1
|
Guo D, Yao B, Shao W, Zuo J, Chang Z, Shi J, Hu N, Bao S, Chen M, Fan X, Li X. The Critical Role of YAP/BMP/ID1 Axis on Simulated Microgravity-Induced Neural Tube Defects in Human Brain Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410188. [PMID: 39656892 PMCID: PMC11792043 DOI: 10.1002/advs.202410188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Integrated biochemical and biophysical signals regulate embryonic development. Correct neural tube formation is critical for the development of central nervous system. However, the role of microgravity in neurodevelopment and its underlying molecular mechanisms remain unclear. In this study, the effects of stimulated microgravity (SMG) on the development of human brain organoids are investigated. SMG impairs N-cadherin-based adherens junction formation, leading to neural tube defects associated with dysregulated self-renewal capacity and neuroepithelial disorganization in human brain organoids. Bulk gene expression analyses reveal that SMG alters Hippo and BMP signaling in brain organoids. The neuropathological deficits in SMG-treated organoids can be rescued by regulating YAP/BMP/ID1 axis. Furthermore, sing-cell RNA sequencing data show that SMG results in perturbations in the number and function of neural stem and progenitor cell subpopulations. One of these subpopulations senses SMG cues and transmits BMP signals to the subpopulation responsible for tube morphogenesis, ultimately affecting the proliferating cell population. Finally, SMG intervention leads to persistent neurologic damage even after returning to normal gravity conditions. Collectively, this study reveals molecular and cellular abnormalities associated with SMG during human brain development, providing opportunities for countermeasures to maintain normal neurodevelopment in space.
Collapse
Affiliation(s)
- Di Guo
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Wen‐Wei Shao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Jia‐Chen Zuo
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Zhe‐Han Chang
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Jian‐Xin Shi
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Nan Hu
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Shuang‐Qing Bao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Meng‐Meng Chen
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Xiu Fan
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Xiao‐Hong Li
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| |
Collapse
|
2
|
Roberto GM, Boutet A, Keil S, Del Guidice E, Duramé E, Tremblay MG, Moss T, Therrien M, Emery G. Tao and Rap2l ensure proper Misshapen activation and levels during Drosophila border cell migration. Dev Cell 2025; 60:119-132.e6. [PMID: 39393350 DOI: 10.1016/j.devcel.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024]
Abstract
Collective cell migration is fundamental in development, wound healing, and metastasis. During Drosophila oogenesis, border cells (BCs) migrate collectively inside the egg chamber, controlled by the Ste20-like kinase Misshapen (Msn). Msn coordinates the restriction of protrusion formation and contractile forces within the cluster. Here, we demonstrate that Tao acts as an upstream activator of Msn in BCs. Depleting Tao significantly impedes BC migration, producing a phenotype similar to Msn loss of function. Furthermore, we show that the localization of Msn relies on its citron homology (CNH) domain, which interacts with the small GTPase Rap2l. Rap2l promotes the trafficking of Msn to the endolysosomal pathway. Depleting Rap2l elevates Msn levels by reducing its trafficking into late endosomes and increases overall contractility. These data suggest that Tao promotes Msn activation, while global Msn protein levels are controlled via Rap2l and the endolysosomal degradation pathway. Thus, two mechanisms ensure appropriate Msn levels and activation in BCs.
Collapse
Affiliation(s)
- Gabriela Molinari Roberto
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Alison Boutet
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Sarah Keil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Emmanuelle Del Guidice
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Michel G Tremblay
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Québec, QC, Canada
| | - Tom Moss
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada; Cancer Research Centre, Laval University, Québec, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
3
|
Parra AS, Johnston CA. The RNA-binding protein Modulo promotes neural stem cell maintenance in Drosophila. PLoS One 2024; 19:e0309221. [PMID: 39700092 DOI: 10.1371/journal.pone.0309221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 12/21/2024] Open
Abstract
A small population of stem cells in the developing Drosophila central nervous system generates the large number of different cell types that make up the adult brain. To achieve this, these neural stem cells (neuroblasts, NBs) divide asymmetrically to produce non-identical daughter cells. The balance between stem cell self-renewal and neural differentiation is regulated by various cellular machinery, including transcription factors, chromatin remodelers, and RNA-binding proteins. The list of these components remains incomplete, and the mechanisms regulating their function are not fully understood, however. Here, we identify a role for the RNA-binding protein Modulo (Mod; nucleolin in humans) in NB maintenance. We employ transcriptomic analyses to identify RNA targets of Mod and assess changes in global gene expression following its knockdown, results of which suggest a link with notable proneural genes and those essential for neurogenesis. Mod is expressed in larval brains and its loss leads to a significant decrease in the number of central brain NBs. Stem cells that remain lack expression of key NB identity factors and exhibit cell proliferation defects. Mechanistically, our analysis suggests these deficiencies arise at least in part from altered cell cycle progression, with a proportion of NBs arresting prior to mitosis. Overall, our data show that Mod function is essential for neural stem cell maintenance during neurogenesis.
Collapse
Affiliation(s)
- Amalia S Parra
- Department of Biology, U.S Department of Energy, (DOE), Oakridge Institute for Science and Education, (ORISE), Office of the Director of National Intelligence, (ODNI), University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Christopher A Johnston
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
4
|
Pelenyi A, Atterton C, Jones J, Currey L, Al-Khalily M, Wright L, Kurniawan ND, Thor S, Piper M. Expression of the Hippo pathway effector, TEAD1, within the developing murine forebrain. Gene Expr Patterns 2024; 54:119384. [PMID: 39557142 DOI: 10.1016/j.gep.2024.119384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The Hippo pathway is a critical regulator of animal development. Activation of the Hippo pathway causes a cascade of phosphorylation events that culminate in the phosphorylation of the transcriptional co-factors YAP and TAZ, which limits their entry into the nucleus. When the Hippo pathway is 'off', however, YAP and TAZ can enter the nucleus, where they interact with the transcription factors of the TEA Domain (TEAD) family to regulate transcriptional activity. Despite the importance of the Hippo pathway for development, including within the nervous system, the expression of the TEAD family remains poorly defined in mammals. Here, we mapped the expression of TEAD1 in the developing mouse brain. We find that TEAD1 expression is confined to progenitor cells during embryonic development, namely radial glia and intermediate progenitor cells. TEAD1 expression is not evident in post-mitotic neurons of the cortical plate. We also identify expression of TEAD1 in developing and mature ependymal cells of the lateral and third ventricle, including within the subcommissural organ, as well as by cells within the choroid plexuses and the forebrain neurogenic niches. Finally, we find that adult mice conditionally heterozygous for Tead1 in the central nervous system exhibit a significantly smaller brain. Collectively, these findings reveal a specific pattern of expression for TEAD1 during telencephalic development and implicate this factor in regulating neural progenitor cell proliferation.
Collapse
Affiliation(s)
- Alexandra Pelenyi
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Cooper Atterton
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Justin Jones
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Laura Currey
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Majd Al-Khalily
- The Centre for Advanced Imaging, The University of Queensland, QLD, 4072, Australia
| | - Lucinda Wright
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Nyoman D Kurniawan
- The Centre for Advanced Imaging, The University of Queensland, QLD, 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia; The Queensland Brain Institute, The University of Queensland, QLD, 4072, Australia.
| |
Collapse
|
5
|
Amanda B, Pragasta R, Cakrasana H, Mustika A, Faizah Z, Oceandy D. The Hippo Signaling Pathway, Reactive Oxygen Species Production, and Oxidative Stress: A Two-Way Traffic Regulation. Cells 2024; 13:1868. [PMID: 39594616 PMCID: PMC11592687 DOI: 10.3390/cells13221868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo signaling pathway is recognized for its significant role in cell differentiation, proliferation, survival, and tissue regeneration. Recently, the Hippo signaling pathway was also found to be associated with oxidative stress and reactive oxygen species (ROS) regulation, which are important in the regulation of cell survival. Studies indicate a correlation between components of the Hippo signaling pathway, including MST1, YAP, and TAZ, and the generation of ROS. On the other hand, ROS and oxidative stress can activate key components of the Hippo signaling pathway. For example, ROS production activates MST1, which subsequently phosphorylates FOXO3, leading to apoptotic cell death. ROS was also found to regulate YAP, in addition to MST1/2. Oxidative stress and ROS formation can impair lipids, proteins, and DNA, leading to many disorders, including aging, neurodegeneration, atherosclerosis, and diabetes. Consequently, understanding the interplay between the Hippo signaling pathway, ROS, and oxidative stress is crucial for developing future disease management strategies. This paper aimed to review the association between the Hippo signaling pathway, regulation of ROS production, and oxidative stress to provide beneficial information in understanding cell function and pathological processes.
Collapse
Affiliation(s)
- Bella Amanda
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Rangga Pragasta
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Faculty of Medicine, Universitas Islam Malang, Malang 65144, Indonesia
| | - Haris Cakrasana
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Arifa Mustika
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia;
| | - Zakiyatul Faizah
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| |
Collapse
|
6
|
Li XH, Guo D, Chen LQ, Chang ZH, Shi JX, Hu N, Chen C, Zhang XW, Bao SQ, Chen MM, Ming D. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. Brain 2024; 147:3817-3833. [PMID: 38739753 DOI: 10.1093/brain/awae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Human brain organoids represent a remarkable platform for modelling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses revealed that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays revealed that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Li-Qun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Gao Y, Tan YS, Lin J, Chew LY, Aung HY, Palliyana B, Gujar MR, Lin KY, Kondo S, Wang H. SUMOylation of Warts kinase promotes neural stem cell reactivation. Nat Commun 2024; 15:8557. [PMID: 39419973 PMCID: PMC11487185 DOI: 10.1038/s41467-024-52569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
A delicate balance between neural stem cell (NSC) quiescence and proliferation is important for adult neurogenesis and homeostasis. Small ubiquitin-related modifier (SUMO)-dependent post-translational modifications cause rapid and reversible changes in protein functions. However, the role of the SUMO pathway during NSC reactivation and brain development is not established. Here, we show that the key components of the SUMO pathway play an important role in NSC reactivation and brain development in Drosophila. Depletion of SUMO/Smt3 or SUMO conjugating enzyme Ubc9 results in notable defects in NSC reactivation and brain development, while their overexpression leads to premature NSC reactivation. Smt3 protein levels increase with NSC reactivation, which is promoted by the Ser/Thr kinase Akt. Warts/Lats, the core protein kinase of the Hippo pathway, can undergo SUMO- and Ubc9-dependent SUMOylation at Lys766. This modification attenuates Wts phosphorylation by Hippo, leading to the inhibition of the Hippo pathway, and consequently, initiation of NSC reactivation. Moreover, inhibiting Hippo pathway effectively restores the NSC reactivation defects induced by SUMO pathway inhibition. Overall, our study uncovered an important role for the SUMO-Hippo pathway during Drosophila NSC reactivation and brain development.
Collapse
Affiliation(s)
- Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Htet Yamin Aung
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Brinda Palliyana
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Mahekta R Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. SCIENCE ADVANCES 2024; 10:eadl4694. [PMID: 39047090 PMCID: PMC11268418 DOI: 10.1126/sciadv.adl4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mahekta R. Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiawen Huang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Low Siok Lan Christine
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
9
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584337. [PMID: 38903085 PMCID: PMC11188063 DOI: 10.1101/2024.03.11.584337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
|
10
|
Kroeger B, Manning SA, Fonseka Y, Oorschot V, Crawford SA, Ramm G, Harvey KF. Basal spot junctions of Drosophila epithelial tissues respond to morphogenetic forces and regulate Hippo signaling. Dev Cell 2024; 59:262-279.e6. [PMID: 38134928 DOI: 10.1016/j.devcel.2023.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Organ size is controlled by numerous factors including mechanical forces, which are mediated in part by the Hippo pathway. In growing Drosophila epithelial tissues, cytoskeletal tension influences Hippo signaling by modulating the localization of key pathway proteins to different apical domains. Here, we discovered a Hippo signaling hub at basal spot junctions, which form at the basal-most point of the lateral membranes and resemble adherens junctions in protein composition. Basal spot junctions recruit the central kinase Warts via Ajuba and E-cadherin, which prevent Warts activation by segregating it from upstream Hippo pathway proteins. Basal spot junctions are prominent when tissues undergo morphogenesis and are highly sensitive to fluctuations in cytoskeletal tension. They are distinct from focal adhesions, but the latter profoundly influences basal spot junction abundance by modulating the basal-medial actomyosin network and tension experienced by spot junctions. Thus, basal spot junctions couple morphogenetic forces to Hippo pathway activity and organ growth.
Collapse
Affiliation(s)
- Benjamin Kroeger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Samuel A Manning
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Yoshana Fonseka
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Melbourne, VIC 3168, Australia
| | - Kieran F Harvey
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia; Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
11
|
Zhang H, Rui M, Ma Z, Gong S, Zhang S, Zhou Q, Gan C, Gong W, Wang S. Golgi-to-ER retrograde transport prevents premature differentiation of Drosophila type II neuroblasts via Notch-signal-sending daughter cells. iScience 2024; 27:108545. [PMID: 38213621 PMCID: PMC10783626 DOI: 10.1016/j.isci.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Stem cells are heterogeneous to generate diverse differentiated cell types required for organogenesis; however, the underlying mechanisms that differently maintain these heterogeneous stem cells are not well understood. In this study, we identify that Golgi-to-endoplasmic reticulum (ER) retrograde transport specifically maintains type II neuroblasts (NBs) through the Notch signaling. We reveal that intermediate neural progenitors (INPs), immediate daughter cells of type II NBs, provide Delta and function as the NB niche. The Delta used by INPs is mainly produced by NBs and asymmetrically distributed to INPs. Blocking retrograde transport leads to a decrease in INP number, which reduces Notch activity and results in the premature differentiation of type II NBs. Furthermore, the reduction of Delta could suppress tumor formation caused by type II NBs. Our results highlight the crosstalk between Golgi-to-ER retrograde transport, Notch signaling, stem cell niche, and fusion as an essential step in maintaining the self-renewal of type II NB lineage.
Collapse
Affiliation(s)
- Huanhuan Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhixin Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Sifan Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shuliu Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qingxia Zhou
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Congfeng Gan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wenting Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
12
|
Byeon S, Yadav S. Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Sci Signal 2024; 17:eadg0876. [PMID: 38166033 PMCID: PMC11810052 DOI: 10.1126/scisignal.adg0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024]
Abstract
Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Gujar MR, Gao Y, Teng X, Deng Q, Lin KY, Tan YS, Toyama Y, Wang H. Golgi-dependent reactivation and regeneration of Drosophila quiescent neural stem cells. Dev Cell 2023; 58:1933-1949.e5. [PMID: 37567172 DOI: 10.1016/j.devcel.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/26/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. In Drosophila, quiescent neural stem cells (qNSCs) extend a primary protrusion, a hallmark of qNSCs. Here, we have found that qNSC protrusions can be regenerated upon injury. This regeneration process relies on the Golgi apparatus that acts as the major acentrosomal microtubule-organizing center in qNSCs. A Golgi-resident GTPase Arf1 and its guanine nucleotide exchange factor Sec71 promote NSC reactivation and regeneration via the regulation of microtubule growth. Arf1 physically associates with its new effector mini spindles (Msps)/XMAP215, a microtubule polymerase. Finally, Arf1 functions upstream of Msps to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings have established Drosophila qNSCs as a regeneration model and identified Arf1/Sec71-Msps pathway in the regulation of microtubule growth and NSC reactivation.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Qiannan Deng
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kun-Yang Lin
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
14
|
Wang J, Li W, Li Z, Xue Z, Zhang Y, Yuan Y, Shi Y, Shan S, Han W, Li F, Qiu Z. Taok1 haploinsufficiency leads to autistic-like behaviors in mice via the dorsal raphe nucleus. Cell Rep 2023; 42:113078. [PMID: 37656623 DOI: 10.1016/j.celrep.2023.113078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Strong evidence from human genetic studies associates the thousand and one amino acid kinase 1 (TAOK1) gene with autism spectrum disorder (ASD). In this work, we discovered a de novo frameshifting mutation in TAOK1 within a Chinese ASD cohort. We found that Taok1 haploinsufficiency induces autistic-like behaviors in mice. Importantly, we observed a significant enrichment of Taok1 in the dorsal raphe nucleus (DRN). The haploinsufficiency of Taok1 considerably restrained the activation of DRN neurons during social interactions, leading to the aberrant phosphorylation of numerous proteins. Intriguingly, the genetic deletion of Taok1 in VGlut3-positive neurons of DRN resulted in mice exhibiting autistic-like behaviors. Ultimately, reintroducing wild-type Taok1, but not its kinase-dead variant, into the DRN of adult mice effectively mitigated the autistic-like behaviors associated with Taok1 haploinsufficiency. This work suggests that Taok1, through its influence in the DRN, regulates social interaction behaviors, providing critical insights into the etiology of ASD.
Collapse
Affiliation(s)
- Jincheng Wang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weike Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zimeng Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenyu Xue
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Yuan
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Shi
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenjian Han
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang District Central Hospital, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; MOE-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Clinic Neuroscience Center, Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Gujar MR, Gao Y, Teng X, Ding WY, Lin J, Tan YS, Chew LY, Toyama Y, Wang H. Patronin/CAMSAP promotes reactivation and regeneration of Drosophila quiescent neural stem cells. EMBO Rep 2023; 24:e56624. [PMID: 37440685 PMCID: PMC10481672 DOI: 10.15252/embr.202256624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (qNSCs) extend a primary protrusion that is enriched in acentrosomal microtubules and can be regenerated upon injury. Arf1 promotes microtubule growth, reactivation (exit from quiescence), and regeneration of qNSC protrusions upon injury. However, how Arf1 is regulated in qNSCs remains elusive. Here, we show that the microtubule minus-end binding protein Patronin/CAMSAP promotes acentrosomal microtubule growth and quiescent NSC reactivation. Patronin is important for the localization of Arf1 at Golgi and physically associates with Arf1, preferentially with its GDP-bound form. Patronin is also required for the regeneration of qNSC protrusion, likely via the regulation of microtubule growth. Finally, Patronin functions upstream of Arf1 and its effector Msps/XMAP215 to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings reveal a novel link between Patronin/CAMSAP and Arf1 in the regulation of microtubule growth and NSC reactivation. A similar mechanism might apply to various microtubule-dependent systems in mammals.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Xiang Teng
- Mechanobiology InstituteSingaporeSingapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Present address:
Temasek LifeSciences LaboratorySingaporeSingapore
| | - Yusuke Toyama
- Mechanobiology InstituteSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering ProgrammeNational University of SingaporeSingaporeSingapore
| |
Collapse
|
16
|
Roberto GM, Boutet A, Keil S, Emery G. Dual regulation of Misshapen by Tao and Rap2l promotes collective cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550060. [PMID: 37503122 PMCID: PMC10370187 DOI: 10.1101/2023.07.21.550060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Collective cell migration occurs in various biological processes such as development, wound healing and metastasis. During Drosophila oogenesis, border cells (BC) form a cluster that migrates collectively inside the egg chamber. The Ste20-like kinase Misshapen (Msn) is a key regulator of BC migration coordinating the restriction of protrusion formation and contractile forces within the cluster. Here, we demonstrate that the kinase Tao acts as an upstream activator of Msn in BCs. Depletion of Tao significantly impedes BC migration and produces a phenotype similar to Msn loss-of-function. Furthermore, we show that the localization of Msn relies on its CNH domain, which interacts with the small GTPase Rap2l. Our findings indicate that Rap2l promotes the trafficking of Msn to the endolysosomal pathway. When Rap2l is depleted, the levels of Msn increase in the cytoplasm and at cell-cell junctions between BCs. Overall, our data suggest that Rap2l ensures that the levels of Msn are higher at the periphery of the cluster through the targeting of Msn to the degradative pathway. Together, we identified two distinct regulatory mechanisms that ensure the appropriate distribution and activation of Msn in BCs.
Collapse
|
17
|
Del Rocío Pérez Baca M, Jacobs EZ, Vantomme L, Leblanc P, Bogaert E, Dheedene A, De Cock L, Haghshenas S, Foroutan A, Levy MA, Kerkhof J, McConkey H, Chen CA, Batzir NA, Wang X, Palomares M, Carels M, Demaut B, Sadikovic B, Menten B, Yuan B, Vergult S, Callewaert B. A novel neurodevelopmental syndrome caused by loss-of-function of the Zinc Finger Homeobox 3 (ZFHX3) gene. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.22.23289895. [PMID: 37292950 PMCID: PMC10246128 DOI: 10.1101/2023.05.22.23289895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function variation in ZFHX3 as a novel cause for syndromic intellectual disability (ID). ZFHX3, previously known as ATBF1, is a zinc-finger homeodomain transcription factor involved in multiple biological processes including cell differentiation and tumorigenesis. Through international collaboration, we collected clinical and morphometric data (Face2Gene) of 41 individuals with protein truncating variants (PTVs) or (partial) deletions of ZFHX3 . We used data mining, RNA and protein analysis to identify the subcellular localization and spatiotemporal expression of ZFHX3 in multiple in vitro models. We identified the DNA targets of ZFHX3 using ChIP seq. Immunoprecipitation followed by mass spectrometry indicated potential binding partners of endogenous ZFHX3 in neural stem cells that were subsequently confirmed by reversed co-immunoprecipitation and western blot. We evaluated a DNA methylation profile associated with ZFHX3 haploinsufficiency using DNA methylation analysis on whole blood extracted DNA of six individuals with ZFHX3 PTVs and four with a (partial) deletion of ZFHX3 . A reversed genetic approach characterized the ZFHX3 orthologue in Drosophila melanogaster . Loss-of-function variation of ZFHX3 consistently associates with (mild) ID and/or behavioural problems, postnatal growth retardation, feeding difficulties, and recognizable facial characteristics, including the rare occurrence of cleft palate. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation in neural stem cells and SH-SY5Y cells, ZFHX3 interacts with the chromatin remodelling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex. In line with a role for chromatin remodelling, ZFHX3 haploinsufficiency associates with a specific DNA methylation profile in leukocyte-derived DNA. The target genes of ZFHX3 are implicated in neuron and axon development. In Drosophila melanogaster , z fh2, considered to be the ZFHX3 orthologue, is expressed in the third instar larval brain. Ubiquitous and neuron-specific knockdown of zfh2 results in adult lethality underscoring a key role for zfh2 in development and neurodevelopment. Interestingly, ectopic expression of zfh2 as well as ZFHX3 in the developing wing disc results in a thoracic cleft phenotype. Collectively, our data shows that loss-of-function variants in ZFHX3 are a cause of syndromic ID, that associates with a specific DNA methylation profile. Furthermore, we show that ZFHX3 participates in chromatin remodelling and mRNA processing.
Collapse
|
18
|
Sampedro-Castañeda M, Ultanir SK. Activity-dependent membrane sculpting deficits in TAOK1-linked neurodevelopmental disease. Trends Neurosci 2023:S0166-2236(23)00131-5. [PMID: 37230852 DOI: 10.1016/j.tins.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
A recent study by Beeman et al. exploring disease-related missense mutations in TAOK1 revealed a self-regulating association of the kinase with the plasma membrane that is critical for neuronal morphogenesis. Using a combination of in vitro approaches and elegant in silico modeling, the authors describe an aberrant membrane protrusions phenotype in kinase-deficient mutants reminiscent of TAOK2's indirect regulation of neuronal morphology, thus providing a converging patho-mechanism across several neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marisol Sampedro-Castañeda
- Kinases and brain development laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| | - Sila K Ultanir
- Kinases and brain development laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| |
Collapse
|
19
|
Cardo LF, de la Fuente DC, Li M. Impaired neurogenesis and neural progenitor fate choice in a human stem cell model of SETBP1 disorder. Mol Autism 2023; 14:8. [PMID: 36805818 PMCID: PMC9940404 DOI: 10.1186/s13229-023-00540-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Disruptions of SETBP1 (SET binding protein 1) on 18q12.3 by heterozygous gene deletion or loss-of-function variants cause SETBP1 disorder. Clinical features are frequently associated with moderate to severe intellectual disability, autistic traits and speech and motor delays. Despite the association of SETBP1 with neurodevelopmental disorders, little is known about its role in brain development. METHODS Using CRISPR/Cas9 genome editing technology, we generated a SETBP1 deletion model in human embryonic stem cells (hESCs) and examined the effects of SETBP1-deficiency in neural progenitors (NPCs) and neurons derived from these stem cells using a battery of cellular assays, genome-wide transcriptomic profiling and drug-based phenotypic rescue. RESULTS Neural induction occurred efficiently in all SETBP1 deletion models as indicated by uniform transition into neural rosettes. However, SETBP1-deficient NPCs exhibited an extended proliferative window and a decrease in neurogenesis coupled with a deficiency in their ability to acquire ventral forebrain fate. Genome-wide transcriptome profiling and protein biochemical analysis revealed enhanced activation of Wnt/β-catenin signaling in SETBP1 deleted cells. Crucially, treatment of the SETBP1-deficient NPCs with a small molecule Wnt inhibitor XAV939 restored hyper canonical β-catenin activity and restored both cortical and MGE neuronal differentiation. LIMITATIONS The current study is based on analysis of isogenic hESC lines with genome-edited SETBP1 deletion and further studies would benefit from the use of patient-derived iPSC lines that may harbor additional genetic risk that aggravate brain pathology of SETBP1 disorder. CONCLUSIONS We identified an important role for SETBP1 in controlling forebrain progenitor expansion and neurogenic differentiation. Our study establishes a novel regulatory link between SETBP1 and Wnt/β-catenin signaling during human cortical neurogenesis and provides mechanistic insights into structural abnormalities and potential therapeutic avenues for SETBP1 disorder.
Collapse
Affiliation(s)
- Lucia F Cardo
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Daniel C de la Fuente
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, School of Medicine and School of Bioscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
20
|
Beeman N, Sapre T, Ong SE, Yadav S. Neurodevelopmental disorder-associated mutations in TAOK1 reveal its function as a plasma membrane remodeling kinase. Sci Signal 2023; 16:eadd3269. [PMID: 36595571 PMCID: PMC9970049 DOI: 10.1126/scisignal.add3269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mutations in TAOK1, which encodes a serine-threonine kinase, are associated with both autism spectrum disorder (ASD) and neurodevelopmental delay (NDD). Here, we investigated the molecular function of this evolutionarily conserved kinase and the mechanisms through which TAOK1 mutations may lead to neuropathology. We found that TAOK1 was abundant in neurons in the mammalian brain and remodeled the neuronal plasma membrane through direct association with phosphoinositides. Our characterization of four NDD-associated TAOK1 mutations revealed that these mutants were catalytically inactive and were aberrantly trapped in a membrane-bound state, which induced abnormal membrane protrusions. Expression of these TAOK1 mutants in cultured mouse hippocampal neurons led to abnormal growth of the dendritic arbor. The coiled-coil region carboxyl-terminal to the kinase domain was predicted to fold into a triple helix, and this region directly bound phospholipids and was required for both membrane association and induction of aberrant protrusions. Autophosphorylation of threonine-440 and threonine-443 in the triple-helical region by the kinase domain blocked the plasma membrane association of TAOK1. These findings define TAOK1 as a plasma membrane remodeling kinase and reveal the underlying mechanisms through which TAOK1 dysfunction may lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Neal Beeman
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle WA 98195,Corresponding author:
| |
Collapse
|
21
|
Bioinformatics analysis of miRNAs in the neuroblastoma 11q-deleted region reveals a role of miR-548l in both 11q-deleted and MYCN amplified tumour cells. Sci Rep 2022; 12:19729. [PMID: 36396668 PMCID: PMC9671919 DOI: 10.1038/s41598-022-24140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Neuroblastoma is a childhood tumour that is responsible for approximately 15% of all childhood cancer deaths. Neuroblastoma tumours with amplification of the oncogene MYCN are aggressive, however, another aggressive subgroup without MYCN amplification also exists; rather, they have a deleted region at chromosome arm 11q. Twenty-six miRNAs are located within the breakpoint region of chromosome 11q and have been checked for a possible involvement in development of neuroblastoma due to the genomic alteration. Target genes of these miRNAs are involved in pathways associated with cancer, including proliferation, apoptosis and DNA repair. We could show that miR-548l found within the 11q region is downregulated in neuroblastoma cell lines with 11q deletion or MYCN amplification. In addition, we showed that the restoration of miR-548l level in a neuroblastoma cell line led to a decreased proliferation of these cells as well as a decrease in the percentage of cells in the S phase. We also found that miR-548l overexpression suppressed cell viability and promoted apoptosis, while miR-548l knockdown promoted cell viability and inhibited apoptosis in neuroblastoma cells. Our results indicate that 11q-deleted neuroblastoma and MYCN amplified neuroblastoma coalesce by downregulating miR-548l.
Collapse
|
22
|
Yu L, Yang C, Shang N, Ding H, Zhu J, Zhu Y, Tan H, Zhang Y. Paternal De Novo Variant of TAOK1 in a Fetus With Structural Brain Abnormalities. Front Genet 2022; 13:836853. [PMID: 35928450 PMCID: PMC9343781 DOI: 10.3389/fgene.2022.836853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
A dilated lateral ventricle is a relatively common finding on prenatal ultrasound, and the causes are complex. We aimed to explore the etiology of a fetus with a dilated lateral ventricle. Trio whole-exome sequencing was performed to detect causative variants. A de novo variant of TAOK1 (NM_020791.2: c.227A>G) was detected in the proband and evaluated for potential functional impacts using a variety of prediction tools. Droplet digital polymerase chain reaction was used to exclude the parental mosaicism and to verify the phasing of the de novo variant. Based on peripheral blood analysis, the parents did not exhibit mosaicism at this site, and the de novo variant was paternally derived. Here, we describe a fetus with a de novo likely pathogenic variant of TAOK1 who had a dilated lateral ventricle and a series of particular phenotypes. This case expands the clinical spectrum of TAOK1-associated disorders. We propose a method for solving genetic disorders in which the responsible genes have not yet gone through ClinGen curation, particularly for prenatal cases.
Collapse
Affiliation(s)
- Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ning Shang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Juan Zhu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuanyuan Zhu
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Haowen Tan
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
23
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
24
|
Terry BK, Kim S. The Role of Hippo-YAP/TAZ Signaling in Brain Development. Dev Dyn 2022; 251:1644-1665. [PMID: 35651313 DOI: 10.1002/dvdy.504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
In order for our complex nervous system to develop normally, both precise spatial and temporal regulation of a number of different signaling pathways is critical. During both early embryogenesis and in organ development, one pathway that has been repeatedly implicated is the Hippo-YAP/TAZ signaling pathway. The paralogs YAP and TAZ are transcriptional co-activators that play an important role in cell proliferation, cell differentiation, and organ growth. Regulation of these proteins by the Hippo kinase cascade is therefore important for normal development. In this article, we review the growing field of research surrounding the role of Hippo-YAP/TAZ signaling in normal and atypical brain development. Starting from the development of the neural tube to the development and refinement of the cerebral cortex, cerebellum, and ventricular system, we address the typical role of these transcriptional co-activators, the functional consequences that manipulation of YAP/TAZ and their upstream regulators have on brain development, and where further research may be of benefit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bethany K Terry
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA.,Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
25
|
Nguyen PK, Cheng LY. Non-autonomous regulation of neurogenesis by extrinsic cues: a Drosophila perspective. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac004. [PMID: 38596708 PMCID: PMC10913833 DOI: 10.1093/oons/kvac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 04/11/2024]
Abstract
The formation of a functional circuitry in the central nervous system (CNS) requires the correct number and subtypes of neural cells. In the developing brain, neural stem cells (NSCs) self-renew while giving rise to progenitors that in turn generate differentiated progeny. As such, the size and the diversity of cells that make up the functional CNS depend on the proliferative properties of NSCs. In the fruit fly Drosophila, where the process of neurogenesis has been extensively investigated, extrinsic factors such as the microenvironment of NSCs, nutrients, oxygen levels and systemic signals have been identified as regulators of NSC proliferation. Here, we review decades of work that explores how extrinsic signals non-autonomously regulate key NSC characteristics such as quiescence, proliferation and termination in the fly.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
26
|
Gujar MR, Wang H. A fly's eye view of quiescent neural stem cells. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac001. [PMID: 38596705 PMCID: PMC10913722 DOI: 10.1093/oons/kvac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 04/11/2024]
Abstract
The balance between proliferation and quiescence of stem cells is crucial in maintaining tissue homeostasis. Neural stem cells (NSCs) in the brain have the ability to be reactivated from a reversible quiescent state to generate new neurons. However, how NSCs transit between quiescence and reactivation remains largely elusive. Drosophila larval brain NSCs, also known as neuroblasts, have emerged as an excellent in vivo model to study molecular mechanisms underlying NSC quiescence and reactivation. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs in Drosophila. We review the most recent advances on epigenetic regulations and microtubule cytoskeleton in Drosophila quiescent NSCs and their cross-talk with signaling pathways that are required in regulating NSC reactivation.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore
| |
Collapse
|
27
|
Drosophila septin interacting protein 1 regulates neurogenesis in the early developing larval brain. Sci Rep 2022; 12:292. [PMID: 34997175 PMCID: PMC8742078 DOI: 10.1038/s41598-021-04474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
Neurogenesis in the Drosophila central brain progresses dynamically in order to generate appropriate numbers of neurons during different stages of development. Thus, a central challenge in neurobiology is to reveal the molecular and genetic mechanisms of neurogenesis timing. Here, we found that neurogenesis is significantly impaired when a novel mutation, Nuwa, is induced at early but not late larval stages. Intriguingly, when the Nuwa mutation is induced in neuroblasts of olfactory projection neurons (PNs) at the embryonic stage, embryonic-born PNs are generated, but larval-born PNs of the same origin fail to be produced. Through molecular characterization and transgenic rescue experiments, we determined that Nuwa is a loss-of-function mutation in Drosophila septin interacting protein 1 (sip1). Furthermore, we found that SIP1 expression is enriched in neuroblasts, and RNAi knockdown of sip1 using a neuroblast driver results in formation of small and aberrant brains. Finally, full-length SIP1 protein and truncated SIP1 proteins lacking either the N- or C-terminus display different subcellular localization patterns, and only full-length SIP1 can rescue the Nuwa-associated neurogenesis defect. Taken together, these results suggest that SIP1 acts as a crucial factor for specific neurogenesis programs in the early developing larval brain.
Collapse
|
28
|
Huang M, Dong J, Guo H, Xiao M, Wang D. Identification of circular RNAs and corresponding regulatory networks reveals potential roles in the brains of honey bee workers exposed to dinotefuran. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104994. [PMID: 34955187 DOI: 10.1016/j.pestbp.2021.104994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Honey bees are important and highly efficient pollinators of agricultural crops and have been negatively affected by insecticides in recent years. Circular RNA (circRNA) plays an important role in the regulation of multiple biological and pathological processes; however, its role in the honey bee brain after exposure to dinotefuran is not well understood. Here, the expression profiles and potential modulation networks of circRNAs in the brains of workers (Apis mellifera) were comprehensively investigated using RNA sequencing and bioinformatics. In total, 33, 144, and 211 differentially expressed (DE) circRNAs were identified on the 1st, 5th and 10th days after exposure to dinotefuran, respectively. Enrichment analyses revealed that the host genes of DE circRNAs were enriched in the Hippo signaling pathway-fly, Wnt signaling pathway, and neuroactive ligand-receptor interaction. circ_0002266, circ_0005080, circ_0010239 and circ_0005415 were found to have translational potential due to the presence of an internal ribosome entry site (IRES). An integrated analysis of the DE circRNA-miRNA-mRNA networks suggest that circ_0008898 and circ_0001829 may participate in the immune response to dinotefuran exposure by acting as miRNA sponges. Our results provide invaluable basic data on A. mellifera brain circRNA patterns and a molecular basis for further study of the biological function of circRNAs in the development and immune response of honey bees.
Collapse
Affiliation(s)
- Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, No. 145 Shiqiao Road, Hangzhou 310021, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, No. 145 Shiqiao Road, Hangzhou 310021, China
| | - Haikun Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, No. 198 Shiqiao Road, Hangzhou 310021, China
| | - Minghui Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, No. 145 Shiqiao Road, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, No. 145 Shiqiao Road, Hangzhou 310021, China.
| |
Collapse
|
29
|
Pojer JM, Manning SA, Kroeger B, Kondo S, Harvey KF. The Hippo pathway uses different machinery to control cell fate and organ size. iScience 2021; 24:102830. [PMID: 34355153 PMCID: PMC8322298 DOI: 10.1016/j.isci.2021.102830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
The Hippo pathway is a conserved signaling network that regulates organ growth and cell fate. One such cell fate decision is that of R8 photoreceptor cells in the Drosophila eye, where Hippo specifies whether cells sense blue or green light. We show that only a subset of proteins that control organ growth via the Hippo pathway also regulate R8 cell fate choice, including the STRIPAK complex, Tao, Pez, and 14-3-3 proteins. Furthermore, key Hippo pathway proteins were primarily cytoplasmic in R8 cells rather than localized to specific membrane domains, as in cells of growing epithelial organs. Additionally, Warts was the only Hippo pathway protein to be differentially expressed between R8 subtypes, while central Hippo pathway proteins were expressed at dramatically lower levels in adult and pupal eyes than in growing larval eyes. Therefore, we reveal several important differences in Hippo signaling in the contexts of organ growth and cell fate.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samuel A. Manning
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Kroeger
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
30
|
Deng Q, Tan YS, Chew LY, Wang H. Msps governs acentrosomal microtubule assembly and reactivation of quiescent neural stem cells. EMBO J 2021; 40:e104549. [PMID: 34368973 PMCID: PMC8488572 DOI: 10.15252/embj.2020104549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of stem cells to switch between quiescence and proliferation is crucial for tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (NSCs) extend a primary cellular protrusion from the cell body prior to their reactivation. However, the structure and function of this protrusion are not well established. Here, we show that in the protrusion of quiescent NSCs, microtubules are predominantly acentrosomal and oriented plus‐end‐out toward the tip of the primary protrusion. We have identified Mini Spindles (Msps)/XMAP215 as a key microtubule regulator in quiescent NSCs that governs NSC reactivation via regulating acentrosomal microtubule growth and orientation. We show that quiescent NSCs form membrane contact with the neuropil and E‐cadherin, a cell adhesion molecule, localizes to these NSC‐neuropil junctions. Msps and a plus‐end directed motor protein Kinesin‐2 promote NSC cell cycle re‐entry and target E‐cadherin to NSC‐neuropil contact during NSC reactivation. Together, this work establishes acentrosomal microtubule organization in the primary protrusion of quiescent NSCs and the Msps‐Kinesin‐2 pathway that governs NSC reactivation, in part, by targeting E‐cad to NSC‐neuropil contact sites.
Collapse
Affiliation(s)
- Qiannan Deng
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Liang Yuh Chew
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Li X, Li K, Chen Y, Fang F. The Role of Hippo Signaling Pathway in the Development of the Nervous System. Dev Neurosci 2021; 43:263-270. [PMID: 34350875 DOI: 10.1159/000515633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022] Open
Abstract
Hippo signaling pathway is a highly conserved and crucial signaling pathway that controls the size of tissues and organs by regulating the proliferation, differentiation, and apoptosis of cells. The nervous system is a complicated system that participates in information collection, integration, and procession. The balance of various aspects of the nervous system is vital for the normal regulation of physiological conditions of the body, like the population and distribution of nerve cells, nerve connections, and so on. Defects in these aspects may lead to cognitive, behavioral, and neurological dysfunction, resulting in various nervous system diseases. Recently, accumulating evidence proposes that Hippo pathway maintains numerous biological functions in the nervous system development, including modulating the proliferation and differentiation of nerve cells and promoting the development of synapse, corpus callosum, and cortex. In this review, we will summarize recent findings of Hippo pathway in the nervous system to improve our understanding on its function and to provide potential therapeutic strategies of nervous system diseases in the future.
Collapse
Affiliation(s)
- Xifan Li
- Department of Human Anatomy, School of Basic Medicine Sciences, Guilin Medical University, Guilin, China
| | - Kaixuan Li
- Department of Human Anatomy, School of Basic Medicine Sciences, Guilin Medical University, Guilin, China
| | - Yu Chen
- Department of Human Anatomy, School of Basic Medicine Sciences, Guilin Medical University, Guilin, China
| | - Fang Fang
- Department of Human Anatomy, School of Basic Medicine Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
32
|
Pojer JM, Saiful Hilmi AJ, Kondo S, Harvey KF. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet 2021; 17:e1009146. [PMID: 34097697 PMCID: PMC8211197 DOI: 10.1371/journal.pgen.1009146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
33
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
34
|
Wang J, Zhuang L, Ding Y, Wang Z, Xiao W, Zhu J. A RNA-seq approach for exploring the protective effect of ginkgolide B on glutamate-induced astrocytes injury. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113807. [PMID: 33450290 DOI: 10.1016/j.jep.2021.113807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There is substantial experimental evidence to support the view that Ginkgo biloba L. (Ginkgoaceae), a traditional Chinese medicine known to treating stroke, has a protective effect on the central nervous system and significantly improves the cognitive dysfunction caused by disease, including alzheimer disease (AD), vascular dementia, and diabetic encephalopathy. Although a number of studies have reported that ginkgolide B (GB), a diterpenoid lactone compound extracted from Ginkgo biloba leaves, has neuroprotective effects, very little research has been performed to explore its potential pharmacological mechanism on astrocytes under abnormal glutamate (Glu) metabolism in the pathological environment of AD. AIM OF THE STUDY We investigated the protective effect and mechanism of GB on Glu-induced astrocytes injury. METHODS Astrocytes were randomly divided into the control group, Glu group, GB group, and GB + IWP-4 group.The CCK-8 assay was used to determine relative cell viability in vitro. Furthermore, RNA sequencing (RNA-seq) was performed to assess the preventive effects of GB in the Glu-induced astrocyte model and reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to validate the possible molecular mechanisms. The effects of GB on the Glu transporter and Glu-induced apoptosis of astrocytes were studied by RT-qPCR and western blot. RESULTS GB attenuated Glu-induced apoptosis in a concentration-dependent manner, while the Wnt inhibitor IWP-4 reversed the protective effect of GB on astrocytes. The RNA-seq results revealed 4,032 differential gene expression profiles; 3,491 genes were up-regulated, and 543 genes were down-regulated in the GB group compared with the Glu group. Differentially expressed genes involved in a variety of signaling pathways, including the Hippo and Wnt pathways have been associated with the development and progression of AD. RT-qPCR was used to validate 14 key genes, and the results were consistent with the RNA-seq data. IWP-4 inhibited the regulation of GB, disturbed the apoptosis protective effect on astrocytes, and promoted Glu transporter gene and protein expression caused by Glu. CONCLUSION Our findings demonstrate that GB may play a protective role in Glu-induced astrocyte injury by regulating the Hippo and Wnt pathways. GB was closely associated with the Wnt pathway by promoting expression of the Glu transporter and inhibiting Glu-induced injury in astrocytes.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 16034, PR China; Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, 222000, PR China; State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, Jiangsu, 222000, PR China
| | - Linwu Zhuang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 16034, PR China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 16034, PR China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, 222000, PR China; State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, Jiangsu, 222000, PR China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, 222000, PR China; State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine, Lianyungang, Jiangsu, 222000, PR China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, PR China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 16034, PR China.
| |
Collapse
|
35
|
Yi C, Spitters TWGM, Al-Far EADA, Wang S, Xiong T, Cai S, Yan X, Guan K, Wagner M, El-Armouche A, Antos CL. A calcineurin-mediated scaling mechanism that controls a K +-leak channel to regulate morphogen and growth factor transcription. eLife 2021; 10:e60691. [PMID: 33830014 PMCID: PMC8110307 DOI: 10.7554/elife.60691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The increase in activity of the two-pore potassium-leak channel Kcnk5b maintains allometric juvenile growth of adult zebrafish appendages. However, it remains unknown how this channel maintains allometric growth and how its bioelectric activity is regulated to scale these anatomical structures. We show the activation of Kcnk5b is sufficient to activate several genes that are part of important development programs. We provide in vivo transplantation evidence that the activation of gene transcription is cell autonomous. We also show that Kcnk5b will induce the expression of different subsets of the tested developmental genes in different cultured mammalian cell lines, which may explain how one electrophysiological stimulus can coordinately regulate the allometric growth of diverse populations of cells in the fin that use different developmental signals. We also provide evidence that the post-translational modification of serine 345 in Kcnk5b by calcineurin regulates channel activity to scale the fin. Thus, we show how an endogenous bioelectric mechanism can be regulated to promote coordinated developmental signaling to generate and scale a vertebrate appendage.
Collapse
Affiliation(s)
- Chao Yi
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Tim WGM Spitters
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | | | - Sen Wang
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - TianLong Xiong
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Simian Cai
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | - Xin Yan
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | - Kaomei Guan
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| | - Michael Wagner
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
- Klinik für Innere Medizin und Kardiologie, Herzzentrum Dresden, Technische Universität DresdenDresdenGermany
| | - Ali El-Armouche
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| | - Christopher L Antos
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| |
Collapse
|
36
|
Huang J, Gujar MR, Deng Q, Y Chia S, Li S, Tan P, Sung W, Wang H. Histone lysine methyltransferase Pr-set7/SETD8 promotes neural stem cell reactivation. EMBO Rep 2021; 22:e50994. [PMID: 33565211 PMCID: PMC8024890 DOI: 10.15252/embr.202050994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
The ability of neural stem cells (NSCs) to switch between quiescence and proliferation is crucial for brain development and homeostasis. Increasing evidence suggests that variants of histone lysine methyltransferases including KMT5A are associated with neurodevelopmental disorders. However, the function of KMT5A/Pr-set7/SETD8 in the central nervous system is not well established. Here, we show that Drosophila Pr-Set7 is a novel regulator of NSC reactivation. Loss of function of pr-set7 causes a delay in NSC reactivation and loss of H4K20 monomethylation in the brain. Through NSC-specific in vivo profiling, we demonstrate that Pr-set7 binds to the promoter region of cyclin-dependent kinase 1 (cdk1) and Wnt pathway transcriptional co-activator earthbound1/jerky (ebd1). Further validation indicates that Pr-set7 is required for the expression of cdk1 and ebd1 in the brain. Similar to Pr-set7, Cdk1 and Ebd1 promote NSC reactivation. Finally, overexpression of Cdk1 and Ebd1 significantly suppressed NSC reactivation defects observed in pr-set7-depleted brains. Therefore, Pr-set7 promotes NSC reactivation by regulating Wnt signaling and cell cycle progression. Our findings may contribute to the understanding of mammalian KMT5A/PR-SET7/SETD8 during brain development.
Collapse
Affiliation(s)
- Jiawen Huang
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Mahekta R Gujar
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Qiannan Deng
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Sook Y Chia
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Present address:
National Neuroscience InstituteSingaporeSingapore
| | - Song Li
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Patrick Tan
- Genome Institute of SingaporeSingaporeSingapore
- Cancer & Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Cellular and Molecular ResearchNational Cancer CentreSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Wing‐Kin Sung
- Genome Institute of SingaporeSingaporeSingapore
- Department of Computer ScienceNational University of SingaporeSingaporeSingapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering ProgrammeNational University of SingaporeSingaporeSingapore
| |
Collapse
|
37
|
The transcription factor of the Hippo signaling pathway, LmSd, regulates wing development in Locusta migratoria. Int J Biol Macromol 2021; 179:136-143. [PMID: 33667555 DOI: 10.1016/j.ijbiomac.2021.02.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
Scalloped (Sd) is transcription factor that regulates cell proliferation and organ growth in the Hippo pathway. In the present research, LmSd was identified and characterized, and found to encode an N-terminal TEA domain and a C-terminal YBD domain. qRT-PCR showed that the LmSd transcription level was highest in the fifth-instar nymphs and very little was expressed in embryos. Tissue-specific analyses showed that LmSd was highly expressed in the wing. Immunohistochemistry indicated that LmSd was highly abundant in the head, prothorax, and legs during embryonic development. LmSd dsRNA injection resulted in significantly down-regulated transcription and protein expression levels compared with dsGFP injection. Gene silencing of LmSd resulted in deformed wings that were curved, wrinkled, and failed to fully expand. Approximately 40% of the nymphs had wing pads that were not able to close normally during molting from fifth-instar nymphs into adults. After silencing of LmSd, the transcription levels of cell division genes were suppressed and the expression levels of apoptosis genes were significantly up-regulated. Our results reveal that LmSd plays an important role in wing formation and development by controlling cell proliferation and inhibiting apoptosis.
Collapse
|
38
|
van Woerden GM, Bos M, de Konink C, Distel B, Avagliano Trezza R, Shur NE, Barañano K, Mahida S, Chassevent A, Schreiber A, Erwin AL, Gripp KW, Rehman F, Brulleman S, McCormack R, de Geus G, Kalsner L, Sorlin A, Bruel AL, Koolen DA, Gabriel MK, Rossi M, Fitzpatrick DR, Wilkie AOM, Calpena E, Johnson D, Brooks A, van Slegtenhorst M, Fleischer J, Groepper D, Lindstrom K, Innes AM, Goodwin A, Humberson J, Noyes A, Langley KG, Telegrafi A, Blevins A, Hoffman J, Guillen Sacoto MJ, Juusola J, Monaghan KG, Punj S, Simon M, Pfundt R, Elgersma Y, Kleefstra T. TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Hum Mutat 2021; 42:445-459. [PMID: 33565190 PMCID: PMC8248425 DOI: 10.1002/humu.24176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/29/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.
Collapse
Affiliation(s)
- Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Melanie Bos
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Ben Distel
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Natasha E Shur
- Division of Genetics and Metabolism, Rare Disease Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | - Kristin Barañano
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Angelika L Erwin
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Fatima Rehman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Saskia Brulleman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Róisín McCormack
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Gwynna de Geus
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Louisa Kalsner
- Departments of Neurology and Pediatrics, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Arthur Sorlin
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares «Anomalies du Développement et syndromes malformatifs», Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares «Anomalies du Développement et syndromes malformatifs», Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Melissa K Gabriel
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, USA
| | - Mari Rossi
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, USA
| | | | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Oxford Craniofacial Unit, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Julie Fleischer
- Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA
| | - Daniel Groepper
- Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Allison Goodwin
- VCU Medical Center, Clinical Genetics Services, Richmond, Virginia, USA
| | - Jennifer Humberson
- Division of Pediatric Genetics, Department of Pediatrics, University of Virginia Medical Center, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
40
|
Lopes A, Magrinelli E, Telley L. Emerging Roles of Single-Cell Multi-Omics in Studying Developmental Temporal Patterning. Int J Mol Sci 2020; 21:E7491. [PMID: 33050604 PMCID: PMC7589732 DOI: 10.3390/ijms21207491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
The complexity of brain structure and function is rooted in the precise spatial and temporal regulation of selective developmental events. During neurogenesis, both vertebrates and invertebrates generate a wide variety of specialized cell types through the expansion and specification of a restricted set of neuronal progenitors. Temporal patterning of neural progenitors rests on fine regulation between cell-intrinsic and cell-extrinsic mechanisms. The rapid emergence of high-throughput single-cell technologies combined with elaborate computational analysis has started to provide us with unprecedented biological insights related to temporal patterning in the developing central nervous system (CNS). Here, we present an overview of recent advances in Drosophila and vertebrates, focusing both on cell-intrinsic mechanisms and environmental influences. We then describe the various multi-omics approaches that have strongly contributed to our current understanding and discuss perspectives on the various -omics approaches that hold great potential for the future of temporal patterning research.
Collapse
Affiliation(s)
| | | | - Ludovic Telley
- Department of Basic Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland; (A.L.); (E.M.)
| |
Collapse
|
41
|
Hong G, Yan Y, Zhong Y, Chen J, Tong F, Ma Q. Combined Ischemic Preconditioning and Resveratrol Improved Bloodbrain Barrier Breakdown via Hippo/YAP/TAZ Signaling Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:713-722. [PMID: 31642795 DOI: 10.2174/1871527318666191021144126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transient Ischemia/Reperfusion (I/R) is the main reason for brain injury and results in disruption of the Blood-Brain Barrier (BBB). It had been reported that BBB injury is one of the main risk factors for early death in patients with cerebral ischemia. Numerous investigations focus on the study of BBB injury which have been carried out. OBJECTIVE The objective of this study was to investigate the treatment function of the activation of the Hippo/Yes-Associated Protein (YAP) signaling pathway by combined Ischemic Preconditioning (IPC) and resveratrol (RES) before brain Ischemia/Reperfusion (BI/R) improves Blood-Brain Barrier (BBB) disruption in rats. METHODS Sprague-Dawley (SD) rats were pretreated with 20 mg/kg RES and IPC and then subjected to 2 h of ischemia and 22 h of reperfusion. The cerebral tissues were collected; the cerebral infarct volume was determined; the Evans Blue (EB) level, the brain Water Content (BWC), and apoptosis were assessed; and the expressions of YAP and TAZ were investigated in cerebral tissues. RESULTS Both IPC and RES preconditioning reduced the cerebral infarct size, improved BBB permeability, lessened apoptosis, and upregulated expressions of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) compared to the Ischemia/Reperfusion (I/R) group, while combined IPC and RES significantly enhanced this action. CONCLUSION combined ischemic preconditioning and resveratrol improved blood-brain barrier breakdown via Hippo/YAP/TAZ signaling pathway.
Collapse
Affiliation(s)
- Ganji Hong
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Yan
- Department of Rehabilitation Medicine, Zhejiang Chinese Medical University, The Third Clinical Medicine, Hangzhou, Zhejiang, China
| | - Yali Zhong
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jianer Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Tong
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.,Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
42
|
Gil-Ranedo J, Gonzaga E, Jaworek KJ, Berger C, Bossing T, Barros CS. STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation. Cell Rep 2020; 27:2921-2933.e5. [PMID: 31167138 PMCID: PMC6581792 DOI: 10.1016/j.celrep.2019.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells reactivate from quiescence to maintain tissue homeostasis and in response to injury. How the underlying regulatory signals are integrated is largely unknown. Drosophila neural stem cells (NSCs) also leave quiescence to generate adult neurons and glia, a process that is dependent on Hippo signaling inhibition and activation of the insulin-like receptor (InR)/PI3K/Akt cascade. We performed a transcriptome analysis of individual quiescent and reactivating NSCs harvested directly from Drosophila brains and identified the conserved STRIPAK complex members mob4, cka, and PP2A (microtubule star, mts). We show that PP2A/Mts phosphatase, with its regulatory subunit Widerborst, maintains NSC quiescence, preventing premature activation of InR/PI3K/Akt signaling. Conversely, an increase in Mob4 and Cka levels promotes NSC reactivation. Mob4 and Cka are essential to recruit PP2A/Mts into a complex with Hippo kinase, resulting in Hippo pathway inhibition. We propose that Mob4/Cka/Mts functions as an intrinsic molecular switch coordinating Hippo and InR/PI3K/Akt pathways and enabling NSC reactivation. Transcriptional profiling of reactivating versus quiescent NSCs identifies STRIPAK members PP2A/Mts phosphatase inhibits Akt activation, maintaining NSC quiescence Mob4 and Cka target Mts to Hippo to inhibit its activity and promote NSC reactivation Mob4/Cka/Mts coordinate Hippo and InR/PI3K/Akt signaling in NSCs
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK
| | - Eleanor Gonzaga
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK
| | - Karolina J Jaworek
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK
| | - Christian Berger
- Institute of Genetics, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Torsten Bossing
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK
| | - Claudia S Barros
- Faculty of Medicine and Dentistry, University of Plymouth, PL6 8BU Plymouth, UK.
| |
Collapse
|
43
|
Yin J, Zhang J, Li T, Sun X, Qin S, Hou CX, Zhang GZ, Li MW. BmSd gene regulates the silkworm wing size by affecting the Hippo pathway. INSECT SCIENCE 2020; 27:655-664. [PMID: 31225693 DOI: 10.1111/1744-7917.12702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Insect wings are developed from the wing disc during metamorphosis. Bombyx mori, a model lepidopteran insect, loses flight ability after long-term domestication from the wild silkworm, Bombyx mandarina. The mw mutant (u11 strain) shows minute wings compared to wild type (e.g., p50 strain) wings. RNA sequencing analysis previously revealed differential Hippo-pathway-related gene expression between the u11 and p50 strains. The Hippo pathway is an evolutionarily conserved signaling cascade that controls organ size during development in animals. In this study, the function of BmSd which has been characterized as one of the Hippo-pathway-related genes was analyzed for silkworm wing development. We found that mats, warts, and hippo expression levels were higher in u11 compared to p50 wing discs. BmSd (scalloped) expression, which encodes a prominent transcriptional partner to Yorkie (Yki), gradually decreased during the wandering stage in u11, but exhibited the opposite expression pattern in p50. When BmSd was knocked down by small interfering RNA during the wandering stage in the p50 strain, 57.9% of the individuals showed minute wings. Additionally, ex, kibra, and wingless expression levels decreased in the BmSd knockdown mutant. Further, BmSd deletion mediated by clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 induced 50% of individuals with minute wings, a phenotype similar to the mw mutant. This result demonstrates that BmSd plays pivotal roles in silkworm wing development. Our results show that the Hippo signaling pathway participates and plays crucial roles in the regulation of silkworm wing development, and our findings provide a basis for further research on B. mori wing development.
Collapse
Affiliation(s)
- Jin Yin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Cheng-Xiang Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Guo-Zheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Mu-Wang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
44
|
Keegan SE, Hughes SC. Role of nuclear-cytoplasmic protein localization during Drosophila neuroblast development. Genome 2020; 64:75-85. [PMID: 32526151 DOI: 10.1139/gen-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear-cytoplasmic localization is an efficient way to regulate transcription factors and chromatin remodelers. Altering the location of existing protein pools also facilitates a more rapid response to changes in cell activity or extracellular signals. There are several examples of proteins that are regulated by nucleo-cytoplasmic shuttling, which are required for Drosophila neuroblast development. Disruption of the localization of homologs of these proteins has also been linked to several neurodegenerative disorders in humans. Drosophila has been used extensively to model the neurodegenerative disorders caused by aberrant nucleo-cytoplasmic localization. Here, we focus on the role of alternative nucleo-cytoplasmic protein localization in regulating proliferation and cell fate decisions in the Drosophila neuroblast and in neurodegenerative disorders. We also explore the analogous role of RNA binding proteins and mRNA localization in the context of regulation of nucleo-cytoplasmic localization during neural development and a role in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sophie E Keegan
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah C Hughes
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
The Hippo Pathway as a Driver of Select Human Cancers. Trends Cancer 2020; 6:781-796. [PMID: 32446746 DOI: 10.1016/j.trecan.2020.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The Hippo pathway regulates myriad biological processes in diverse species and is a key cancer signaling network in humans. Although Hippo has been linked to multiple aspects of cancer, its role in this disease is incompletely understood. Large-scale pan-cancer analyses of core Hippo pathway genes reveal that the pathway is mutated at a high frequency only in select human cancers, including malignant mesothelioma and meningioma. Hippo pathway deregulation is also enriched in squamous epithelial cancers. We discuss cancer-related functions of the Hippo pathway and potential explanations for the cancer-restricted mutation profile of core Hippo pathway genes. Greater understanding of Hippo pathway deregulation in cancers will be essential to guide the imminent use of Hippo-targeted therapies.
Collapse
|
46
|
Gangwani K, Snigdha K, Kango-Singh M. Tep1 Regulates Yki Activity in Neural Stem Cells in Drosophila Glioma Model. Front Cell Dev Biol 2020; 8:306. [PMID: 32457905 PMCID: PMC7225285 DOI: 10.3389/fcell.2020.00306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most common form of malignant brain tumor with poor prognosis. Amplification of Epidermal Growth Factor Receptor (EGFR), and mutations leading to activation of Phosphatidyl-Inositol-3 Kinase (PI3K) pathway are commonly associated with GBM. Using a previously published Drosophila glioma model generated by coactivation of PI3K and EGFR pathways [by downregulation of Pten and overexpression of oncogenic Ras] in glial cells, we showed that the Drosophila Tep1 gene (ortholog of human CD109) regulates Yki (the Drosophila ortholog of human YAP/TAZ) via an evolutionarily conserved mechanism. Oncogenic signaling by the YAP/TAZ pathway occurs in cells that acquire CD109 expression in response to the inflammatory environment induced by radiation in clinically relevant models. Further, downregulation of Tep1 caused a reduction in Yki activity and reduced glioma growth. A key function of Yki in larval CNS is stem cell renewal and formation of neuroblasts. Other reports suggest different upstream regulators of Yki activity in the optic lobe versus the central brain regions of the larval CNS. We hypothesized that Tep1 interacts with the Hippo pathway effector Yki to regulate neuroblast numbers. We tested if Tep1 acts through Yki to affect glioma growth, and if in normal cells Tep1 affects neuroblast number and proliferation. Our data suggests that Tep1 affects Yki mediated stem cell renewal in glioma, as reduction of Tep significantly decreases the number of neuroblasts in glioma. Thus, we identify Tep1-Yki interaction in the larval CNS that plays a key role in glioma growth and progression.
Collapse
Affiliation(s)
- Karishma Gangwani
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Kirti Snigdha
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- Premedical Programs, University of Dayton, Dayton, OH, United States
- Integrated Science and Engineering Center (ISE), University of Dayton, Dayton, OH, United States
| |
Collapse
|
47
|
Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet 2020; 16:e1008653. [PMID: 32324743 PMCID: PMC7179833 DOI: 10.1371/journal.pgen.1008653] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are crucial for development, regeneration, and repair of the nervous system. Most NSCs in mammalian adult brains are quiescent, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to give rise to new neurons. The delicate balance between NSC quiescence and activation is important for adult neurogenesis and NSC maintenance. However, how NSCs transit between quiescence and activation remains largely elusive. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs. We review recent advances on signaling pathways originated from the NSC niche and their crosstalk in regulating NSC reactivation. We also highlight new intrinsic paradigms that control NSC reactivation in Drosophila and mammalian systems. We also discuss emerging evidence on modeling human neurodevelopmental disorders using NSCs.
Collapse
|
48
|
Mota M, Shevde LA. Merlin regulates signaling events at the nexus of development and cancer. Cell Commun Signal 2020; 18:63. [PMID: 32299434 PMCID: PMC7164249 DOI: 10.1186/s12964-020-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/28/2020] [Indexed: 01/04/2023] Open
Abstract
Background In this review, we describe how the cytoskeletal protein Merlin, encoded by the Neurofibromin 2 (NF2) gene, orchestrates developmental signaling to ensure normal ontogeny, and we discuss how Merlin deficiency leads to aberrant activation of developmental pathways that enable tumor development and malignant progression. Main body Parallels between embryonic development and cancer have underscored the activation of developmental signaling pathways. Hippo, WNT/β-catenin, TGF-β, receptor tyrosine kinase (RTK), Notch, and Hedgehog pathways are key players in normal developmental biology. Unrestrained activity or loss of activity of these pathways causes adverse effects in developing tissues manifesting as developmental syndromes. Interestingly, these detrimental events also impact differentiated and functional tissues. By promoting cell proliferation, migration, and stem-cell like phenotypes, deregulated activity of these pathways promotes carcinogenesis and cancer progression. The NF2 gene product, Merlin, is a tumor suppressor classically known for its ability to induce contact-dependent growth inhibition. Merlin plays a role in different stages of an organism development, ranging from embryonic to mature states. While homozygous deletion of Nf2 in murine embryos causes embryonic lethality, Merlin loss in adult tissue is implicated in Neurofibromatosis type 2 disorder and cancer. These manifestations, cumulatively, are reminiscent of dysregulated developmental signaling. Conclusion Understanding the molecular and cellular repercussions of Merlin loss provides fundamental insights into the etiology of developmental disorders and cancer and has the potential, in the long term, to identify new therapeutic strategies. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mateus Mota
- Department of Pathology, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, WTI 320D, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
| |
Collapse
|
49
|
Quiescent Neural Stem Cells for Brain Repair and Regeneration: Lessons from Model Systems. Trends Neurosci 2020; 43:213-226. [PMID: 32209453 DOI: 10.1016/j.tins.2020.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
Neural stem cells (NSCs) are multipotent progenitors that are responsible for producing all of the neurons and macroglia in the nervous system. In adult mammals, NSCs reside predominantly in a mitotically dormant, quiescent state, but they can proliferate in response to environmental inputs such as feeding or exercise. It is hoped that quiescent NSCs could be activated therapeutically to contribute towards repair in humans. This will require an understanding of quiescent NSC heterogeneities and regulation during normal physiology and following brain injury. Non-mammalian vertebrates (zebrafish and salamanders) and invertebrates (Drosophila) offer insights into brain repair and quiescence regulation that are difficult to obtain using rodent models alone. We review conceptual progress from these various models, a first step towards harnessing quiescent NSCs for therapeutic purposes.
Collapse
|
50
|
Dual function of interleukin-23 Aptamer to suppress brain inflammation via attachment to macrophage stimulating 1 kinase and interleukin-23. Colloids Surf B Biointerfaces 2020; 185:110619. [DOI: 10.1016/j.colsurfb.2019.110619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
|