eurasia, including the Arabian Peninsula. Founder ages of M lineages in India are significantly younger than those in East Asia, Southeast Asia and Near Oceania. Moreover, there is a significant positive correlation between the age of the M haplogroups and its longitudinal geographical distribution. These results point to a colonization of the Indian subcontinent by modern humans carrying M lineages from the east instead the west side. Conclusions The existence of a northern route, previously proposed for the mtDNA macrohaplogroup N, is confirmed here for the macrohaplogroup M. Both mtDNA macrolineages seem to have differentiated in South East Asia from ancestral L3 lineages. Taking this genetic evidence and those reported by other disciplines we have constructed a new and more conciliatory model to explain the history of modern humans out of Africa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0816-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Marrero
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
12
|
Gandini F, Achilli A, Pala M, Bodner M, Brandini S, Huber G, Egyed B, Ferretti L, Gómez-Carballa A, Salas A, Scozzari R, Cruciani F, Coppa A, Parson W, Semino O, Soares P, Torroni A, Richards MB, Olivieri A. Mapping human dispersals into the Horn of Africa from Arabian Ice Age refugia using mitogenomes. Sci Rep 2016; 6:25472. [PMID: 27146119 PMCID: PMC4857117 DOI: 10.1038/srep25472] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 01/29/2023] Open
Abstract
Rare mitochondrial lineages with relict distributions can sometimes be disproportionately informative about deep events in human prehistory. We have studied one such lineage, haplogroup R0a, which uniquely is most frequent in Arabia and the Horn of Africa, but is distributed much more widely, from Europe to India. We conclude that: (1) the lineage ancestral to R0a is more ancient than previously thought, with a relict distribution across the Mediterranean/Southwest Asia; (2) R0a has a much deeper presence in Arabia than previously thought, highlighting the role of at least one Pleistocene glacial refugium, perhaps on the Red Sea plains; (3) the main episode of dispersal into Eastern Africa, at least concerning maternal lineages, was at the end of the Late Glacial, due to major expansions from one or more refugia in Arabia; (4) there was likely a minor Late Glacial/early postglacial dispersal from Arabia through the Levant and into Europe, possibly alongside other lineages from a Levantine refugium; and (5) the presence of R0a in Southwest Arabia in the Holocene at the nexus of a trading network that developed after ~3 ka between Africa and the Indian Ocean led to some gene flow even further afield, into Iran, Pakistan and India.
Collapse
Affiliation(s)
- Francesca Gandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy.,School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy.,Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Maria Pala
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Balazs Egyed
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain
| | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Martin B Richards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| |
Collapse
|