1
|
Ali AA, Avakian GA, Von Gall C. The Role of Purinergic Receptors in the Circadian System. Int J Mol Sci 2020; 21:E3423. [PMID: 32408622 PMCID: PMC7279285 DOI: 10.3390/ijms21103423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
The circadian system is an internal time-keeping system that synchronizes the behavior and physiology of an organism to the 24 h solar day. The master circadian clock, the suprachiasmatic nucleus (SCN), resides in the hypothalamus. It receives information about the environmental light/dark conditions through the eyes and orchestrates peripheral oscillators. Purinergic signaling is mediated by extracellular purines and pyrimidines that bind to purinergic receptors and regulate multiple body functions. In this review, we highlight the interaction between the circadian system and purinergic signaling to provide a better understanding of rhythmic body functions under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Charlotte Von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany; (A.A.H.A.); (G.A.A.)
| |
Collapse
|
2
|
Weaver DR, van der Vinne V, Giannaris EL, Vajtay TJ, Holloway KL, Anaclet C. Functionally Complete Excision of Conditional Alleles in the Mouse Suprachiasmatic Nucleus by Vgat-ires-Cre. J Biol Rhythms 2019; 33:179-191. [PMID: 29671710 DOI: 10.1177/0748730418757006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with targeted gene disruption have provided important information about the molecular mechanisms of circadian clock function. A full understanding of the roles of circadian-relevant genes requires manipulation of their expression in a tissue-specific manner, ideally including manipulation with high efficiency within the suprachiasmatic nuclei (SCN). To date, conditional manipulation of genes within the SCN has been difficult. In a previously developed mouse line, Cre recombinase was inserted into the vesicular GABA transporter (Vgat) locus. Since virtually all SCN neurons are GABAergic, this Vgat-Cre line seemed likely to have high efficiency at disrupting conditional alleles in SCN. To test this premise, the efficacy of Vgat-Cre in excising conditional (fl, for flanked by LoxP) alleles in the SCN was examined. Vgat-Cre-mediated excision of conditional alleles of Clock or Bmal1 led to loss of immunostaining for products of the targeted genes in the SCN. Vgat-Cre+; Clockfl/fl; Npas2m/m mice and Vgat-Cre+; Bmal1fl/fl mice became arrhythmic immediately upon exposure to constant darkness, as expected based on the phenotype of mice in which these genes are disrupted throughout the body. The phenotype of mice with other combinations of Vgat-Cre+, conditional Clock, and mutant Npas2 alleles also resembled the corresponding whole-body knockout mice. These data indicate that the Vgat-Cre line is useful for Cre-mediated recombination within the SCN, making it useful for Cre-enabled technologies including gene disruption, gene replacement, and opto- and chemogenetic manipulation of the SCN circadian clock.
Collapse
Affiliation(s)
- David R Weaver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vincent van der Vinne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - E Lela Giannaris
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts.,2. Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Thomas J Vajtay
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kristopher L Holloway
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christelle Anaclet
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|